Какими свойствами обладают пределы

Какими свойствами обладают пределы thumbnail

1. Функция не может
иметь более одного предела (при одной
и той же базе).

2. Предел постоянной
равен самой этой постоянной:
Какими свойствами обладают пределы,
с – постоянная.

3. Предел суммы функций
равен сумме пределов этих функций:
Какими свойствами обладают пределы

4. Предел произведения
функций равен произведению пределов
этих функций:
Какими свойствами обладают пределы

Отсюда следует, что
постоянный множитель можно выносить
за знак предела:
Какими свойствами обладают пределы

5. Предел частного двух
функций равен частному пределов этих
функций (если предел делителя не равен
нулю):
Какими свойствами обладают пределы

6. (свойство предела
сложной функции) Если
Какими свойствами обладают пределы,
то предел сложной функцииКакими свойствами обладают пределы.

7. Если при базе В (т.е.
в некоторой окрестности точки х0или при достаточно больших х) f1(х)
< f2(х), тоКакими свойствами обладают пределы.

Отметим, что в
перечисленных свойствах предполагается
существование пределов функций f1(х)
и f2(х), из чего следуют заключения
о значениях пределов суммы, произведения
или частного этих функций. Но при этом
из существования предела суммы,
произведения или частного функций не
обязательно следует, что существуют
пределы самих слагаемых, сомножителей
или делимого и делителя.

Например,
Какими свойствами обладают пределы,
но при этомКакими свойствами обладают пределыне существует.

Замечательные пределы

Для вычисления пределов
функций в некоторых случаях удобно
использовать так называемые замечательные
пределы
(здесь рассматриваются без
доказательства).

Первый замечательный предел

Какими свойствами обладают пределы

Второй замечательный предел

Для числовой
последовательности (1 + 1/n)n:

Какими свойствами обладают пределы

Число е (число Эйлера)
– это иррациональное число, которое
приблизительно равно 2,718281. Это число
широко используется в математическом
анализе. График функции у = ехназывают экспонентой3.
Логарифм по основанию е называют
натуральным и обозначаютlnx.

Можно доказать, что
для функций f(x)
= (1 + 1/x)xиf(x) = (1 +x)1/x:

Какими свойствами обладают пределы

Непрерывность функции

Функция f(x) называется
непрерывнойв точкеx0,
если она удовлетворяет трем условиям:

1) определена в точке
(т.е. существует f(x0));

2) имеет конечный предел
при хх0;

3) этот предел равен
значению функции в точке х0,

т.е.
Какими свойствами обладают пределы.

Поясним определение
непрерывности следующим примером
(рисунок 2.10). На рисунке представлены
графики четырех функций y=f(x), первые
три из которых не являются непрерывными
в точкеx= 0, а четвертая
– является.

В самом деле, функция
(а) не является непрерывной в точке x= 0, так как вообще не определена в этой
точке (т.е. нарушено первое условие
непрерывности).

Какими свойствами обладают пределы

Д

Рисунок 2.10 –
Иллюстрация к определению непрерывности
функции

ля функции (б) в точкеx= 0 первое условие непрерывности
выполняется, но нарушается второе
условие – отсутствует предел функции
в этой точке (существуют только
односторонние пределы, не равные друг
другу:Какими свойствами обладают пределы).
Поэтому функция (б) также не является
непрерывной.

Для функции (в) в точке
x = 0 выполняются первые два условия
непрерывности, но при этом
Какими свойствами обладают пределы,
а f(0) = 1. Так какКакими свойствами обладают пределы,
нарушается третье условие непрерывности,
и эта функция также не является
непрерывной.

А вот функция (г) в
точке x = 0является непрерывной,
так как в этом случае выполняются все
три условия непрерывности:Какими свойствами обладают пределы.

По-другому вышеприведенное
определение непрерывности функции
можно записать в виде:
Какими свойствами обладают пределы(для
непрерывной функции возможна перестановка
символов предела и функции).

Слово «непрерывность»
применительно к функции используется
в связи с тем, что если функция непрерывна
в точке, то ее график в этой точке можно
провести, не отрываясь от листа, т.е. сам
график непрерывен.

Если функция не является
непрерывной в точке х0, то эту
точку называютточкой разрыва функции.

Точки разрыва могут
быть первого и второго рода.

В точке разрыва
первого рода
либо существуют конечные
односторонние пределы функции слева и
справа, не равные друг другу (как на
рисунке 2.10 (б)), либо предел функции в
этой точке существует, но не равен
значению функции в этой точке (как на
рисунке 2.10 (в)). В последнем случае точку
разрыва первого рода называютточкой
устранимого разрыва
.

В точке разрыва
второго рода
хотя бы один из односторонних
пределов равен бесконечности или не
существует (как на рисунке 2.10 (а), где
односторонние пределы равны бесконечности).

Непрерывность функции
в точке можно определить и по-другому.

Функция у = f(х)
называется непрерывной в точке х0,
если она определена в эnой
точке и бесконечно малому приращению
аргумента соответствует бесконечно
малое приращение функции:Какими свойствами обладают пределы.

Под приращением функции
здесь будем понимать разность между
значением функции при значении аргумента,
увеличенном на приращение x,
и ее значением в точкеx0:y=f(x0+x) -f(x0)
(рисунок 2.11).

Можно доказать
эквивалентность этих двух определений
непрерывности.

Какими свойствами обладают пределы

Рисунок 2.11 –
Приращение аргумента и приращение
функции

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Предел функции

           В ряде разделов нашего справочника, где требуется применение понятия предела функции, встречаются несколько ситуаций в зависимости от того, куда стремится аргумент функции   x ,   и того, куда при этом стремится значение функции. Определения предела функции для этих случаев удобно представить в форме таблицы. Однако таблица, описывающая все возможные случаи, должна содержать 24 строки и является слишком громоздкой. Для удобства читателей мы привели в таблице только те определения предела функции, которые использованы в нашем справочнике.

НазваниеОбозначениеОпределение

Предел функции   f (x)   при   x,   стремящемся к числу   a,   равен числу   A  

Число   A   называют пределом функции   f (x)   при   x,   стремящемся к числу   a,   если для любого положительного числа   ε   найдется такое положительное число   δ ,   что при всех , удовлетворяющих неравенству

| x – a | < δ ,

будет выполняться неравенство

| f (x) – A | < ε .

f (x) → A

при   xa

Предел функции   f (x)   при   x,   стремящемся к ,   равен числу   A  

Число   A   называют пределом функции   f (x)   при   x ,   стремящемся к, если для любого положительного числа   ε   найдется такое положительное число   С,   что при всех   x,   удовлетворяющих неравенству

x > C ,

будет выполняться неравенство

| f (x) – A | < ε .

f (x) → A

при

Предел функции   f (x)   при   x,   стремящемся к ,   равен числу   A  

Число   A   называют пределом функции   f (x)   при   x ,   стремящемся к, если для любого положительного числа   ε   найдется такое отрицательное число   С,   что при всех   x,   удовлетворяющих неравенству

x < C ,

будет выполняться неравенство

| f (x) – A | < ε .

f (x) → A

при

Предел функции   f (x)   при   x,   стремящемся к ,   равен числу   A  

Число   A   называют пределом функции   f (x)   при   x ,   стремящемся к, если для любого положительного числа   ε   найдется такое положительное число   С,   что при всех   x,   удовлетворяющих неравенству

| x | > C ,

будет выполняться неравенство

| f (x) – A | < ε .

f (x) → A

при   x

Предел функции   f (x)   при   x,   стремящемся к ,   равен  

Функция   (x)   стремится к   при   x,   стремящемся к , если для любого положительного числа   D   найдется такое положительное число   С,   что при всех   x,   удовлетворяющих неравенству

| x | > C ,

будет выполняться неравенство

| f (x)| > D .

f (x) →

при   x

Предел функции   f (x)   при   x,   стремящемся к ,   равен

Функция   (x)   стремится к   при   x,   стремящемся к , если для любого положительного числа   D   найдется такое положительное число   С,   что при всех   x,   удовлетворяющих неравенству

x > C ,

будет выполняться неравенство

| f (x)| > D .

f (x) →

при

Предел функции   f (x)   при   x,   стремящемся к ,   равен

Функция   (x)   стремится к   при   x,   стремящемся к , если для любого положительного числа   D   найдется такое отрицательное число   С,   что при всех   x,   удовлетворяющих неравенству

x < C ,

будет выполняться неравенство

| f (x)| > D .

f (x) →

при

Предел функции   f (x)   при   x,   стремящемся к числу   a   слева, равен

Замечание. Когда говорят, что   x   стремится к   a   слева, то это означает, что при определении предела функции рассматриваются только те значения   x ,   которые меньше   a .

Функция   (x)   стремится к , при   x, стремящемся к числу   a   слева, если для любого положительного числа   С   найдется такое положительное число   δ   что при всех   x,   удовлетворяющих неравенству

a – δ < x < a ,

будет выполняться неравенство

| f (x)| > C .

f (x) → 

при   xa – 0

Предел функции   f (x)   при   x,   стремящемся к числу   a   справа, равен

Замечание. Когда говорят, что   x   стремится к   a   справа, то это означает, что при определении предела функции рассматриваются только те значения   x ,   которые больше   a .

Функция   (x)   стремится к , при   x , стремящемся к числу   a   справа, если для любого положительного числа   С,   найдется такое положительное число   δ   что при всех   x,   удовлетворяющих неравенству

a < x < a + δ ,

будет выполняться неравенство

| f (x)| > C .

f (x) → 

при   xa + 0

Название:

Предел функции   f (x)   при   x,   стремящемся к числу   a,   равен числу   A  

Обозначения:

или

f (x) → A   при   xa

Определение:

Число   A   называют пределом функции   f (x)   при   x,   стремящемся к числу   a,   если для любого положительного числа   ε   найдется такое положительное число   δ ,   что при всех , удовлетворяющих неравенству

| x – a | < δ ,

будет выполняться неравенство

| f (x) – A | < ε .

Название:

Предел функции   f (x)   при   x,   стремящемся к ,   равен числу   A  

Обозначения:

или

f (x) → A   при

Определение:

Число   A   называют пределом функции   f (x)   при   x ,   стремящемся к , если для любого положительного числа   ε   найдется такое положительное число   С,   что при всех   x,   удовлетворяющих неравенству

x > C ,

будет выполняться неравенство

| f (x) – A | < ε .

Название:

Предел функции   f (x)   при   x,   стремящемся к ,   равен числу   A

Обозначения:

или

f (x) → A   при

Определение:

Число   A   называют пределом функции   f (x)   при   x ,   стремящемся к , если для любого положительного числа   ε   найдется такое отрицательное число   С,   что при всех   x,   удовлетворяющих неравенству

x < C ,

будет выполняться неравенство

| f (x) – A | < ε .

Название:

Предел функции   f (x)   при   x,   стремящемся к ,   равен числу   A

Обозначения:

или

f (x) → A   при   x

Определение:

Число   A   называют пределом функции   f (x)   при   x ,   стремящемся к, если для любого положительного числа   ε   найдется такое положительное число   С,   что при всех   x,   удовлетворяющих неравенству

| x | > C ,

будет выполняться неравенство

| f (x) – A | < ε .

Название:

Предел функции   f (x)   при   x,   стремящемся к ,   равен

Обозначения:

или

f (x) →   при   x

Определение:

Функция   (x)   стремится к   при   x,   стремящемся к , если для любого положительного числа   D   найдется такое положительное число   С,   что при всех   x,   удовлетворяющих неравенству

| x | > C ,

будет выполняться неравенство

| f (x)| > D .

Название:

Предел функции   f (x)   при   x,   стремящемся к ,   равен

Обозначения:

или

f (x) →   при

Определение:

Функция   (x)   стремится к   при   x,   стремящемся к , если для любого положительного числа   D   найдется такое положительное число   С,   что при всех   x,   удовлетворяющих неравенству

x > C ,

будет выполняться неравенство

| f (x)| > D .

Название:

Предел функции   f (x)   при   x,   стремящемся к ,   равен

Обозначения:

или

f (x) →   при

Определение:

Функция   (x)   стремится к   при   x,   стремящемся к , если для любого положительного числа   D   найдется такое отрицательное число   С,   что при всех   x,   удовлетворяющих неравенству

x < C ,

будет выполняться неравенство

| f (x)| > D .

Название:

Предел функции   f (x)   при   x,   стремящемся к числу   a   слева, равен

Замечание. Когда говорят, что   x   стремится к   a   слева, то это означает, что при определении предела функции рассматриваются только те значения   x ,   которые меньше   a .

Обозначения:

или

f (x) →   при   x → a – 0 .

Определение:

Функция   (x)   стремится к , при   x, стремящемся к числу   a   слева, если для любого положительного числа   С   найдется такое положительное число   δ   что при всех   x,   удовлетворяющих неравенству

a – δ < x < a ,

будет выполняться неравенство

| f (x)| > C .

Название:

Предел функции   f (x)   при   x,   стремящемся к числу   a   справа, равен

Замечание. Когда говорят, что   x   стремится к   a   справа, то это означает, что при определении предела функции рассматриваются только те значения   x ,   которые больше   a .

Обозначения:

или

f (x) →   при   x → a + 0 .

Определение:

Функция   (x)   стремится к , при   x , стремящемся к числу   a   справа, если для любого положительного числа   С,   найдется такое положительное число   δ   что при всех   x,   удовлетворяющих неравенству

a < x < a + δ ,

будет выполняться неравенство

| f (x)| > C .

Свойства пределов функций

      Если у функций   f (x)   и   g (x)   при   x ,   стремящемся к   a ,   существуют пределы

Читайте также:  Какие бывают оксиды и их свойства

  и   ,

где   A   и   B   – некоторые числа, то при   x ,   стремящемся к   a ,   существуют также и пределы суммы, разности и произведения этих функций, причем

      Если, кроме того, выполнено условие

то при   x ,   стремящемся к   a ,   существует предел дроби

причем

      Для любой непрерывной функции   F (x)   справедливо равенство

Раскрытие неопределенностей типа

      Определение 1 . Если при нахождении предела дроби выясняется, что и числитель дроби, и знаменатель дроби стремятся к стремятся к, то вычисление такого предела называют раскрытием неопределенности типа .

      Часто неопределенность типа удается раскрыть, если и в числителе дроби, и в знаменателе дроби вынести за скобки «самое большое» слагаемое. Например, в случае, когда в числителе и в знаменале дроби стоят многочлены, «самым большим» слагаемым будет член с наивысшей степенью.

      Пример 1. Найти предел функции предел функции

      Решение. Вынесем за скобки «самое большое» слагаемое в каждой из скобок числителя и знаменателя дроби и, используя свойства пределов функций, получим

      Ответ.

      Пример 2. Найти предел функции предел функции

      Решение. Преобразуем выражение, стоящее под знаком предела, к более удобному виду:

      Далее, используя свойства пределов функций, находим

      Ответ.   3 .

Раскрытие неопределенностей типа

      Определение 2 . Если при нахождении предела дроби выясняется, что пределы числителя и знаменателя дроби равны   0 ,   то вычисление такого предела называют раскрытием неопределенности .

Читайте также:  Какое его свойство подсказало автору название этого рассказа невидимка

      В алгебраических дробях неопределенность  при   xa   раскрывается при помощи разложения на множители числителя и знаменателя дроби с последующим сокращением на соответствующую степень множителя   (x – a) .

      Пример 3. Найти предел функции

      Решение. Поскольку и числитель, и знаменатель дроби стремятся к   0   при   x → – 2 ,   то для того, чтобы раскрыть неопределенность типа ,   разложим числитель и знаменатель дроби на множители. С этой целью в числителе применим формулу сокращенного умножения «сумма кубов», а в знаменателе – разложение квадратного трехчлена на множители, а затем сократим дробь на   (x + 2) :

      Теперь предел знаменателя дроби равен   – 11 ,   и, воспользовавшись свойствами пределов функций, получаем

      Ответ.

      Пример 4. Найти предел функции

      Решение. В этом примере также возникает неопределенность типа .

      К сожалению, из-за большого размера формул для расчета подробные вычисления на Вашем мобильном устройстве не видны. Их можно посмотреть только на устройствах с разрешением экрана по ширине не менее 768 пикселей (например, на стационарных компьютерах, ноутбуках и некоторых планшетах).

      Указания к решению примера. Поскольку знаменатель дроби является разностью двух квадратных корней, каждый из которых стремится к одному и тому же числу   5   при   x → 5 ,   то сначала необходимо домножить и числитель, и знаменатель дроби на сумму этих квадратных корней и применить формулу сокращенного уножения «разность квадратов». Затем, разложив квадратный трехчлен   4x2 – 9x – 55   на множители, сократить числитель и знаменатель на   (x – 5) .

Читайте также:  Каким свойством обладают противолежащие углы параллелограмма

      После этого, воспользовавшись свойствами пределов функций, получить ответ.

      На Вашем мобильном устройстве отображается только результат описанных операций.

      Ответ.

Первый замечательный предел

      В пределах, содержащих тригонометрические функции, неопределенность  раскрывается с помощью первого замечательного предела

      Пример 5. Найти предел функции

      Решение. Числитель и знаменатель дроби стремятся к   0   при   x → 0 ,   поэтому для того, чтобы раскрыть неопределенность типа ,   разложим числитель и знаменатель дроби на множители. С этой целью в числителе вынесем за скобки   x2,   а в знаменателе воспользуемся формулой «разность косинусов»:

      Теперь, воспользовавшись первым замечательным пределом и свойствами пределов функций, получаем

      Ответ.

      Пример 6. Найти предел функции

      Решение. Чтобы вычислить данный предел, перейдем от переменной   x   к новой переменной   z   по формуле

.

      Поскольку

,

то предел можно преобразовать к виду

      Применяя формулы приведения и формулу для косинуса двойного угла, получаем

      Теперь, воспользовавшись первым замечательным пределом и свойствами пределов функций, получаем

      Ответ.

Раскрытие неопределенности типа . Второй замечательный предел

      Определение 3. Если при нахождении предела степени некоторого выражения выясняется, что предел основания степени равен   1,   а предел показателя степени равен , то вычисление такого предела называют раскрытием неопределенности   .

      Неопределенность    раскрывается с помощью второго замечательного предела:

(1)

      Если взять натуральный логарифм от обеих частей формулы (1), то второй замечательный предел примет вид:

(2)

      Пример 7. Найти предел функции предел функции

      Решение. Рассмотрим функцию

и, взяв от нее натуральный логарифм, найдем сначала предел функции   y = ln f (x)   при   x →. Применяя свойства логарифмов, получаем

      Преобразуем выражение, стоящее под знаком логарифма к виду, удобному для применения второго замечательного предела,

и заметим, что

      В пределе

и числитель, и знаменатель дроби стремятся к стремятся к, поэтому для раскрытия неопределенности вынесем за скобки «самое большое» слагаемое в числителе дроби и «самое большое» слагаемое в знаменателе дроби и, используя свойства пределов функций, получим

      Следовательно,

      Таким образом,

      Ответ.

      Пример 8. Найти предел функции

      Решение. Рассмотрим функцию

и, взяв от нее натуральный логарифм, найдем сначала предел функции   y = ln f (x)   при   x → – 6 . Применяя свойства логарифмов, получаем

           Чтобы вычислить предел функции   y = ln f (x)   при   x → – 6 ,   перейдем от переменной   x   к новой переменной   z   по формуле

x = – 6 + z .

      Поскольку

то предел (3) можно преобразовать к виду, с помощью формулы (3), получаем

           Воспользовавшись вторым замечательным пределом в виде (2) и свойствами пределов функций, получаем

      Следовательно,

      Ответ.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

Источник