Какими свойствами обладают твердые тела

Какими свойствами обладают твердые тела thumbnail

Модель расположения атомов в кристалле твёрдого тела

Твёрдое тело — одно из четырёх основных агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия[1].

Различают кристаллические и аморфные твёрдые тела. Раздел физики, изучающий состав и внутреннюю структуру твёрдых тел, называется физикой твёрдого тела. То, как твёрдое тело меняет форму при воздействиях и движении, изучается отдельной дисциплиной — механикой твёрдого (деформируемого) тела. Движением абсолютно твёрдого тела занимается третья наука — кинематика твёрдого тела.

Технические приспособления, созданные человеком, используют различные свойства твёрдого тела. В прошлом твёрдое тело применялось как конструкционный материал и в основе употребления лежали непосредственно ощутимые механические свойства как то твёрдость, масса, пластичность, упругость, хрупкость. В современном мире применение твёрдого тела основывается также на физических свойствах, которые зачастую обнаруживаются только при лабораторных исследованиях.

Описание[править | править код]

Схематическое изображение атомной структуры неупорядоченного аморфного (слева) и упорядоченного кристаллического (справа) твёрдого тела.

Твёрдые тела могут быть в кристаллическом и аморфном состоянии. Кристаллы характеризуются пространственной периодичностью в расположении равновесных положений атомов[1], которая достигается наличием дальнего порядка[2] и носит название кристаллической решётки. Естественная форма кристаллов — правильные многогранники[3]. В аморфных телах атомы колеблются вокруг хаотически расположенных точек[1], у них отсутствует дальний порядок, но сохраняется ближний, при котором молекулы расположены согласованно на расстоянии, сравнимом с их размерами. Частным случаем аморфного состояния является стеклообразное состояние[2]. Согласно классическим представлениям, устойчивым состоянием (с минимумом потенциальной энергии) твёрдого тела является кристаллическое. Аморфное тело находится в метастабильном состоянии и с течением времени должно перейти в кристаллическое состояние, однако время кристаллизации часто столь велико, что метастабильность вовсе не проявляется. Аморфное тело можно рассматривать как жидкость с очень большой (часто бесконечно большой) вязкостью[2].

  • Атомы и молекулы, составляющие твёрдое тело, плотно упакованы вместе. Другими словами, молекулы твёрдого тела практически сохраняют своё взаимное положение относительно других молекул[4] и удерживаются между собой межмолекулярным взаимодействием.
  • Многие твёрдые тела содержат в себе кристаллические структуры. В минералогии и кристаллографии под кристаллической структурой подразумевается определённый порядок атомов в кристалле. Кристаллическая структура состоит из элементарных ячеек, набора атомов расположенных в особенном порядке, который периодически повторяется во всех направлениях пространственной решётки. Расстояния между элементами этой решётки в различных направлениях называют параметром этой решётки. Кристаллическая структура и симметричность играют роль в определении множества свойств, таких как спайность кристалла, электронная зонная структура и оптические свойства.
    • При применении достаточной силы любое из этих свойств может быть нарушено, вызывая остаточную деформацию.
  • Твёрдые тела обладают тепловой энергией, следовательно их атомы совершают колебательное движение. Тем не менее это движение незначительно и не может наблюдаться или быть почувствованным при нормальных условиях.

Свойства твёрдого тела и движение частиц в нём исследуются в разделе физики, который называется физикой твёрдого тела (подраздел физики конденсированных сред). Физика твёрдого тела является самостоятельной научной дисциплиной со специфическими методами исследования и математическим аппаратом. Её развитие диктуется практическими потребностями[2]. В зависимости от объекта исследования физика твёрдого тела делится на физику металлов, полупроводников, магнетиков и других. По методам исследования различают рентгеновский структурный анализ, радиоспектроскопию и тому подобное. Кроме того, присутствует деление, связанное с изучением определённых свойств (механических, тепловых и так далее)[1][2].

Материаловедение главным образом рассматривает вопросы, связанные со свойствами твёрдых тел, такими как твёрдость, предел прочности, сопротивление материала нагрузкам, а также фазовые превращения. Это значительным образом совпадает с вопросами, изучаемыми физикой твёрдого тела. Химия твёрдого состояния перекрывает вопросы, рассматриваемые обоими этими разделами знаний, но особенно затрагивает вопросы синтезирования новых материалов.

Классификация твёрдых тел[править | править код]

Электрические и некоторые другие свойства твёрдых тел, в основном, определяются характером движения внешних электронов его атомов[1]. Выделяют пять классов твёрдых тел в зависимости от типа связи между атомами[2]:

  • Ионная связь (например, NaCl). Основными силами являются силы электростатического притяжения. Характерные свойства: в инфракрасной области — отражение и поглощение света в инфракрасной области; при низких температурах — малая электропроводность: при высоких температурах — хорошая ионная проводимость.
  • Ковалентная связь (например, С (алмаз), Ge, Si).
  • Металлическая связь (например, Cu, Al).
  • Молекулярная связь (например, Ar[источник не указан 1395 дней], СН4).
  • Водородная связь (например, Н2О (лёд), HF).

По виду зонной структуры твёрдые тела классифицируют на проводники, полупроводники и диэлектрики.

  • Проводники — зона проводимости и валентная зона перекрываются, таким образом электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твёрдому телу разности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы.
  • Полупроводники — зоны не перекрываются и расстояние между ними составляет менее 4 эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.
  • Диэлектрики — зоны не перекрываются и расстояние между ними составляет более 4 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.

По магнитным свойствам твёрдые тела делятся на диамагнетики, парамагнетики и тела с упорядоченной магнитной структурой[1]. Диамагнетические свойства, которые слабо зависят от агрегатного состояния или температуры, обычно перекрываются парамагнитными, которые являются следствием ориентации магнитных моментов атомов и электронов проводимости. По закону Кюри парамагнитная восприимчивость убывает обратно пропорционально температуре и при температуре 300 К обычно составляет 10−5. Парамагнетики переходят в ферромагнетики, антиферромагнетики или ферримагнетики при понижении температуры[2].

Историческая справка[править | править код]

Несмотря на то, что твёрдые тела (металлы, минералы) исследовались давно, всестороннее изучение и систематизация информации об их свойствах началось с XVII века. Начиная с этого времени был открыт ряд эмпирических законов, которые описывали влияние на твёрдое тело механических сил, изменения температуры, света, электромагнитных полей и т. д. Были сформулированы:

  • закон Гука (1678);
  • закон Дюлонга — Пти (1819);
  • закон Ома (1826);
  • закон Видемана — Франца (1853) и другие.

Уже в первой половине XIX века были сформулированы основные положения теории упругости, для которой характерно представление о твёрдом теле как о сплошной среде.

Целостное представление о кристаллической структуре твёрдых тел, как совокупности атомов, упорядоченное размещение которых в пространстве обеспечивается силами взаимодействия было сформировано Огюстом Браве в 1848 году, хотя первые идеи такого рода высказывались в трактатах Николаса Стено (1669), Рене Жюста Гаюи (1784), Исааком Ньютоном в работе «Математические начала натуральной философии» (1686), в которой рассчитана скорость звука в цепочке упруго связанных частиц, Даниилом Бернулли (1727), Огюстеном Луи Коши (1830) и другими.

Фазовые переходы[править | править код]

При повышении температуры твёрдые тела переходят в жидкое или газообразное состояние. Переход твёрдого тела в жидкость называется плавлением, а переход в газообразное состояние, минуя жидкое, — сублимацией. Переход к твёрдому телу (при понижении температуры) — кристаллизация, к аморфной фазе — стеклование.

Существуют также фазовые переходы между твердотельными фазами, при которых изменяется внутренняя структура твёрдых тел, становясь упорядоченной при понижении температуры.

При атмосферном давлении и температуре Т > 0 К все вещества в природе затвердевают. Исключение составляет гелий, для кристаллизации которого необходимо давление 24 атм[2].

Физические свойства[править | править код]

Под физическими свойствами твёрдых тел понимается их специфическое поведение при воздействии определённых сил и полей. Существует три основных способа воздействия на твёрдые тела, соответствующие трём основным видам энергии: механический, термический и электромагнитный. Соответственно выделяют три основные группы физических свойств.

Механические свойства связывают механические напряжения и деформации тела, согласно результатам широких исследований механических и реологических свойств твёрдых тел, выполненных школой академика П. А. Ребиндера, можно разделить на упругие, прочностные, реологические и технологические. Кроме того, при воздействии на твёрдые тела жидкостей или газов проявляются их гидравлические и газодинамические свойства.

К термическим относят свойства, которые оказываются под воздействием тепловых полей. В электромагнитные свойства условно можно отнести радиационные, проявляющиеся при воздействии на твёрдое тело потоков микрочастиц или электромагнитных волн значительной жёсткости (рентгеновских лучей, гамма-лучей).

Легчайшим известным твёрдым материалом является аэрогель. Некоторые виды аэрогеля имеют плотность 1,9 мг/см³ или 1,9 кг/м³ (1/530 плотности воды).

Механические свойства[править | править код]

В покое твёрдые тела сохраняют форму, но деформируются под воздействием внешних сил. В зависимости от величины приложенной силы деформация может быть упругой, пластической или разрушительной. При упругой деформации тело возвращает себе первоначальную форму после снятия приложенных сил. Отзыв твёрдого тела на прилагаемое усилие описывается модулями упругости. Отличительной особенностью твёрдого тела по сравнению с жидкостями и газами является то, что оно сопротивляется не только растяжению и сжатию, а также сдвигу, изгибу и кручению.

При пластической деформации начальная форма не сохраняется. Характер деформации зависит также от времени, в течение которого действует внешняя сила. Твёрдое тело может деформироваться упруго при мгновенном действии, но пластически, если внешние силы действуют длительное время. Такое поведение называется ползучестью. Одной из характеристик деформации является твёрдость тела — способность сопротивляться проникновению в него других тел.

Каждое твёрдое тело имеет присущий ему порог деформации, после которого наступает разрушение. Свойство твёрдого тела сопротивляться разрушению характеризуется прочностью. При разрушении в твёрдом теле появляются и распространяются трещины, которые в конце концов приводят к разлому.

К механическим свойствам твёрдого тела принадлежит также его способность проводить звук, который является волной, переносящий локальную деформацию с одного места в другое. В отличие от жидкостей и газов в твёрдом теле могут распространяться не только продольные звуковые волны, но и поперечные, что связано с сопротивлением твёрдого тела деформации сдвига. Скорость звука в твёрдых телах в целом выше, чем в газах, в частности в воздухе, поскольку межатомное взаимодействие гораздо сильнее. Скорость звука в кристаллических твёрдых телах характеризуется анизотропией, то есть зависимостью от направления распространения.

Тепловые свойства[править | править код]

Важнейшим тепловым свойством твёрдого тела является температура плавления — температура, при которой происходит переход в жидкое состояние. Другой важной характеристикой плавления является скрытая теплота плавления. В отличие от кристаллов, в аморфных твёрдых телах переход к жидкому состоянию с повышением температуры происходит постепенно. Его характеризуют температурой стеклования — температурой, выше которой материал почти полностью теряет упругость и становится очень пластичным.

Изменение температуры вызывает деформацию твёрдого тела, в основном повышение температуры приводит к расширению. Количественно она характеризуется коэффициентом теплового расширения. Теплоёмкость твёрдого тела зависит от температуры, особенно при низких температурах, однако в области комнатных температур и выше, множество твёрдых тел имеют примерно постоянную теплоёмкость (закон Дюлонга — Пти). Переход к устойчивой зависимости теплоёмкости от температуры происходит при характерной для каждого материала температуре Дебая. От температуры зависят также другие характеристики твердотельных материалов, в частности механические: пластичность, текучесть, прочность, твёрдость.

Электрические и магнитные свойства[править | править код]

В зависимости от величины удельного сопротивления твёрдые тела разделяются на проводники и диэлектрики, промежуточное положение между которыми занимают полупроводники. Полупроводники имеют малую электропроводность, однако для них характерен её рост с температурой. Электрические свойства твёрдых тел связаны с их электронной структурой. Для диэлектриков свойственна щель в энергетическом спектре электронов, которую в случае кристаллических твёрдых тел называют запрещённой зоной. Это область значений энергии, которую электроны в твёрдом теле не могут иметь. В диэлектриках все электронные состояния, ниже щели заполнены, и благодаря принципу Паули электроны не могут переходить из одного состояния в другое, чем обусловлено отсутствие проводимости. Проводимость полупроводников очень сильно зависит от примесей — акцепторов и доноров.

Существует определённый класс твёрдых тел, для которых характерна ионная проводимость. Эти материалы называют супериониками. В основном это ионные кристаллы, в которых ионы одного сорта могут достаточно свободно двигаться между незыблемой решёткой ионов другого сорта.

При низких температурах для некоторых твёрдых тел свойственна сверхпроводимость — способность проводить электрический ток без сопротивления.

Существует класс твёрдых тел, которые могут иметь спонтанную поляризацию — пироэлектрики. Если это свойство характерно только для одной из фаз, что существует в определённом промежутке температур, то такие материалы называются сегнетоэлектриками. Для пьезоэлектриков характерна сильная связь между поляризацией и механической деформацией.

Ферромагнетикам свойственно существование спонтанного магнитного момента.

Оптические свойства твёрдых тел очень разнообразны. Металлы, в основном, имеют высокий коэффициент отражения света в видимой области спектра, многие диэлектрики прозрачные, как, например, стекло. Часто цвет того или другого твёрдого тела обусловлен поглощающими свет примесями. Для полупроводников и диэлектриков характерна фотопроводимость — увеличение электропроводности при освещении.

Идеализации твёрдого тела в науках[править | править код]

Твёрдые тела, встречающиеся в природе, характеризуются огромным количеством разнообразных свойств, которое постоянно растёт.
В зависимости от поставленных перед определённой наукой задач важны лишь отдельные свойства твёрдого тела, другие — несущественны. Например, при исследовании прочности стали её магнитные свойства существенного значения не имеют.

Для простоты изучения реальное тело заменяют идеальным, выделяя лишь важнейшие свойства для рассматриваемого случая. Такой подход, применяемый многими науками, называется абстрагированием. После выделения идеализированного тела с определённым перечнем существенных свойств, строится теория. Достоверность такой теории зависит от того насколько удачно принятая идеализация отражает существенные характеристики объекта. Оценку этому можно дать при сравнении результатов исследований, полученных теоретически на основе идеализированной модели и экспериментально.

В теоретической механике[править | править код]

В теоретической механике идеализированной схемой реального твёрдого тела является абсолютно твёрдое тело, то есть такое, в котором при любых обстоятельствах расстояния между любыми точками являются постоянными — не изменяются ни размеры, ни форма тела.

В теории упругости[править | править код]

В теории упругости и её прикладном применении сопромате также рассматриваются модели, которые учитывают и абсолютизируют отдельные свойства твёрдого тела. Так, принятие условий однородности и сплошности при малых деформациях позволяет применить методы анализа бесконечно малых величин, что существенно упрощает построение теории сопротивления материалов.

Считается также, что зависимость между напряжениями и деформациями является линейной (см. Закон Гука).

В теории пластичности[править | править код]

В теории пластичности модели твёрдого тела основаны на идеализации свойств деформационного упрочнения или свойств текучести твёрдых тел в напряжённо-деформированном состоянии.

См. также[править | править код]

  • Список химических элементов по твёрдости

Примечания[править | править код]

Литература[править | править код]

  • Давыдов А. С. Теория твёрдого тела. — М.: Наука, 1976. — 640 с.

Ссылки[править | править код]

  • Твёрдое тело — статья из Физической энциклопедии
  • Твёрдое тело / И. М. Лифшиц, М. И. Каганов. // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  • Физика конденсированного состояния: 10 ключевых утверждений // ТрВ № 79, 24 мая 2011 года.

Источник

Евгений Михайлович

2 года назад

Максим Киричек

+3

Прежде чем переходить к самим свойствам, я хотел бы подготовить вас к тому факту, что на Земле все относительно, и твердое тело может быть не таким уж и твердым, например, как кусок поролона. Да, всем хорошо известен данный искусственный материал: он довольно мягкий на ощупь, но все равно выступает в роли твердого тела. При изучении свойств твердых тел все выглядит точно так же.

Свойства твердых тел. Электропроводность

Хочется побольше рассказать о двух самых важных свойствах твердых тел: электропроводности и теплопроводности.

Электропроводностью называют свойство того или иного вещества проводить через себя ток.

Для каждого материала существует свой показатель проводимости тока, но всех их принято распределять по трем группам:

  • проводники;
  • полупроводники;
  • диэлектрики.

Хорошими проводниками, которые можно использовать для человеческих нужд, являются металлы. В этой группе выделяют медь и алюминий. Большое количество свободных заряженных частиц в составе металлов позволяет им с легкостью переносить ток.

Диэлектрики наоборот не имеют заряженных частиц и блокируют проход тока через себя, поэтому в качестве изоляции используют резину, пластмассы и т.п.

Полупроводники сочетают в себе свойства вышеперечисленных групп. Материалы подобные кремнию могут проводить ток только в одну сторону или блокировать его. Без открытия этого свойства — человечество сегодня использовало бы деревянные счеты в качестве калькулятора.

Теплопроводность

Суть теплопроводности состоит в том же, что и электропроводности, только место электричества занимает тепловая энергия. И здесь на первом месте оказываются металлы.

Для хорошей проводимости необходимы плотные соединения атомов в структуре материала, а таким материалом как раз является металл. Он хорошо справляется, если необходимо передавать или рассеивать тепловую энергию, обладает прочностью и долговечностью.

Когда цель заключается в сбережении (удержании) тепла, то используют пористые материалы с низким уровнем проводимости: пенопласт, минеральная вата и подобные.

2 года назад

Андрей Тымкив

+3

Мне кажется, что большая часть всех тел в мире именно твердые. Возможно, такое мнение из-за узкого кругозора или потому что твердые тела объемные и видимые по-сравнению, например, с газом. Но, все же, они представляют интерес, и хочется узнать, что из себя представляют именно твердые тела и какими свойствами обладают.

Какими свойствами обладают твердые тела

Научный взгляд на понятие «твердого тела»

Все понимают, что стул, стол, кровать — всё это твердые тела, но что, если взглянуть с точки зрения науки? Это один из видов состояний, в которых могут перебывать вещества. Хочу напомнить, что всего их четыре:

  • газ;
  • жидкость;
  • твердое тело;
  • плазма.

Так вот, твердые тела отличаются своей стабильной формой и тем, что у их атомов происходят совсем маленькие колебания, то есть, они почти неподвижны. Также различают разные виды твердых тел, такие как: аморфные и кристаллические.

Какими свойствами обладают твердые тела

Особенности твердых тел

Можно выделить ряд интересных фактов, связанных с данными телами. Например, при повышении температуры твердые вещества переходят в состояние жидкое или даже газообразное. Но когда я скажу название этого процесса, то все сразу станет ясно — это плавление. Впрочем, существует процесс перехода из газообразного обратно в твердое — сублимация. Если же из жидкого — кристаллизация. Стоит отметить, что существуют переходы и между твердыми состояниями, при которых происходит изменение внутренних структур тел.

Какими свойствами обладают твердые тела

Твердые тела и их свойства

Свойства делятся на три вида:

  • механические;
  • электромагнитные;
  • термические.

Для механических характерно сохранение формы тела в покое и деформация при воздействии каких-либо внешних сил. Если деформация для определенного тела чересчур велика, то оно разрушается. Также к механическим относится проведение звука. Что касается электромагнитных, они могут проводить, плохо проводить или не проводить ток (собственно, диэлектрики и проводники). Перейду к тепловым свойствам. Самым важным является температура плавления. Когда температура меняется, происходит деформация тела, так как повышение температуры содействует расширению тела.

2 года назад

Степан Медунов

+4

Поскольку я заканчивал строительный факультет, а по специальности инженер, кому, как не мне, знать какими свойствами обладают твердые тела. Помню, как мучился с сопроматом, который сдал только на третий раз! Поэтому особое внимание хочу уделить механическим свойствам.

Какими свойствами обладают твердые тела

Что означает термин «твердое тело»

Прежде всего, это одна из четырех разновидностей агрегатного состояния вещества, для которого характерно в первую очередь постоянство формы. По сути, упорядоченность молекул — главный признак, что определяет тело как твердое — имеет определенный объем и его практически невозможно сжать. При этом наблюдается свойство выдерживать значительную нагрузку благодаря плотности. Наука классифицирует твердые тела следующим образом:

  • аморфное тело — кристаллическая решетка слабо выражена;
  • кристалл — у этих веществ наблюдается строго упорядоченная решетка;
  • композитное тело — по сути, искусственное образование, где сочетаются жесткий «каркас» и кристаллический наполнитель.

Какими свойствами обладают твердые тела

Особый интерес вызывают так называемые жидкие кристаллы, что обладают одновременно свойствами твердого и жидкого тела. При этом, одно из главных свойств — неодинаковое прохождение света в веществе.

Деформация

В это понятие входит изменение объема либо формы, что сопровождается некоторыми изменениями на молекулярном уровне. Итак, существуют следующие виды:

  • сжатие — сокращение расстояния между рядами молекул;
  • растяжение — в этом случае расстояние увеличивается;
  • кручение — ряды как бы проворачиваются относительно друг друга;
  • сдвиг — при этом ряды молекул сдвигаются относительно друг друга, однако расстояние между рядами неизменно;
  • изгиб — в этом случае одновременно наблюдается растяжение и сжатие рядов.

Какими свойствами обладают твердые тела

При этом, подобные нарушения структуры вызывают противодействие со стороны самого вещества — упругость. Это обусловлено электромагнитной связью, что возникает при взаимодействии молекул в решетке. Таким образом, эта сила задает форму вещества, а в случае деформации стремится вернуть молекулы в исходное положение. Главное правило взаимодействия сил заключается в их противоположной направленности относительно друг друга.

3 года назад

Эмануил Зильберман

+4

Твердые вещества почти не сжимаются, то есть, сохраняют свою форму. Отличаются твердые тела своей пластичностью. Под нагрузкой такие тела либо раскалываются (стекло), либо восстанавливают свою форму (резина). Твердые вещества по-разному проводят тепло и ток. Например, металлы хорошие проводники, а графит — плохой. Все физические свойства твердых тел зависят от химической связи их молекулярной решетки.

Ваш ответ

Как написать хороший ответ?

Источник