Какими свойствами обладают частицы материи

Какими свойствами обладают частицы материи thumbnail

Запрос «Элементарные частицы» перенаправляется сюда; см. также другие значения.

Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на практике невозможно расщепить на составные части[1].

Следует иметь в виду, что некоторые элементарные частицы (электрон, нейтрино, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы[2]. Другие элементарные частицы (так называемые составные частицы, в том числе частицы, составляющие ядро атома — протоны и нейтроны) имеют сложную внутреннюю структуру, но тем не менее, по современным представлениям, разделить их на части невозможно по причине эффекта конфайнмента.

Всего вместе с античастицами открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются по экспоненциальному закону с постоянной времени от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды (от 10−24 до 10−22 с для резонансов).

Строение и поведение элементарных частиц изучается физикой элементарных частиц.

Все элементарные частицы подчиняются принципу тождественности (все элементарные частицы одного вида во Вселенной полностью одинаковы по всем своим свойствам) и принципу корпускулярно-волнового дуализма (каждой элементарной частице соответствует волна де-Бройля).

Все элементарные частицы обладают свойством взаимопревращаемости, являющегося следствием их взаимодействий: сильного, электромагнитного, слабого, гравитационного. Взаимодействия частиц вызывают превращения частиц и их совокупностей в другие частицы и их совокупности, если такие превращения не запрещены законами сохранения энергии, импульса, момента количества движения, электрического заряда, барионного заряда и др.

Основные характеристики элементарных частиц: время жизни, масса, спин, электрический заряд, магнитный момент, барионный заряд, лептонный заряд, странность, очарование, прелесть, истинность, изотопический спин, чётность, зарядовая чётность, G-чётность, CP-чётность, T-чётность, R-чётность, P-чётность.

Классификация[править | править код]

По времени жизни[править | править код]

Все элементарные частицы делятся на два класса:

  • Стабильные элементарные частицы — частицы, имеющие бесконечно большое время жизни в свободном состоянии (протон, электрон, нейтрино, фотон, гравитон и их античастицы).
  • Нестабильные элементарные частицы — частицы, распадающиеся на другие частицы в свободном состоянии за конечное время (все остальные частицы).

По массе[править | править код]

Все элементарные частицы делятся на два класса:

  • Безмассовые частицы — частицы с нулевой массой (фотон, глюон).
  • Частицы с ненулевой массой (все остальные частицы).

По величине спина[править | править код]

Все элементарные частицы делятся на два класса:

  • бозоны — частицы с целым спином[3] (например, фотон, глюон, мезоны, бозон Хиггса);
  • фермионы — частицы с полуцелым спином[3] (например, электрон, протон, нейтрон, нейтрино).

По видам взаимодействий[править | править код]

Элементарные частицы делятся на следующие группы:

Составные частицы[править | править код]

  • Адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:
    • мезоны — адроны с целым спином, то есть являющиеся бозонами;
    • барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.

Фундаментальные (бесструктурные) частицы[править | править код]

  • Лептоны — фермионы, которые имеют вид точечных частиц (то есть не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.
  • Кварки — дробно заряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  • Калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:
    • фотон — частица, переносящая электромагнитное взаимодействие;
    • восемь глюонов — частиц, переносящих сильное взаимодействие;
    • три промежуточных векторных бозона W+, W− и Z0, переносящие слабое взаимодействие;
    • гравитон — гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

Адроны и лептоны образуют вещество. Калибровочные бозоны — это кванты разных типов взаимодействий.

Кроме того, в Стандартной модели с необходимостью присутствует хиггсовский бозон, предсказанный в 1964 году и обнаруженный в 2012 году на Большом адронном коллайдере.

Размеры элементарных частиц[править | править код]

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10−15 м, что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц — калибровочных бозонов, кварков и лептонов — в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10−18 м) (см. пояснение). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно[4] может оказаться планковской длиной, равной 1,6·10−35 м).

Следует отметить, однако, что размер элементарной частицы является достаточно сложной концепцией, не всегда согласующейся с классическими представлениями. Во-первых, принцип неопределённости не позволяет строго локализовать физическую частицу. Волновой пакет, представляющий частицу как суперпозицию точно локализованных квантовых состояний, всегда имеет конечные размеры и определённую пространственную структуру, причём размеры пакета могут быть вполне макроскопическими — например, электрон в эксперименте с интерференцией на двух щелях «чувствует» обе щели интерферометра, разнесённые на макроскопическое расстояние. Во-вторых, физическая частица меняет структуру вакуума вокруг себя, создавая «шубу» из кратковременно существующих виртуальных частиц — фермион-антифермионных пар (см. Поляризация вакуума) и бозонов-переносчиков взаимодействий. Пространственные размеры этой области зависят от калибровочных зарядов, которыми обладает частица, и от масс промежуточных бозонов (радиус оболочки из массивных виртуальных бозонов близок к их комптоновской длине волны, которая, в свою очередь, обратно пропорциональна их массе). Так, радиус электрона с точки зрения нейтрино (между ними возможно только слабое взаимодействие) примерно равен комптоновской длине волны W-бозонов, ~3×10−18 м, а размеры области сильного взаимодействия адрона определяются комптоновской длиной волны легчайшего из адронов, пи-мезона (~10−15 м), выступающего здесь как переносчик взаимодействия.

Читайте также:  Какие лечебные свойства у адамово яблоко

История[править | править код]

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи. Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, то есть не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков.

Таким образом, физики продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) применяется термин «фундаментальные частицы».

В активно разрабатываемой примерно с середины 1980-х теории струн предполагается, что элементарные частицы и их взаимодействия являются следствиями различных видов колебаний особо малых «струн».

Стандартная модель[править | править код]

Стандартная модель элементарных частиц включает в себя 12 ароматов фермионов, соответствующие им античастицы, а также калибровочные бозоны (фотон, глюоны, W— и Z-бозоны), которые переносят взаимодействия между частицами, и обнаруженный в 2012 году бозон Хиггса, отвечающий за наличие инертной массы у частиц. Однако Стандартная модель в значительной степени рассматривается скорее как теория временная, а не действительно фундаментальная, поскольку она не включает в себя гравитацию и содержит несколько десятков свободных параметров (массы частиц и т. д.), значения которых не вытекают непосредственно из теории. Возможно, существуют элементарные частицы, которые не описываются Стандартной моделью — например, такие, как гравитон (частица, гипотетически переносящая гравитационные силы) или суперсимметричные партнёры обычных частиц. Всего модель описывает 61 частицу[5].

Фермионы[править | править код]

12 ароматов фермионов разделяются на 3 семейства (поколения) по 4 частицы в каждом. Шесть из них — кварки. Другие шесть — лептоны, три из которых являются нейтрино, а оставшиеся три несут единичный отрицательный заряд: электрон, мюон и тау-лептон.

Античастицы[править | править код]

Также существуют 12 фермионных античастиц, соответствующих вышеуказанным двенадцати частицам.

Кварки[править | править код]

Основная статья: Кварк

Кварки и антикварки никогда не были обнаружены в свободном состоянии — это объясняется явлением конфайнмента. На основании симметрии между лептонами и кварками, проявляемой в электромагнитном взаимодействии, выдвигаются гипотезы о том, что эти частицы состоят из более фундаментальных частиц — преонов.

Неизвестные частицы[править | править код]

По мнению большинства физиков, существуют неизвестные доселе типы частиц, из которых состоит тёмная материя[6]

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Лоуренс Краусс. Почему мы существуем. Величайшая из когда-либо рассказанных историй = Krauss. The Greatest Story Ever Told — So Far: Why Are We Here?. — М.: Альпина Нон-фикшн, 2018. — ISBN 978-5-91671-948-2.
  • Главный редактор А. М. Прохоров. Физическая энциклопедия. — М.: Советская энциклопедия.

Ссылки[править | править код]

  • Хроника открытий в физике ядра и частиц, подготовленная сотрудниками физического факультета МГУ им М. В. Ломоносова
  • Физика элементарных частиц на Scientific.ru
  • Полная таблица элементарных частиц, подготовленная Particle Data Group (англ.)
  • Физика элементарных частиц — в мире, в ИЯФ, на кафедре ФЭЧ
  • Имена: поэзия элементарных частиц (англ.)

Источник

У этого термина существуют и другие значения, см. Материя.

Мате́рия (от лат. māteria «вещество») — одно из основных понятий физики, общий термин, определяющийся множеством всего содержимого пространства-времени и влияющее на его свойства.

Является объектом изучения физики, где рассматривается в качестве не зависящей от разума объективной реальности.

Понятие материи в разных областях физики[править | править код]

Определение материи расширялось с развитием различных областей науки. Раньше это были объекты, которые можно было описать классическими свойствами (масса, температура, делимость и т. п.), и в представлениях Ньютона об абсолютности пространства и времени, рассматриваемые независимо; с развитием оптики, а за ней специальной и общей теории относительности это понятие дополнилось его связями с гравитацией и волнами; а современные квантовая физика, астрофизика и физика высоких энергий установили это понятие в современном[уточнить] смысле и активно занимаются поиском новых видов материи.

Основные виды материи[править | править код]

  • Вещество:

    • Адронное вещество — его структурой является множество составных частиц: адронов.

      • Барионное вещество (барионная материя) — вещество состоящее из барионов.

        • Вещество в классическом понимании. Состоит преимущественно из фермионов. Эта форма материи доминирует в Солнечной системе и в ближайших звёздных системах.
    • Антивещество — состоит из античастиц.
    • Нейтронное вещество — состоит преимущественно из нейтронов и лишено атомного строения. Основной компонент нейтронных звёзд, существенно более плотный, чем обычное вещество, но менее плотный, чем кварк-глюонная плазма.
    • Другие виды веществ, имеющих атомоподобное строение (например, вещество, образованное мезоатомами с мюонами).
    • Кварк-глюонная плазма — сверхплотная форма вещества, существовавшая на ранней стадии эволюции Вселенной до объединения кварков в классические элементарные частицы (до конфайнмента).
    • Гипотетические докварковые сверхплотные материальные образования, составляющие которых — струны и другие объекты, c которыми оперируют теории великого объединения (см. теория струн, теория суперструн). Основные формы материи, предположительно существовавшие на ранней стадии эволюции Вселенной. Струноподобные объекты в современной физической теории претендуют на роль наиболее фундаментальных материальных образований, к которым можно свести все элементарные частицы, то есть в конечном счёте, все известные формы материи. Данный уровень анализа материи, возможно, позволит объяснить с единых позиций свойства различных элементарных частиц. Принадлежность к «веществу» здесь следует понимать условно, поскольку различие между вещественной и полевой формами материи на данном уровне стирается.

Поле, в отличие от вещества, не имеет внутренних пустот, обладает абсолютной плотностью.

  • Поле (в классическом смысле):

    • Электромагнитное поле.
    • Гравитационное поле.
  • Квантовые поля различной природы. Согласно современным представлениям квантовое поле является универсальной формой материи, к которой могут быть сведены как вещества, так и классические поля, при этом существует нечёткое разделение на вещественные поля (лептонные и кварковые поля фермионной природы) и поля взаимодействий (глюонные сильные, промежуточные бозонные слабые и фотонное электромагнитное поля бозонной природы, сюда же относят пока гипотетическое поле гравитонов). Особняком среди них стоит поле Хиггса, которое сложно отнести однозначно к любой из этих категорий.
  • Материальные объекты неясной физической природы:
    • Тёмная материя.
    • Тёмная энергия.
Читайте также:  Какие свойства у герани

Эти объекты были введены в научный обиход для объяснения ряда астрофизических и космологических явлений.

Вещество[править | править код]

Классическое вещество может находиться в одном из нескольких агрегатных состояний: газообразном, жидком, твёрдом кристаллическом, твердом аморфном или в виде жидкого кристалла. Кроме того, выделяют высокоионизованное состояние вещества (чаще газообразного, но, в широком смысле, любого агрегатного состояния), называемое плазмой. Известны также состояния вещества, называемые конденсат Бозе — Эйнштейна и кварк-глюонная плазма.

Элементарные частицы и поля[править | править код]

Среди элементарных частиц, составляющих вещества и поля, выделяют фермионы и бозоны, а также частицы, обладающие и не обладающие массой покоя (безмассовые частицы), могут различаться электрическим и другими зарядами. Кроме того, отдельно выделяют виртуальные частицы, которые можно рассматривать как частицы, возникающие в промежуточных состояниях взаимодействия «реальных» элементарных частиц, отличающихся тем, что они могут наблюдаться в долгоживущем состоянии в итоге эксперимента (в принципе, частицы одного и того же вида, например, фотоны или электроны, могут в одних ситуациях участвовать как виртуальные, а в других — как реальные). Отличие виртуальных частиц в том, что они рождаются и уничтожаются (поглощаются) в процессе взаимодействия и не присутствуют в эксперименте в начальном и конечном состоянии. Виртуальные частицы определяют свойства физического вакуума, который, таким образом, в современной физике также приобретает атрибуты материальной среды.

Материя в специальной и общей теории относительности[править | править код]

Материя и излучение, согласно специальной теории относительности, являются только особыми формами энергии, распределенной в пространстве; таким образом, весомая масса теряет своё особое положение и является лишь особой формой энергии.

Согласно укоренившейся терминологии материальными полями в общей теории относительности называют все поля, кроме гравитационного.

См. также[править | править код]

Примечания[править | править код]

Ссылки[править | править код]

Источник

Физическая наука, включающая в себя химию и физику, обычно изучает природу и свойства материи и энергии в неживых системах. Материя — это вещество вселенной. Это атомы, молекулы и ионы, которые составляют все физические вещества. Материя — это все, что имеет массу и занимает пространство.

Энергия — это то, что способно вызвать изменения. Энергию нельзя создать и ее нельзя уничтожить. Она может быть только сохранена и преобразована из одной формы в другую. Потенциальная энергия — это энергия, хранящаяся в объекте из-за его положения. Кинетическая энергия — это энергия, которая находится в движении и вызывает изменения. Любой объект или частица, которая находится в движении, имеет кинетическую энергию, основанную на ее массе и скорости. Кинетическая энергия может быть преобразована в другие виды энергии, такие как электрическая или тепловая.

Существует пять состояний вещества — твердая материя, жидкость, газ, плазма и конденсат Бозе-Эйнштейна. Основное отличие каждого состояния заключается в плотности частиц.

Агрегатные состояния вещества

Твердое вещество

В твердом теле частицы упакованы плотно, поэтому они не способны сильно двигаться. Эти частицы имеют очень низкую кинетическую энергию. Электроны каждого атома находятся в движении, поэтому атомы имеют небольшую вибрацию, но они зафиксированы в своем положении. Твердые тела имеют определенную форму и определенный объем. Частицы упакованы настолько плотно, что увеличивающееся давление не будет сжимать твердое тело до меньшего объема.

Жидкость

В жидком состоянии частицы вещества имеют большую кинетическую энергию, чем частицы твердого тела. Частицы жидкости не удерживаются в регулярном расположении, но все же еще близки друг к другу, поэтому жидкости имеют определенный объем. Жидкость, как и твердые тела, нельзя сжимать. Частицы жидкости имеют достаточно места, чтобы обтекать друг друга, поэтому жидкость имеет неопределенную форму — она способна изменить форму, чтобы соответствовать форме бутылки. Сила распространяется равномерно по всей жидкости, поэтому, когда объект помещается в нее, ее частицы смещаются объектом.

Величина выталкивающей силы равна весу жидкости, вытесненной объектом. Когда выталкивающая сила равна силе тяжести, тянущей вниз по массе объекта, объект будет плавать.

Частицы жидкости, как правило, удерживаются слабым межмолекулярным притяжением, а не перемещаются свободно, как частицы газа. Эта сила соединяет частицы вместе, образуя капли и потоки.

В апреле 2016 года ученые заявили, что было создано необычное состояние материи, которое было предсказано, но его никто и никогда не видел. Хотя этот тип материи можно было держать в руке, как если бы это был твердый объект, увеличение бы показало беспорядочные взаимодействия его электронов, более характерные для жидкости. В новой материи, называемой квантовая спиновая жидкость Китаева, электроны вступают в квантовый танец, в котором они взаимодействуют и разговаривают друг с другом. Обычно, когда вещество остывает, спин его элеронов стремится выровняться. Но в этой квантовой спиновой жидкости электроны взаимодействуют так, что они влияют на то, как вращаются другие, и никогда не выравниваются, независимо от того, насколько сильно вы охладите материал. Он будет вести себя так, как если бы его электроны, считающиеся неделимыми, разорвались на части.

Газ

Частицы газа имеют большое пространство между собой и высокую кинетическую энергию. Если его не ограничивать, то частицы будут бесконечно разбросаны, если ограничить чем-либо — газ начнет расширятся, чтобы заполнить емкость, в которую его поместили. Когда газ оказывается под давлением, за счет уменьшения объема емкости, пространство между частицами начинает сжиматься, а давление, оказываемое их столкновениями, увеличивается. Если объем емкости постоянен, но температура газа увеличивается, то давление также будет увеличиваться. Частицы газа обладают достаточной кинетической энергией для преодоления межмолекулярных сил, которые удерживают твердые частицы и жидкость вместе, поэтому газ не имеет определенного объема и не имеет определенной формы.

Плазма

Читайте также:  Что такое философский камень какие свойства ему приписывали

Плазма не является распространенным состоянием материи на Земле, но может быть очень распространенным состоянием во вселенной. Плазма состоит из сильно заряженных частиц с чрезвычайно высокой кинетической энергией. Благородные газы, такие как гелий, неон, аргон, криптон, ксенон и радон, часто используются для того, чтобы сделать светящиеся вывески с помощь электричества, которое ионизирует их до состояния плазмы. А звезды по существу являются перегретыми шарами плазмы.

Конденсат Бозе-Эйнштейна

В 1995 году технологии позволили ученым создать новое состояние материи — конденсат Бозе-Эйнштейна. Используя комбинацию лазеров и магнитов охладили образец рубидия до абсолютного нуля. При такой чрезвычайно низкой температуре молекулярное движение очень близко к полной остановке. Так как кинетическая энергия почти не передается от одного атома к другому, атомы начинают сжиматься вместе. Больше нет тысяч отдельных атомов, а остается один «супер атом«. Бозе-конденсат используется для изучения квантовой механики на макроскопическом уровне. Свет замедляется, проходя черед него, что позволяет изучать парадокс частицы/волны. Также он обладает многими свойствами сверхтекучей жидкости. Конденсат еще используется для моделирования условий, которые могут быть в черных дырах.

Изменение состояния

Добавление энергии к веществу приводит к физическому изменению — материя переходит из одного состояния в другое. Например, добавление тепла к жидкой воде приводит к тому, что она становится паром, а точнее меняет свое агрегатное состояние на другое — газ. Извлечение энергии также приводит к физическим изменениям, например, когда тепло удаляется, вода становится льдом, то есть твердым телом. Физические изменения также могут быть вызваны движением или давлением.

Плавление и охлаждение

Когда тепло действует на твердое тело, то частицы этого тела начинают быстрее вибрировать и двигаться дальше друг от друга. Когда при стандартном давлении достигается определенная точка — точка плавления — твердое вещество начинает превращаться в жидкость. Точку плавления чистого вещества можно определить с точностью до 0,1°С. Если вы продолжите действовать теплом на тело, то температура не превысит точку плавления, пока все вещество не станет жидким, и только после этого температура снова начнет расти. Разные соединения имеют разную точку плавления — это величина помогает лучше различать их.

Точка замерзания — это температура, при которой жидкое вещество достаточно охлаждено, чтобы стать твердым. По мере охлаждения жидкости движение частиц замедляется. Во многих веществах частицы выравниваются точными геометрическими узорами, образуя кристаллические твердые тела. Большинство жидкостей сжимаются при замерзании. Одной из важных характеристик воды является то, что она расширяется при замерзании, поэтому лед и плавает на воде.

Точка замерзания часто близка к той же температуре, как и у точки плавления, но она не считается характерной для вещества, поскольку несколько факторов могут ее изменить. Например, добавление растворенных веществ в жидкость приведет к понижению точки замерзания. Другие жидкости можно охлаждать до температур, значительно ниже их точки плавления, прежде чем они начнут твердеть. Такие жидкости называются переохлажденными и часто требуют наличие частиц пыли или кристалла для начала процесса кристаллизации.

Сублимация

Когда твердое тело превращается в газ, минуя жидкую фазу, это называется сублимация. Она происходит, когда кинетическая энергия частиц превышает атмосферное давление, окружающее вещество. Это может произойти, когда температура вещества быстро повышается и выходит за пределы точки кипения. Чаще всего вещество может быть сублимировано путем его охлаждения в условиях вакуума, так что вода в нем подвергнется сублимации и удалится. Несколько летучих веществ будут подвергаться сублимации при нормальной температуре и давлении. Наиболее известным из этих веществ является CO2 или «сухой лед».

Испарение

Испарение представляет собой превращение жидкости в газ. Преобразование происходит путем испарения или кипения.

Поскольку частицы жидкости находятся в постоянном движении, они часто сталкиваются друг с другом, передавая при этом энергию. Эта передача энергии имеет небольшое влияние под поверхностью, но, когда достаточная энергия передается частице вблизи поверхности, частица может получить достаточную энергию, чтобы полностью удалится от образца в виде частицы свободного газа. Этот процесс называется испарением, и он продолжается до тех пор, пока не закончится жидкость. Интересно то, что жидкость охлаждается по мере испарения. Энергия, передаваемая поверхностным молекулам, которая вызывает их «вылет», выходит из оставшегося жидкого вещества.

Когда к жидкости добавляется достаточное количество тепла, чтобы пузырьки пара образовались ниже поверхности жидкости, в этот момент мы говорим, что жидкость кипит. Температура, при которой жидкость кипит, является переменной. Точка кипения зависит от давления вещества. Жидкость под высоким давлением потребует больше тепла до того, как в ней образуются пузырьки. На больших высотах давление жидкости ниже, поэтому она будет кипеть при более низкой температуре.

Конденсация и охлаждение

Конденсация — это когда газ превращается в жидкость. Конденсация происходит, когда газ охлаждается или сжимается до такой степени, что кинетическая энергия частиц больше не может преодолевать межмолекулярные силы. Начальная группа частиц инициирует процесс, который имеет тенденцию дополнительно охлаждать газ, так что конденсация продолжается. Когда газ превращается непосредственно в твердое вещество, не проходя через жидкую фазу, это называется осаждением или десублимацией. Например, при пониженных температурах водяной пар в атмосфере преобразуется в иней и лед. Мороз стремится обрисовать стебельки травы и ветки, потому что воздух, который касается этих твердых веществ, охлаждается быстрее, чем воздух, который не касается твердой поверхности.

???? ???? ????

Источник