Какими свойствами обладают вещества с ковалентными полярными связями
Данный урок посвящен изучению зависимости физических свойств веществ от их внутреннего строения. В ходе урока будут рассмотрены особенности физических свойств веществ в зависимости от типа химической связи в них.
Тема: Химическая связь. Электролитическая диссоциация
Урок: Физические свойства веществ с различным типом связи
1. Свойства веществ с ковалентной неполярной связью
Вещества с таким типом связи относятся к неметаллам. Они могут быть при н.у. газообразными (кислород, водород, хлор), жидкими (бром), твердыми (сера, фосфор, графит).
Интересная закономерность наблюдается с температурами кипения и плавления газообразных и жидких неметаллов (см. Таблицу 1): с увеличением относительной молекулярной массы , как правило, увеличиваются температуры кипения и плавления веществ с ковалентной неполярной связью.
Таблица 1. Температуры кипения и плавления некоторых газообразных и жидких простых веществ и их Мr
С твердыми неметаллами все не так просто (см. Таблицу 2). Среди них встречаются как легкоплавкие (сера, селен, фосфор), так и тугоплавкие вещества (графит, алмаз, кремний, бор). Температуры плавления этих веществ не зависят от их относительной атомной массы: относительная атомная масса йода 127, а бора всего 11, но температура плавления бора значительно выше. Рассмотрим причины такой разницы в физических свойствах твердых неметаллов.
Таблица 2. Температуры плавления некоторых твердых веществ-неметаллов и их Ar
Почему кремний, бор, графит и алмаз имеют очень высокие температуры плавления? Чтобы ответить на этот вопрос, нужно рассмотреть строение кристаллов этих веществ. Дело в том, что в узлах кристаллических решеток этих веществ находятся атомы неметаллов, соединенные друг с другом прочными ковалентными неполярными связями. Рассмотрим кристаллические решетки графита и алмаза. В кристалле алмаза все атомы углерода связаны между собой равноценными ковалентными неполярными связями. Такой кристалл отличается особой прочностью, поэтому алмаз – необычайно твердое вещество.
Кристалл графита состоит из своеобразных слоев. Расстояние между слоями существенно больше, чем между атомами внутри слоя. Поэтому твердость графита низкая, графитом можно писать (при этом разрываются связи между слоями атомов углерода).
Кремний и бор тоже образуют атомную кристаллическую структуру.
Итак, вещества с атомной кристаллической структурой имеют более высокие температуры кипения и плавления, чем вещества с молекулярной кристаллической структурой. Это объясняется тем, что атомный кристалл разрушить сложнее, чем молекулярный, т.к. связи между молекулами слабые, а между атомами прочные.
Сера, селен, фосфор – вещества молекулярного строения, их молекулы имеют следующий состав: S8, Se8, P4. И для них также соблюдается закономерность: чем больше молекулярная масса вещества с молекулярной кристаллической структурой, тем выше его температура кипения и плавления (см. Таблицу 3).
Таблица 3. Температуры плавления некоторых твердых простых веществ-неметаллов и их Мr
2. Свойства веществ с ковалентной полярной связью
Среди веществ, образованных ковалентной полярной связью, при н.у. встречаются газообразные (углекислый газ, хлороводород), жидкие (вода, серная кислота) и твердые вещества (оксид кремния, оксид фосфора (V)).
Посмотрим на значения температур кипения и плавления этих веществ (см. Таблицу 4). Высокими значениями температур кипения и плавления отличается оксид кремния. Это можно объяснить его строением. Оксид кремния — вещество с атомной кристаллической решеткой. Для того чтобы расплавить это вещество, надо разорвать ковалентные полярные связи между атомами кремния и кислорода. На это требуется большая энергия.
Остальные вещества в Таблице 4 имеют молекулярную кристаллическую структуру. Но мы не наблюдаем здесь прямой зависимости между относительной молекулярной массой и температурой плавления. Например, вода с Mr=18 имеет температуру кипения, равную 100°С, а сероводород с Mr=34 имеет температуру кипения, равную -60°С. Для веществ с ковалентной полярной связью температуры плавления и кипения во многом определяются не только их относительной молекулярной массой, но и полярностью их молекул. Чем полярнее молекулы, тем сильнее они взаимодействуют между собой.
Таблица 4. Температуры плавления и кипения веществ с ковалентной полярной связью и их Mr
3. Свойства веществ, образованных металлами и неметаллами
Соединения, образованные химическими элементами металлами и неметаллами могут быть образованы ионной или ковалентной полярной связью. Вы удивлены? Ионная связь возникает между атомами типичного металла и типичного неметалла, когда разница их значений относительных электроотрицательностей больше 2. При небольшой разнице в значениях относительных электроотрицательностей (менее 2) соединение будет образовано ковалентной полярной связью.
Вы уже знаете, что вещества с ковалентной полярной связью могут иметь молекулярную или атомную кристаллическую структуру. Вещества же с ионной химической связью образованы ионной кристаллической структурой (в узлах кристаллической решетки находятся ионы). Для разрушения ионных кристаллов требуется значительно больше энергии, чем для разрушения молекулярных. Температуры плавления ионных соединений лежат в диапазоне 700-1000°С. Вещества с атомной кристаллической решеткой имеют температуры плавления, как правило, больше 1500°С.
Посмотрим на Таблицу 5 и найдем вещества с атомной, молекулярной и ионной кристаллическими структурами. Как вы видите, оксид алюминия и оксид железа (III) – вещества с атомной структурой, т.к. имеют очень высокие температуры плавления. Вещества, с относительно низкими температурами плавления – хлорид алюминия, хлорид ртути, хлорид железа (III) – имеют в большей степени молекулярную кристаллическую структуру, чем ионную.
Таблица 5. Температуры плавления веществ, образованных металлами и неметаллами
Список рекомендованной литературы
1. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. – М.: АСТ: Астрель, 2007. (§18)
2. Оржековский П.А. Химия: 9-ый класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.: Астрель, 2013. (§7)
3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009.
4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. – М.: РИА «Новая волна»: Издатель Умеренков, 2008.
5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.
Дополнительные веб-ресурсы
1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме): (Источник).
2. Электронная версия журнала «Химия и жизнь»: (Источник).
Домашнее задание
1. Определите тип химической связи и кристаллической решетки в следующих веществах: LiCl, K, Ba(OH)2, NH3, P4, SiO2, CaF2..
2. с. 48-49 №№ А1-А3 из учебника П.А. Оржековского «Химия: 9-ый класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.: Астрель, 2013.
Приложение.
Карточка 1.
Тема: Ковалентная неполярная связь. Свойства веществ с ковалентной неполярной связью. Молекулярная и атомная кристаллические решетки.
I. Изучите и умейте объяснить:
1. Признаки ковалентной неполярной связи:
характер химических элементов – ковалентную неполярную связь образуют атомы неметаллов с одинаковой электроотрицательностью.
механизм образования связи: каждый атом неметалла отдает в общее пользование другому атому свои наружные неспаренные электроны: общая электронная плотность в равной мере принадлежит обоим атомам.
2. Примеры образования ковалентной неполярной связи: водород, фтор, кислород, азот.
3. Свойства веществ с ковалентной неполярной связью:
o При обычных условиях вещества газообразные (водород, кислород), жидкие (бром), твердые (иод, фосфор).
o Большинство веществ сильнолетучие, т.е. имеют очень низкие температуры плавления и кипения.
o Растворы и расплавы веществ электрического тока не проводят. Почему?
Если в молекулах простых веществ ковалентная неполярная связь, то между молекулами действуют очень слабые межмолекулярные силы. Это приводит к образованию сильнолетучих веществ с молекулярной кристаллической решеткой. В твердом виде в узлах кристаллической решетки вещества находятся неполярные молекулы, электроны, осуществляющие ковалентную неполярную связь, по кристаллу не перемещаются. Такое строение является причиной общих свойств: вещества с молекулярной кристаллической решеткой электрического тока не проводят. Рассмотрим образование химической связи в алмазе (см. модель кристаллической решетки алмаза). Алмаз самое твердое и тугоплавкое вещество. Следовательно, в узлах кристаллической решетки алмаза находятся не молекулы, а атомы углерода, связанные посредством ковалентной неполярной связи. Кристаллы алмаза имеют атомную кристаллическую решетку. Кристаллы с атомной кристаллической решеткой образуют также кремний, германий, бор.
II. Рассмотрите на рисунке или моделях кристаллические решетки иода и алмаза.
III. Познакомьтесь с образцами веществ, имеющих ковалентную неполярную связь.
Вопросы и задания для самоконтроля.
1. Какие элементы образуют ковалентную неполярную связь?
2. Каков механизм образования ковалентной неполярной связи?
3. Какими свойствами обладают вещества с молекулярными кристаллическими решетками? Почему?
4. Какими свойствами обладают вещества с атомными кристаллическими решетками? Почему?
5. Составьте химические формулы веществ: азота, натрий хлорида, гидроген бромида, хлора, дигидрогенсульфида, калий фторида. В молекулах каких из этих веществ имеется ковалентная неполярная связь? Изобразите электронную и структурные формулы молекул этих веществ.
Карточка 2.
Тема: Ковалентная полярная связь. Свойства веществ с ковалентной полярной связью. Молекулярная и атомная кристаллические решетки.
I. Изучите и умейте объяснить:
1. Признаки ковалентной полярной связи:
характер химических элементов – ковалентную полярную связь образуют атомы неметаллов с разной электроотрицательностью.
механизм образования связи: каждый атом неметалла отдает в общее пользование другому атому свои наружние неспаренные электроны: общая электронная пара смещена к более электроотрицательному атому.
2. Примеры образования ковалентной неполярной связи: вода, аммиак, гидроген хлорид.
3. Свойства веществ с ковалентной полярной связью:
o При обычных условиях вещества газообразные, жидкие, твердые.
o Большинство веществ имеют относительно низкие температуры плавления и кипения.
o Растворы многих веществ проводят электрический ток. Почему?
Если в молекулах простых веществ ковалентная полярная связь, то молекулы притягиваются друг к другу своими противоположно заряженными полюсами, но с меньшей силой, чем ионы. Это приводит к образованию молекулярной кристаллической решетки, в узлах которой находятся полярные молекулы. Поскольку межмолекулярные силы не велики (по сравнению с силами между ионами), то вещества с молекулярной кристаллической решеткой летучи, т.е. имеют довольно низкие температуры плавления и кипения.
II. Рассмотрите на рисунке или моделях кристаллическую решетку твердой воды, объясните ее строение.
III. Познакомьтесь с образцами веществ, имеющих ковалентную полярную связь, предскажите их физические свойства, сверьте свои предположения со справочным материалом.
Вопросы и задания для самоконтроля.
1. Какие элементы образуют ковалентную полярную связь?
2. Каков механизм образования ковалентной полярной связи?
3. Какими свойствами обладают вещества с ковалентными полярными связями. Почему?
4. Какие вещества, образцы которых выставлены на столе, имеют ковалентную полярную связь?
5. Карборунд (силиций карбид SiC) – один из самых твердых и термостойких минералов. Его используют как огнеупорный и абразивный материал. Какой вид химической связи и тип кристаллической решетки в этом веществе? Изобразите схематически фрагмент кристаллической решетки карборунда.
Карточка 3.
Дата добавления: 2016-12-31; просмотров: 2164 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org — Контакты — Последнее добавление
Ковалентная связь, формирующая молекулу водорода H2 (справа), где два атома водорода перекрывают два электрона
Ковалентная связь (от лат. co — «совместно» и vales — «имеющий силу») — химическая связь, образованная перекрытием (обобществлением) пары валентных (находящихся на внешней оболочке атома) электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.
Ковалентная связь включает в себя многие виды взаимодействий, включая σ-связь, π-связь, металлическую связь, банановую связь и двухэлектронную трёхцентровую связь.[1][2]
С учётом статистической интерпретации волновой функции М. Борна плотность вероятности нахождения связывающих электронов концентрируется в пространстве между ядрами молекулы (рис.1). В теории отталкивания электронных пар рассматриваются геометрические размеры этих пар. Так, для элементов каждого периода существует некоторый средний радиус электронной пары (Å):
0,6 для элементов вплоть до неона; 0,75 для элементов вплоть до аргона; 0,75 для элементов вплоть до криптона и 0,8 для элементов вплоть до ксенона[3].
Характерные свойства ковалентной связи[править | править код]
Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.
- Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы.
Углы между двумя связями называют валентными.
- Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
- Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов.
По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные — двухатомная молекула состоит из одинаковых атомов (H2, Cl2, N2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные — двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).
- Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.
Электроны тем подвижнее, чем дальше они находятся от ядер.
Однако, дважды лауреат Нобелевской премии Л. Полинг указывал, что «в некоторых молекулах имеются ковалентные связи, обусловленные одним или тремя электронами вместо общей пары»[4]. Одноэлектронная химическая связь реализуется в молекулярном ионе водорода H2+.
Молекулярный ион водорода H2+ содержит два протона и один электрон. Единственный электрон молекулярной системы компенсирует электростатическое отталкивание двух протонов и удерживает их на расстоянии 1,06 Å (длина химической связи H2+). Центр электронной плотности электронного облака молекулярной системы равноудалён от обоих протонов на боровский радиус α0=0,53 А и является центром симметрии молекулярного иона водорода H2+.
История термина[править | править код]
Термин «ковалентная связь» был впервые введён лауреатом Нобелевской премии Ирвингом Ленгмюром в 1919 году[5][4].
Этот термин относился к химической связи, обусловленной совместным обладанием электронами, в отличие от металлической связи, в которой электроны были свободными, или от ионной связи, в которой один из атомов отдавал электрон и становился катионом, а другой атом принимал электрон и становился анионом.
Позднее (1927 год) Ф. Лондон и В. Гайтлер на примере молекулы водорода дали первое описание ковалентной связи с точки зрения квантовой механики.
Образование связи[править | править код]
Ковалентная связь образуется парой электронов, поделённой между двумя атомами, причём эти электроны должны занимать две устойчивые орбитали, по одной от каждого атома[6].
A· + ·В → А: В
В результате обобществления электроны образуют заполненный энергетический уровень. Связь образуется, если их суммарная энергия на этом уровне будет меньше, чем в первоначальном состоянии (а разница в энергии будет ни чем иным, как энергией связи).
Заполнение электронами атомных (по краям) и молекулярных (в центре) орбиталей в молекуле H2. Вертикальная ось соответствует энергетическому уровню, электроны обозначены стрелками, отражающими их спины.
Согласно теории молекулярных орбиталей, перекрывание двух атомных орбиталей приводит в простейшем случае к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО. Обобществлённые электроны располагаются на более низкой по энергии связывающей МО.
Образование связи при рекомбинации атомов[править | править код]
Атомы и свободные радикалы склонны к рекомбинации — образованию ковалентной связи путём обобществления двух неспаренных электронов, принадлежащих разным частицам.
Образование связи при рекомбинации сопровождается выделением энергии. Так, при взаимодействии атомов водорода выделяется энергия в количестве 436 кДж/моль. Этот эффект используют в технике при атомно-водородной сварке. Поток водорода пропускают через электрическую дугу, где генерируется поток атомов водорода. Атомы затем вновь соединяются на металлической поверхности, помещаемой на небольшое расстояние от дуги. Металл может быть таким путём нагрет выше 3500 °C. Большим достоинством «пламени атомного водорода» является равномерность нагрева, позволяющая сваривать очень тонкие металлические детали[7].
Однако, механизм межатомного взаимодействия долгое время оставался неизвестным. Лишь в 1930 г. Ф. Лондон ввёл понятие дисперсионное притяжение — взаимодействие между мгновенным и наведённым (индуцированными) диполями. В настоящее время силы притяжения, обусловленные взаимодействием между флуктуирующими электрическими диполями атомов и молекул носят название «Лондоновские силы».
Энергия такого взаимодействия прямо пропорциональна квадрату электронной поляризуемости α и обратно пропорциональна расстоянию между двумя атомами или молекулами в шестой степени[8].
Образование связи по донорно-акцепторному механизму[править | править код]
Кроме гомогенного механизма образования ковалентной связи существует гетерогенный механизм — взаимодействие разноименно заряженных ионов — протона H+ и отрицательного иона водорода H-, называемого гидрид-ионом:
При сближении ионов двухэлектронное облако (электронная пара) гидрид-иона притягивается к протону и в конечном счёте становится общим для обоих ядер водорода, то есть превращается в связывающую электронную пару. Частица, поставляющая электронную пару, называется донором, а частица, принимающая эту электронную пару, называется акцептором. Такой механизм образования ковалентной связи называется донорно-акцепторным[9].
Распределение электронной плотности между ядрами в молекуле водорода одно и то же, независимо от механизма образования, поэтому называть химическую связь, полученную по донорно-акцепторному механизму, донорно-акцепторной связью некорректно.
В качестве донора электронной пары, кроме гидрид-иона, выступают соединения элементов главных подгрупп V—VII групп периодической системы элементов в низшей степени окисления элемента. Так, ещё Йоханнес Брёнстед установил, что протон не существует в растворе в свободном виде, в воде он образует катион оксония:
Протон атакует неподелённую электронную пару молекулы воды и образует устойчивый катион, существующий в водных растворах кислот[10].
Аналогично происходит присоединение протона к молекуле аммиака с образованием комплексного катиона аммония:
Таким путём (по донорно-акцепторному механизму образования ковалентной связи) получают большой класс ониевых соединений, в состав которого входят аммониевые, оксониевые, фосфониевые, сульфониевые и другие соединения[11].
В качестве донора электронной пары может выступать молекула водорода, которая при контакте с протоном приводит к образованию молекулярного иона водорода H3+:
Связывающая электронная пара молекулярного иона водорода H3+ принадлежит одновременно трём протонам.
Виды ковалентной связи[править | править код]
Существуют три вида ковалентной химической связи, отличающихся механизмом образования:
1. Простая ковалентная связь. Для её образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.
- Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называется неполярной ковалентной связью. Такую связь имеют многие простые вещества, например: О2, N2, Cl2.
- Если атомы различны, то степень владения обобществлённой парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различными неметаллами, то такое соединение называется ковалентной полярной связью.
2. Донорно-акцепторная связь. Для образования этого вида ковалентной связи оба электрона предоставляет один из атомов — донор. Второй из атомов, участвующий в образовании связи, называется акцептором. В образовавшейся молекуле формальный заряд донора увеличивается на единицу, а формальный заряд акцептора уменьшается на единицу.
3. Семиполярная связь. Её можно рассматривать как полярную донорно-акцепторную связь. Этот вид ковалентной связи образуется между атомом, обладающим неподелённой парой электронов (азот, фосфор, сера, галогены и т. п.) и атомом с двумя неспаренными электронами (кислород, сера). Образование семиполярной связи протекает в два этапа:
1. Перенос одного электрона от атома с неподелённой парой электронов к атому с двумя неспаренными электронами. В результате атом с неподелённой парой электронов превращается в катион-радикал (положительно заряженная частица с неспаренным электроном), а атом с двумя неспаренными электронами — в анион-радикал (отрицательно заряженная частица с неспаренным электроном).2. Обобществление неспаренных электронов (как в случае простой ковалентной связи).
При образовании семиполярной связи атом с неподелённой парой электронов увеличивает свой формальный заряд на единицу, а атом с двумя неспаренными электронами понижает свой формальный заряд на единицу.
σ-связь и π-связь[править | править код]
Сигма (σ)-, пи (π)-связи — приближенное описание видов ковалентных связей в молекулах различных соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании -связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этилен, ацетилен и бензол.
В молекуле этилена С2Н4 имеется двойная связь СН2=СН2, его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвёртого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют -связью.
В линейной молекуле ацетилена
Н—С≡С—Н (Н : С ::: С : Н)
имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две -связи между этими же атомами углерода. Две -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.
Все шесть атомов углерода циклической молекулы бензола С6H6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвёртых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные -связи, а единая -электронная система из шести электронов, общая для всех атомов углерода. Связи между атомами углерода в молекуле бензола совершенно одинаковые.
Примеры веществ с ковалентной связью[править | править код]
Простой ковалентной связью соединены атомы в молекулах простых газов (Н2, Cl2 и др.) и соединений (Н2О, NH3, CH4, СО2, HCl и др.). Соединения с донорно-акцепторной связью — аммония NH4+, тетрафторборат анион BF4− и др. Соединения с семиполярной связью — закись азота N2O, O−-PCl3+.
Кристаллы с ковалентной связью — диэлектрики или полупроводники.
Типичными примерами атомных кристаллов (атомы в которых соединены между собой ковалентными (атомными) связями) могут служить алмаз, германий и кремний.
См. также[править | править код]
- Донорно-акцепторная связь
- Поляризация химической связи
- Ионная связь
- Металлическая связь
- Рекомбинация
Примечания[править | править код]
- ↑ March, Jerry. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (англ.). — John Wiley & Sons, 1992. — ISBN 0-471-60180-2.
- ↑ Gary L. Miessler; Donald Arthur Tarr. Inorganic Chemistry (неопр.). — Prentice Hall, 2004. — ISBN 0-13-035471-6.
- ↑ Гиллеспи Р. Геометрия молекул. — М: «Мир», 1975. — С. 49. — 278 с.
- ↑ 1 2 Л.Паулинг. Природа химической связи. — М.-Л.: Издательство химической литературы, 1947. — С. 16. — 440 с.
- ↑ I. Langmuir. Journal of the American Chemical Society. — 1919. — Т. 41. — 868 с.
- ↑ Полинг.Л., Полинг П. Химия. — «Мир», 1978. — С. 129. — 684 с.
- ↑ Некрасов Б. В. Курс общей химии. — 14. — М.: изд. химической литературы, 1962. — С. 110. — 976 с.
- ↑ Даниэльс Ф., Олберти Р. Физическая химия. — М.: «Мир», 1978. — С. 453. — 646 с.
- ↑ Ахметов Н. С. Неорганическая химия. — изд. 2-е перераб. и доп.. — М.: Высшая школа, 1975. — С. 60. — 672 с.
- ↑ Химический энциклопедический словарь / гл. ред. И. Л. Кнунянц. — М.: Сов. энциклопедия, 1983. — С. 132. — 792 с.
- ↑ Onium compounds IUPAC Gold Book
Литература[править | править код]
- «Химический энциклопедический словарь», М., «Советская энциклопедия», 1983, с.264.