Какими свойствами обладают твердые сплавы
Твёрдые сплавы — твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвёрдых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанных кобальтовой металлической связкой, при различном содержании кобальта или никеля.
Типы твёрдых сплавов[править | править код]
Различают спечённые и литые твёрдые сплавы. Главной особенностью спеченных твёрдых сплавов является то, что изделия из них получают методами порошковой металлургии и они поддаются только обработке шлифованием или физико-химическим методам обработки (лазер, ультразвук, травление в кислотах и другие) так же отлично обрабатываются электро-физическим методом электроэрозии, а литые твёрдые сплавы предназначены для наплавки на оснащаемый инструмент и проходят не только механическую, но часто и термическую обработку (закалка, отжиг, старение и др). Порошковые твёрдые сплавы закрепляются на оснащаемом инструменте методами пайки или механическим закреплением.
Твёрдые сплавы различают по металлам карбидов, в них присутствующих: вольфрамовые — ВК2, ВК3,ВК3М, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25; титано-вольфрамовые — Т30К4, Т15К6, Т14К8, Т5К10, Т5К12В; титано-тантало-вольфрамовые — ТТ7К12, ТТ10К8Б.Безвольфрамовые ТНМ20, ТНМ25, ТНМ30
По химическому составу твёрдые сплавы классифицируют:
- вольфрамокобальтовые твёрдые сплавы (ВК);
- титановольфрамокобальтовые твёрдые сплавы (ТК);
- титанотанталовольфрамокобальтовые твёрдые сплавы (ТТК).
Твёрдые сплавы по назначению делятся (классификация ИСО) на:
- Р — для стальных отливок и материалов, при обработке которых образуется сливная стружка;
- М — для обработки труднообрабатываемых материалов (обычно нержавеющая сталь);
- К — для обработки чугуна;
- N — для обработки алюминия, а также других цветных металлов и их сплавов;
- S — для обработки жаропрочных сплавов и сплавов на основе титана;
- H — для закаленной стали.
Из-за дефицита вольфрама разработана группа безвольфрамовых твёрдых сплавов, называемых керметами. Эти сплавы содержат в своём составе карбиды титана (TiC), карбонитриды титана (TiCN), связанные никельмолибденовой основой. Технология их изготовления аналогична вольфрамосодержащим твёрдым сплавам.
Эти сплавы по сравнению с вольфрамовыми твёрдыми сплавами имеют меньшую прочность на изгиб, ударную вязкость, чувствительны к перепаду температур из-за низкой теплопроводности, но имеют преимущества — повышенную теплостойкость (1000 °C) и низкую схватываемость с обрабатываемыми материалами, благодаря чему не склонны к наростообразованию при резании. Поэтому их рекомендуют использовать для чистового и получистового точения, фрезерования. По назначению относятся к группе Р классификации ИСО.
Свойства твёрдых сплавов[править | править код]
Пластинки из твёрдого сплава имеют HRA 86-92 обладают высокой износостойкостью и красностойкостью (800—1000 °C), что позволяет вести обработку со скоростями резания до 800 м/мин.
Спечённые твёрдые сплавы[править | править код]
Твёрдые сплавы изготавливают путем спекания смеси порошков карбидов и кобальта. Порошки предварительно изготавливают методом химического восстановления (1-10 мкм), смешивают в соответствующем соотношении и прессуют под давлением 200—300 кгс/см², а затем спекают в формах, соответствующих размерам готовых пластин, при температуре 1400—1500 °C, в защитной атмосфере. Термической обработке твёрдые сплавы не подвергаются, так как сразу же после изготовления обладают требуемым комплексом основных свойств.
Композиционные материалы, состоящие из металлоподобного соединения, цементированного металлом или сплавом. Их основой чаще всего являются карбиды вольфрама или титана, сложные карбиды вольфрама и титана (часто также и тантала), карбонитрид титана, реже — другие карбиды, бориды и тому подобные. В качестве матрицы для удержания зерен твёрдого материала в изделии применяют так называемую «связку» — металл или сплав. Обычно в качестве «связки» используют кобальт, так как кобальт является нейтральным элементом по отношению к углероду, он не образует карбиды и не разрушает карбиды других элементов, реже — никель, его сплав с молибденом (никель-молибденовая связка).
Получение твёрдых сплавов легкой порошковой металлургии[править | править код]
- Получение порошков карбидов и кобальта методом восстановления из оксидов.
- Измельчение порошков карбидов и кобальта (производится на шаровых мельницах в течение 2-3 суток) до 1-2 микрон.
- Просеивание и повторное измельчение при необходимости.
- Приготовление смеси (порошки смешивают в количествах, соответствующих химическому составу изготавливаемого сплава).
- Холодное прессование (в смесь добавляют органический клей для временного сохранения формы, например ПВС, парафины или глицерин [1]).
- Спекание под нагрузкой (горячее прессование) при 1400 °C (при 800—850 °C клей сгорает без остатка). При 1400 °C кобальт плавится и смачивает порошки карбидов, при последующем охлаждении кобальт кристаллизуется, соединяя между собой частицы карбидов.
Номенклатура спеченных твёрдых сплавов[править | править код]
Твёрдые сплавы условно можно разделить на три основные группы:
- вольфрамосодержащие твёрдые сплавы
- титановольфрамосодержащие твёрдые сплавы
- титанотанталовольфрамовые твёрдые сплавы
Каждая из вышеперечисленных групп твёрдых сплавов подразделяется в свою очередь на марки, различающиеся между собой по химическому составу, физико-механическим и эксплуатационным свойствам.
Некоторые марки сплава, имея одинаковый химический состав, отличаются размером зерен карбидных составляющих, что определяет различие их физико-механических и эксплуатационных свойств, а отсюда и областей применения.
Свойства марок твёрдых сплавов рассчитаны таким образом, чтобы выпускаемый ассортимент мог в максимальной степени удовлетворить потребности современного производства. При выборе марки сплава следует учитывать: область применения сплава, характер требовании, предъявляемых к точности обрабатываемых поверхностей, состояние оборудования и его кинематические и динамические данные.
Обозначения марок сплавов построено по следующему принципу:
- 1 группа — сплавы содержащие карбид вольфрама и кобальт. Обозначаются буквами ВК, после которых цифрами указывается процентное содержание в сплаве кобальта. К этой группе относятся следующие марки: ВКЗ, ВКЗМ, ВК6, ВК6М, ВК6ОМ, ВК6КС, ВК6В, ВК8, ВК8ВК, ВК8В, ВК10КС, ВК15, ВК20, ВК20КС, ВК10ХОМ, ВК4В.
- 2 группа — титановольфрамовые сплавы, имеющие в своём составе карбид титана, карбид вольфрама и кобальт. Обозначается буквами ТК, при этом цифра, стоящая после букв Т обозначает % содержание карбидов титана, а после буквы К — содержание кобальта. К этой группе относятся следующие марки: Т5К10, Т14К8, Т15К6, ТЗ0К4.
- 3 группа — титанотанталовольфрамовые сплавы, имеющие в своём составе карбид титана, тантала и вольфрама, а также кобальт и обозначаются буквами ТТК, при этом цифра, стоящая после ТТ % содержание карбидов титана и тантала, а после буквы К — содержание кобальта. К этой группе относятся следующие марки: ТТ7К12, ТТ20К9.
- 4 группа — сплавы с износостойкими покрытиями. Имеют буквенное обозначение ВП. К этой группе относятся следующие марки: ВП3115 (основа ВК6), ВП3325 (основа ВК8), ВП1255 (основа ТТ7К12).
Твёрдые сплавы применяемые для обработки металлов резанием: ВК6, ВКЗМ, ВК6М, ВК60М, ВК8, ВК10ХОМ, ТЗОК4, Т15К6, Т14К8, Т5К10, ТТ7К12, ТТ20К9.
Твёрдые сплавы применяемые для бесстружковой обработки металлов и древесины, быстроизнашивающихся деталей машин, приборов и приспособлений: ВКЗ, ВКЗМ, ВК6, ВК6М, ВК8, ВК15, ВК20, ВК10КС. ВК20КС.
Твёрдые сплавы применяемые для оснащения горного инструмента: ВК6В, ВК4В, ВК8ВК, ВК8, ВК10КС, ВК8В,ВК11ВК,ВК15.
В СССР и сейчас России для обработки металлов резанием применяются следующие спечённые твёрдые сплавы[2]:
Российские спечённые твёрдые сплавы:
Марка сплава | WC % | TiC % | TaC % | Co % | Прочность на изгиб (σ), МПа | Твёрдость, HRA | Плотность (ρ), г/см3 | Теплопроводность (λ), Вт/(м·°С) | Модуль Юнга (Е), ГПа |
---|---|---|---|---|---|---|---|---|---|
ВК2 | 98 | — | — | 2 | 1200 | 91,5 | 15,1 | 51 | 645 |
ВК3 | 97 | — | — | 3 | 1200 | 89,5 | 15,3 | 50,2 | 643 |
ВК3-М | 97 | — | — | 3 | 1550 | 91 | 15,3 | 50,2 | 638 |
ВК4 | 96 | — | — | 4 | 1500 | 89,5 | 14,9-15,2 | 50,3 | 637,5 |
ВК4-В | 96 | — | — | 4 | 1550 | 88 | 15,2 | 50,7 | 628 |
ВК6 | 94 | — | — | 6 | 1550 | 88,5 | 15 | 62,8 | 633 |
ВК6-М | 94 | — | — | 6 | 1450 | 90 | 15,1 | 67 | 632 |
ВК6-ОМ | 92 | — | 2 | 6 | 1300 | 90,5 | 15 | 69 | 632 |
ВК8 | 92 | — | — | 8 | 1700 | 87,5 | 14,8 | 50,2 | 598 |
ВК8-В | 92 | — | — | 8 | 1750 | 89 | 14,8 | 50,4 | 598,5 |
ВК10 | 90 | — | — | 10 | 1800 | 87 | 14,6 | 67 | 574 |
ВК10-ОМ | 90 | — | — | 10 | 1500 | 88,5 | 14,6 | 70 | 574 |
ВК15 | 85 | — | — | 15 | 1900 | 86 | 14,1 | 74 | 559 |
ВК20 | 80 | — | — | 20 | 2000 | 84,5 | 13,8 | 81 | 546 |
ВК25 | 75 | — | — | 25 | 2150 | 83 | 13,1 | 83 | 540 |
ВК30 | 70 | — | — | 30 | 2400 | 81,5 | 12,7 | 85 | 533 |
Т5К10 | 85 | 6 | — | 9 | 1450 | 88,5 | 13,1 | 20,9 | 549 |
Т5К12 | 83 | 5 | — | 12 | 1700 | 87 | 13,5 | 21 | 549,3 |
Т14К8 | 78 | 14 | — | 8 | 1300 | 89,5 | 11,6 | 16,7 | 520 |
Т15К6 | 79 | 15 | — | 6 | 1200 | 90 | 11,5 | 12,6 | 522 |
Т30К4 | 66 | 30 | — | 4 | 1000 | 92 | 9,8 | 12,57 | 422 |
ТТ7К12 | 81 | 4 | 3 | 12 | 1700 | 87 | 13,3 | ||
ТТ8К6 | 84 | 8 | 2 | 6 | 1350 | 90,5 | 13,3 | ||
ТТ10К8-Б | 82 | 3 | 7 | 8 | 1650 | 89 | 13,8 | ||
ТТ20К9 | 67 | 9,4 | 14,1 | 9,5 | 1500 | 91 | 12,5 | ||
ТН-20 | — | 79 | (Ni15%) | (Mo6%) | 1000 | 89,5 | 5,8 | ||
ТН-30 | — | 69 | (Ni23%) | (Mo29%) | 1100 | 88,5 | 6 | ||
ТН-50 | — | 61 | (Ni29%) | (Mo10%) | 1150 | 87 | 6,2 |
Иностранные производители твёрдого сплава, как правило, используют каждый свои марки сплавов и обозначения.
Разработки[править | править код]
В настоящее время[когда?] в российской твердосплавной промышленности проводятся глубокие исследования, связанные с возможностью повышения эксплуатационных свойств твёрдых сплавов и расширением сферы применения. В первую очередь эти исследования касаются химического и гранулометрического состава RTP (ready-to-press) смесей. Одним из удачных примеров за последнее время можно привести сплавы группы ТСН (ТУ 1966—001-00196121-2006), разработанные специально для рабочих узлов трения в агрессивных кислотных средах. Данная группа является логическим продолжением в цепочке сплавов ВН на никелевой связке, разработанных Всероссийским научно-исследовательским институтом твёрдых сплавов. Опытным путём было замечено, что с уменьшением размера зёрен карбидной фазы в твёрдом сплаве качественно повышаются твёрдость и прочность. Технологии плазменного восстановления и регулирования гранулометрического состава в данный момент позволяют производить твёрдые сплавы размеры зёрен (WC) в которых могут быть менее 1 микрометра. Сплавы ТСН-группы находят широкое применение в производстве узлов химических и нефтегазовых насосов российского производства.
Литые твёрдые сплавы[править | править код]
Литые твёрдые сплавы получают методом плавки и литья.
Применение[править | править код]
Твёрдые сплавы в настоящее время являются распространенным инструментальным материалом, широко применяемым в инструментальной промышленности. За счёт наличия в структуре тугоплавких карбидов твердосплавный инструмент обладает высокой твёрдостью HRA 80-92 (HRC 73-76), теплостойкостью (800—1000 °C), поэтому ими можно работать со скоростями, в несколько раз превышающими скорости резания для быстрорежущих сталей. Однако, в отличие от быстрорежущих сталей, твёрдые сплавы имеют пониженную прочность (σи = 1000—1500 МПа), не обладают ударной вязкостью. Твёрдые сплавы нетехнологичны: из-за большой твёрдости из них невозможно изготовить цельный фасонный инструмент, к тому же они ограниченно шлифуются — только алмазным инструментом, поэтому твёрдые сплавы применяют в виде пластин, которые либо механически закрепляются на державках инструмента, либо припаиваются к ним.
Твёрдые сплавы ввиду своей высокой твёрдости применяются в следующих областях:
- Обработка резанием конструкционных материалов: резцы, фрезы, свёрла, протяжки и прочий инструмент.
- Оснащение измерительного инструмента: оснащение точных поверхностей микрометрического оборудования и опор весов.
- Клеймение: оснащение рабочей части клейм.
- Волочение: оснащение рабочей части волок.
- Штамповка: оснащение штампов и матриц(вырубных, выдавливания и проч.).
- Прокатка: твердосплавные валки (выполняются в виде колец из твёрдого сплава, одеваемых на металлическое основание)
- Горнодобывающее оборудование: напайка спеченных и наплавка литых твёрдых сплавов.
- Производство износостойких подшипников: шарики, ролики, обоймы и напыление на сталь.
- Рудообрабатывающее оборудование: оснащение рабочих поверхностей.
- Газотермическое напыление износостойких покрытий
См. также[править | править код]
- Спечённые материалы
- Сплавы хром-кобальт-молибденовые
- Победит
Примечания[править | править код]
Ссылки[править | править код]
- Твёрдые металлокерамические сплавы и керметы
Основные принципы обозначения марок сплавов
Твёрдые сплавы — Классификация, области применения
Литература[править | править код]
- Конструкционные материалы. Под ред, Б. Н. Арзамасова. Москва, изд «Машиностроение», 1990.
- Технология конструкционных материалов. Под ред. А. М. Дальского. Москва, изд «Машиностроение», 1985.
- Степанчук А. Н., Билык И. И., Бойко П. А. Технология порошковой металлургии.-К.: Вища шк., 1989.-415с.
- Скороход В. В. Порошковые материалы на основе тугоплавких металлов и соединений.-К.: Техніка, 1982. — 167 с.
Нихром
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Фехраль
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Нихром в изоляции
Продукция
Цены
Стандарты
Статьи
Фото
Титан
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Вольфрам
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Молибден
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Кобальт
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Термопарная проволока
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Провода термопарные
Продукция
Цены
Стандарты
Статьи
Фото
Никель
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Монель
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Константан
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Мельхиор
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Твердые сплавы
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Порошки металлов
Продукция
Цены
Стандарты
Статьи
Фото
Нержавеющая сталь
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Жаропрочные сплавы
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Ферросплавы
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Олово
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Тантал
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Ниобий
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Ванадий
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Хром
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Рений
Продукция
Описание
Цены
Стандарты
Статьи
Фото
Прецизионные сплавы
Продукция
Описание
Магнитомягкие
Магнитотвердые
С заданным ТКЛР
С заданной упругостью
С высоким эл. сопротивлением
Сверхпроводники
Термобиметаллы
Твердые сплавы обладают высокой твердостью и износостойкостью, что определяет их применение в качестве материала для изготовления режущего и бурового инструмента, а также изделий с повышенными требованиями к износостойкости. На странице представлено описание данных сплавов: физические и механические свойства, области применения, марки твердых сплавов, виды продукции.
Основные сведения
Твердые сплавы — гетерогенные материалы, в которых частицы высокотвердых тугоплавких соединений (чаще всего карбиды, реже нитриды или бориды переходных металлов; наиболее широко используют карбиды вольфрама, титана, тантала, хрома или их сочетаний) сцементированы пластичным металлом-связкой (кобальтом, никелем, железом и их сплавами). Твердые сплавы обладают высокой твердостью и износостойкостью и сохраняют эти свойства при температуре 900 — 1500 °С.
Классификация
По способу изготовления выделяют два типа твердых сплавов:
- спеченные;
- литые.
Спеченные сплавы получают методами порошковой металлургии. Данный способ дает очень высокую точность изготовления получаемой продукции и обеспечивает высокие значения различных свойств. Изделия, произведенные методами порошковой металлургии, требуют минимальной механической обработки, поэтому они обрабатываются шлифованием или физико-химическими методами (лазер, ультразвук, травление в кислотах и др.). Спеченные твердые сплавы иногда называют металлокерамическими, так как технология их производства сходна с технологией производства керамики. Сплавы данного типа наносят на инструмент с помощью пайки или механическим закреплением. Наиболее распространенными представителями указанной группы являются сплавы ВК (например, ВК6, ВК8), ТК и ТТК — твердые сплавы на основе карбида вольфрама.
Литые твердые сплавы получают методом литья. К данной группе относят стеллиты (хром, вольфрам, никель, углерод; основа — кобальт), сормайты (хром, никель, углерод; основа — железо), стеллитоподобные сплавы (основа — никель). Для наплавки их выпускают в виде литых стержней или прутков различного химического состава.
В соответствии с областью применения выделяют следующие группы твердых сплавов:
Также можно выделить две большие группы твердых сплавов:
Основой всех вольфрамсодержащих сплавов является карбид вольфрама. Также в составе обязательно присутствует металл-связка, в качестве которого выступает кобальт, никель или смесь никеля с молибденом. Помимо карбида вольфрама такие сплавы могут содержать карбиды титана и тантала.
В безвольфрамовых твердых сплавах карбид вольфрама заменяется либо на какой-либо другой твердый материал, например, нитрид, борид, силицид, либо на карбид иного тугоплавкого металла, например, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена.
Свойства твердых сплавов
Основным практически полезными свойствами сплавов данной категории являются высокая твердость, износостойкость и прочность. В некоторых случаях важную роль играет жаропрочность и жаростойкость, а также тугоплавкость.
Свойства сплавов изменяются в зависимости от группы, к которой относится тот или иной твердый сплав. Для сплавов ВК большую роль играет размер зерна карбида вольфрама. С уменьшением размера зерна возрастает твердость, но уменьшается прочность при изгибе и вязкость сплава (при одинаковом процентном соотношении карбида вольфрама и кобальта) и наоборот соответственно. Сплавы группы ТК, легированные карбидом титана, обладают лучшей стойкостью против окисления, более высокой твердостью и жаропрочностью по сравнению с группой ВК. Однако, имеют более низкую вязкость, прочность при изгибе, а также тепло- и электропроводность. Одновременное добавление карбидов тантала и титана (группа ТТК) увеличивает прочность сплавов при изгибе по сравнению с группой ТК.
Технологические свойства сплава, а именно, его высокая пластичность позволяют без проблем обрабатывать монель давлением как в горячем, так и в холодном состоянии. Также обладает хорошей свариваемостью. А вот механическую обработку необходимо осуществлять с низкой скоростью резания и подачей вследствие быстрого нагартовывания материала.
Марка | Плотность, г/см3 | σИ, МПа, не менее | HRA, не менее |
---|---|---|---|
ВК6 | 14,6-15,0 | 1500 | 88,5 |
ВК8 | 14,4-14,8 | 1600 | 87,5 |
ВК10 | 14,2-14,6 | 1650 | 87,0 |
Т30К4 | 9,5-9,8 | 950 | 92,0 |
Т15К6 | 11,1-11,6 | 1150 | 90,0 |
Т5К12 | 13,1-13,5 | 1650 | 87,0 |
ТТ7К12 | 13,0-13,3 | 1650 | 87,0 |
ТТ8К6 | 12,8-13,3 | 1250 | 90,5 |
ТТ20К9 | 12,0-13,0 | 1300 | 89,0 |
ТН20 | 5,5-6,0 | 1100 | 90 |
КНТ16 | 5,6-6,2 | 1350 | 89,0 |
Марки твердых сплавов
Среди вольфрамсодержащих твердых сплавов наиболее распространенными марками являются ВК — сплавы на основе карбида вольфрама с кобальтом в качестве металла-связки, ТК — сплавы на основе карбида вольфрама с кобальтом в качестве металла-связки и добавлением карбида титана, ТТК — то же, что и ТК плюс карбид тантала.
В общем случае марки вольфрамсодержащих твердых сплавов формируются следующим образом: буква В — карбид вольфрама (WC), Т — карбид титана (TiC), ТТ — карбиды титана и тантала (TaC), КНТ — карбонитрид титана, К — кобальт (Co), Н — никель (Ni); цифры после букв — содержание этих веществ в процентах, а для букв ТТ — сумму содержания карбидов титана и тантала; содержание карбида вольфрама не указывается, оно определяется по разности.
В безвольфрамовых сплавах в качестве связующего металла используют никель в смеси с 20- 25% молибдена.
Химический состав некоторых марок приведен в таблице.
Марка | Состав, % | |||
---|---|---|---|---|
WC | TiC | TaC | Co | |
ВК6 | 94 | — | — | 6 |
ВК8 | 92 | — | — | 8 |
ВК10 | 90 | — | — | 10 |
Т30К4 | 66 | 30 | — | 4 |
Т15К6 | 79 | 15 | — | 6 |
Т5К12 | 83 | 5 | — | 12 |
ТТ7К12 | 81 | 4 | 3 | 12 |
ТТ8К6 | 84 | 8 | 2 | 6 |
ТТ20К9 | 71 | 8 | 12 | 9 |
ТН20 | — | 80 | — | (Ni+Mo) — 20 |
КНТ16 | — | 84 — Ti(C,N) | — | (Ni+Mo) — 20 |
Достоинства / недостатки
- Достоинства:
- обладают высокой твердостью и износостойкостью;
- имеет достаточно высокие прочностные характеристики;
- имеют хорошие показатели жаропрочности и жаростойкости;
- являются тугоплавкими материалами.
- Недостатки:
- карбид вольфрама, являющийся основой большинства твердых сплавов, имеет высокую стоимость;
- по сравнению с быстрорежущими сталями имеют меньшую вязкость и достаточно чувствительны к ударным нагрузкам.
Области применения
Спеченные твердые сплавы широко применяются для обработки материалов резанием, для оснащения горного инструмента, быстроизнашивающихся деталей машин, узлов штампов, инструмента для волочения, калибровки, прессования и так далее. В качестве примера самых распространенных изделий из твердых сплавов можно привести резцы и буровые головки. Инструмент, полностью изготовленный из твердого сплава, очень дорог, поэтому из него изготовляют лишь режущую или изнашиваемую часть. Державки же инструмента изготовляют из обычной конструкционной или инструментальной стали.
Литые твердые сплавы применяются значительно реже по сравнению со спеченными. Они получили распространение при производстве фильер и некоторых буровых инструментов.
Продукция из твердых сплавов
Промышленность выпускает сырье для производства твердых сплавов в виде порошкообразных смесей. Широкое распространение получили смеси твердосплавные ВК6 и ВК8. В дальнейшем смеси формуются и спекаются, в результате чего получаются штабики или готовые изделия требуемой формы. Штабики служат исходным сырьем для производства полуфабрикатов, например, листов, пластин, прутков и других изделий.