Какими свойствами обладают буферные растворы внутри клетки и во внеклеточной жидкости

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2018;
проверки требуют 15 правок.

Бу́ферные систе́мы кро́ви (от англ. buffer, buff — «смягчать удар») — физиологические системы и механизмы, обеспечивающие заданные параметры кислотно-основного равновесия в крови[1]. Они являются «первой линией защиты», препятствующей резким перепадам pH внутренней среды живых организмов.

Циркулирующая кровь представляет собой взвесь живых клеток в жидкой среде, химические свойства которой очень важны для их жизнедеятельности. У человека за норму принят диапазон колебаний pH крови 7,37—7,44 со средней величиной 7,4. Буферные системы крови слагаются из буферных систем плазмы и клеток крови и представлены следующими системами[1][2]:

  • бикарбона́тная (водородкарбонатная) бу́ферная систе́ма;
  • фосфа́тная бу́ферная систе́ма;
  • белко́вая бу́ферная систе́ма;
  • гемоглоби́новая бу́ферная система;
  • эритроциты.

Помимо этих систем также активно участвуют дыхательная и мочевыделительная системы[1].

Бикарбонатная буферная система[править | править код]

Одна из самых мощных и вместе с тем самая управляемая система[2] внеклеточной жидкости и крови, на долю которой приходится около 53 % всей буферной ёмкости крови. Представляет собой сопряжённую кислотно-основную пару, состоящую из молекулы угольной кислоты H2CO3, являющейся источником протона, и бикарбонат-аниона HCO3−, выполняющего функцию акцептора протона:

Вследствие того, что концентрация гидрокарбоната натрия в крови значительно превышает концентрацию H2CO3, буферная ёмкость этой системы будет значительно выше по кислоте. Иначе говоря, гидрокарбонатная буферная система особенно эффективно компенсирует действие веществ, увеличивающих кислотность крови. К числу таких веществ прежде всего относят молочную кислоту, избыток которой образуется в результате интенсивной физической нагрузки. Гидрокарбонатная система наиболее «быстро» отзывается на изменение pH крови[2].

Фосфатная буферная система[править | править код]

В крови ёмкость фосфатной буферной системы невелика (составляет около 2 % общей буферной ёмкости), в связи с низким содержанием фосфатов в крови. Фосфатный буфер выполняет значительную функцию в поддержании физиологических значений рН во внутриклеточных жидкостях и моче.

Буфер образован неорганическими фосфатами. Функцию кислоты в этой системе выполняет однозамещённый фосфат (NaH2PО4), а функцию сопряженного основания — двузамещённый фосфат (Na2HPО4). При рН 7,4 соотношение [НРО42-/Н2РО4-] равняется поскольку при температуре 25+273,15K pKa, ортоII=7,21[3], при этом средний заряд аниона ортофосфорной кислоты < q >=((-2)*3+(-1)*2)/5=-1,4 единиц заряда позитрона.

Буферные свойства системы при увеличении в крови содержания водородных ионов реализуются за счет их связывания с ионами НРО42- с образованием Н2РО4-:

а при избытке ионов ОН- — за счет связывания их с ионами Н2РО4-:

Фосфатная буферная система крови тесно взаимосвязана с бикарбонатной буферной системой.

Белковая буферная система[править | править код]

В сравнении с другими буферными системами имеет меньшее значение для поддержания кислотно-основного равновесия (7—10 % буферной ёмкости).

Белки́ плазмы крови благодаря наличию кислотно-основных групп в молекулах белков (белок—H+ — кислота, источник протонов и белок− — сопряжённое основание, акцептор протонов) образуют буферную систему, наиболее эффективную в диапазоне pH 7,2—7,4[1].

Основную часть белков плазмы крови (около 90 %) составляют альбумины и глобулины. Изоэлектрические точки этих белков (число катионных и анионных групп одинаково, заряд молекулы белка равен нулю) лежат в слабокислой среде при pH 4,9—6,3, поэтому в физиологических условиях при pH 7,4 белки находятся преимущественно в формах «белок-основание» и «белок-соль».

Буферная ёмкость, определяемая белками плазмы, зависит от концентрации белков, их вторичной и третичной структуры и числа свободных протон-акцепторных групп. Эта система может нейтрализовать как кислые, так и основные продукты. Однако вследствие преобладания формы «белок-основание» её буферная ёмкость значительно выше по кислоте.

Буферная ёмкость свободных аминокислот плазмы крови незначительна как по кислоте, так и по щелочи. При физиологическом значении pH их мощность мала. Практически только одна аминокислота — гистидин — обладает значительным буферным действием при значении pH, близком к плазме крови.[2]

Эритроциты[править | править код]

Во внутренней среде эритроцитов в норме поддерживается постоянное значение pH, равное 7,30. Здесь также действуют гидрокарбонатная и фосфатная буферные системы. Однако их мощность отличается от таковой в плазме крови. Кроме того, в эритроцитах белковая система гемоглобин-оксигемоглобин играет важную роль как в процессе дыхания (транспортная функция по переносу кислорода к тканям и органам и удалению из них метаболической CO2), так и в поддержании постоянства pH внутри эритроцитов, а в результате и в крови в целом. Эта буферная система в эритроцитах тесно связана с гидрокарбонатной системой.[2]

Гемоглобиновая буферная система[править | править код]

Буферная система крови (75 % буферной ёмкости). Играет важную роль как в процессе дыхания (транспортная функция по переносу кислорода к тканям и органам и удалению из них метаболической CO2), так и в поддержании постоянства pH внутри эритроцитов, а в результате и в крови в целом.[2]

См. также[править | править код]

  • Буферный раствор

Примечания[править | править код]

  1. 1 2 3 4 Березов Т. Т., Коровкин Б. Ф. Биологическая химия: Учебник — 1990 г. — стр. 452—455.
  2. 1 2 3 4 5 6 Ершов. Общая химия.Биофизическая химия.Химия биогенных элементов. — Издание восьмое, стериотипное. — Москва: Высшая школа, 2010. — 559 с. — ISBN 978-5-06-006180-2.
  3. И.Т.Гороновский, Ю.П.Назаренко, Е.Ф.Некряч. Краткий справочник по химии. — Пятое издание, исправленное и дополненное. — Киев: Наукова Думка, 1987. — С. 348. — 828 с.

Литература[править | править код]

  • Березов Т. Т., Коровкин Б. Ф. [www.xumuk.ru/biologhim/ Биологическая химия: Учебник] / Под. ред. акад. АМН СССР С. С. Дебова.— 2-е изд., перераб. и доп.— М.: Медицина,— 1990.— 528 с., С. 452—455. ISBN 5-225-01515-8.
  • Ершов. Общая химия.Биофизическая химия.Химия биогенных элементов. — Издание восьмое,стереотипное. — Москва: Высшая школа, 2010. — 559 с. — ISBN 978-5-06-006180-2.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Источник

Буферные системы – это системы, способные сохранять постоянное значение рН при разбавлении и при добавлении определенных количеств сильных кислот и оснований.
Буферные системы могут быть образованы:
1. слабой кислотой и ее солью (СН3СООН + СН3СООNa; С6Н5СООН + С6Н5СООNa; НСООН + НСООNa;)
2. слабым основанием и его солью (NН4ОН (NН3.Н2О) + NН4С1)
3. кислой и средней солью слабой кислоты (NаНСО3 + Nа2СО3; Nа2НРО4 + Nа3РО4)
4. одно- и двухзамещенной солью слабой кислоты (Nа2НРО4 + NаН2РО4)

Растворы, содержащие буферные смеси, способные вследствие этого противостоять изменению рН, называются буферными растворами.

Для количественной характеристики способности буферного раствора противостоять влиянию сильных кислот и оснований используется величина, называемая буферной емкостью. По мере увеличения концентрации буферного раствора возрастает его способность сопротивляться изменению рН при добавлении кислот или щелочей.

Буферная емкость – число эквивалентов кислоты или щелочи, которое следует добавить к 1 л буферного раствора, чтобы изменить рН на единицу (понизить при добавлении кислоты и повысить при добавлении щелочи)

В

=

ν(1/Z*кислоты)

или

В

=

ν(1/Z*основания)

ΔpH×V

ΔpH×V

где V – объем буферного раствора, л.;

ν(1/Z*Х) — количество эквивалента кислоты или щелочи, моль;

ν(1/ Z*Х) = C(1/ Z*Х)×V(Х);

c(1/ Z*Х) – молярная концентрация эквивалента кислоты (щелочи), моль/л;

V(Х) – объем раствора кислоты (щелочи), л;

∆рН – изменение рН после добавления кислоты (щелочи).

Величина буферной емкости зависит от концентрации компонентов буферной смеси и их отношения между этими концентрациями. С увеличением концентрации компонентов буферной смеси буферная емкость увеличивается. При разбавлении буферной смеси буферная емкость уменьшается.

Буферная емкость максимальна при одинаковых концентрациях соли и кислоты или соли и основания в буферной смеси. Если молярные концентрации эквивалента кислоты и соли равны, то рН буферной смеси будет равен рК к-ты.

Следовательно, для приготовления буферной системы с наибольшей буферной емкостью надо выбирать кислоту с наиболее близкой к заданному значению рН величиной рКк-ты (рН ≈ рКк-ты).
Для смесей, образованных слабым основанием и его солью, рН = 14 – рКосн., т.е. рКосн. ≈ 14 — рН.

 Свойства буферных растворов

1. рН буферного раствора зависит от отношения концентраций компонентов буферных систем, а также свойств буферной пары и растворителя.

2. Различные буферные растворы обладают определенной буферной емкостью и сохраняют постоянство рН только до прибавления определенного количества кислоты или щелочи.

3. Буферная емкость тем больше, чем выше концентрация компонентов буферного раствора. Максимальная буферная емкость наблюдается у растворов, которые содержат равные концентрации компонентов буферной пары.

Во внеклеточ­ной и внутриклеточной жидкости существуют четыре основные буферные системы:

–    бикарбонатная;

–    белковая;

–    гемоглобиновая;

–    фосфатная.

Главными буферами внеклеточной жидкости является бикарбонатный и гемоглобиновый, в то время как белки и фосфаты — это основные внутриклеточные буферы.

Бикарбонатный буфер является основным и наиболее лабильным внеклеточным буфером. Он состоит из угольной кислоты и бикарбоната (гидрокарбоната) натрия; константой, характеризующей буфер соотношение концентраций кислоты и ее кислой соли.

Внеклеточная буферная систе­ма угольной кислоты и гидрокарбоната натрия нейтрализует пример­но 40% всех высвобождаемых ионов водорода.

Эта буферная система уникальна тем, что Н2СО3 может диссоци­ировать на Н2О воду и СО2. В то время как другие буферы быстро становятся неэффективны­ми в результате связывания водородных ионов и анионов слабой кис­лоты, бикарбонатные системы поддерживают работоспособность в связи с удалением Н2СО3в виде СО2. Лимитирующим параметром эффективности бикарбонатной системы является, по сути дела, на­чальная концентрация бикарбоната

Гемоглобиновый буфер играет важную роль в регуляции кон­центрации Н+. Его буферная емкость определяется наличием поляр­ных групп в аминокислотных остатках гемоглобина. Гемоглобин является более важным буфером по сравнению с другими белками, что определяется тремя причинами:

–    относительно высокой молярной концентрацией гемоглобина;

–    относительно высокой концентрацией в гемоглобине гистиди­на, рК которого (~7) близко к значению pH крови;

–    ролью гемоглобина в транспорте газов крови.

Белковый буфер. Белки, отличные от гемоглобина, представля­ют собой относительно слабый буфер во внеклеточной жидкости, но в связи с высокой концентрацией белков внутри клеток эта буферная система важна в нейтрализации внутриклеточных сдвигов pH.

Фосфатная буферная пара (НРО2-4 и Н2РО-4) во внеклеточной жидкости представлена в низких концентрациях, но является важной буферной системой мочи.

Буферные системы организма

–    Буферы ограничивают изменения pH, вызываемые внесением сильной кислоты или основания.

–    Основные буферы внеклеточной жидкости — бикарбонатный и гемоглобиновый.

–    Основные буферы внутриклеточной жидкости — белковый и фосфатный.

ПЛОТНОСТЬ ВОДЫ В ИНТЕРВАЛЕ -10÷100 °С

t, °С

ρ·10-3, кг/м3

t, °С

ρ·10-3, кг/м3

t, °С

ρ·10-3, кг/м3

t, °С

ρ·10-3, кг/м3

t, °С

ρ·10-3, кг/м3

-10

0,99815

17

0,99880

24

0,99732

35

0,99406

70

0,97781

-5

0,99930

18

0,99862

25

0,99707

40

0,99224

75

0,97489

0,99987

19

0,99843

26

0,99681

45

0,99025

80

0,97183

4

1,00000

20

0,99823

27

0,99654

50

0,98807

85

0,96865

5

0,99999

21

0,99802

28

0,99626

55

0,98573

90

0,96534

10

0,99973

22

0,99780

29

0,99597

60

0,98324

95

0,96192

15

0,99913

23

0,99756

30

0,99567

65

0,98059

100

0,95838

16

0,99897

* Источник: Краткий справочник физико-химических величин. Издание десятое, испр. и дополн. / Под ред. А.А. Равделя и А.М. Пономаревой — СПб.: «Иван Федоров», 2003 г. С. 15

Источник

Анонимный вопрос  ·  25 января 2018

1,5 K

Буферные вещества связываются с водородам в кислотах в организме человека, что способствует поддержанию оптимального кислотно-щелочного баланса организма. Это очень важно, потому что чрезмерная закисленность организма увеличивает утомляемость и уменьшает скорость обменных профессов в организме. Внутри клетки буферность обеспечивается главным образом анионами фосфорной… Читать далее

Если между ядром и летающими вокруг него электронами возможна вакуумная прослойка, значит ли это, что вакуум можно создать без огораживающих стенок (в воздухе)?

Физик по образованию, QA Engineer по воле случая, инстаграм-блоггер по…

Понятие «вакуум» в случае описания «промежутка» между ядром и электроном весьма условно. В приближении классической механики между ними действительно нет других частиц (вроде бы похоже на определение глубокого вакуума), но вместе с тем нет и частиц, которые бы физически могли там находиться. Условно говоря, это «пространство» не может быть «заполнено» каким-то веществом или газом (воздухом, например), потому что атомы любого вещества гораздо (статистически, да?) больше этого самого условного «промежутка». Это всё равно что попытаться наполнить напёрсток теннисными шариками или уместить ещё одну «солнечную систему» между Солнцем и Землёй — кому что ближе.

Однако, в макроскопическом мире газ (например, воздух) будет стараться занять весь предоставленный объём и , соответственно, для того, чтобы создать в какой-то его области вакуум, необходимо оградить эту область и препятствовать распространению воздуха в неё — например, использовать баллон или специальный купол. А без использования «огораживающих стенок» вакуум создать почти невозможно.

Однако, это не значит, что достичь вакуума в открытом пространстве невозможно в принципе. Так, например, огромное количество вещества удерживается колоссальными гравитациями галактик, поэтому плотность межгалактического пространства составляет всего несколько атомов на кубический метр. Это соответствует как раз глубокому вакууму.

От чего зависит Ph буферного раствора?

Химик, программист, трансженщина, феминистка

Буферный раствор — смесь слабой кислоты и её соли, либо слабого основания и его соли.

Чаще всего в эквимолярных соотношениях, чтобы буферная емкость в обе стороны (при подкислении и подщелачивании была одинакова). Но возможны и варианты в зависимости от сферы применения.

Расчет pH буфера довольно прост через pKa кислоты (pKb основания). Приведу для слабой кислоты, для основания аналогично:

У нас есть буфер HA/A- (катион соли не важен, А — остаток кислоты, Н — водород)

Есть равновесие

HA <-> H+ + А-

автопротолизом воды обычно можно пренебречь, если не разбавлять буферный раствор до очень разбавленных концентраций. Тогда

Ka = [H+][А-]/[HA]

Тогда

[H+] = Ka*[HA]/[A-]

Следовательно

lg[H+] = lgKa + lg[HA]/[A-]

pH = -lg[H+], значит

pH = -lgKa — lg[HA]/[A-] = pKa — lg[HA]/[A-] = pKa + lg[A-]/[HA]

Учитывая то что кислота у нас слабая, и степень её диссоциации невелиуа, можно принять что равновесная концентрация [HA] = HA

Ну и если концентрации кислоты и её соли равны, то lg[A-]/[HA] = 0 и

pH буфера = pKa

Для основания все то же самое, только

pH = 14 — pKb + lg[MOH]/[M+]

значеня констант диссоциации (pKa или pKb) берутся из справочника

Прочитать ещё 3 ответа

Говорят, что клетки используют пузырьки жидкого вещества, которое сами вырабатывают, для общения друг с другом. Как это работает?

Молекулярный биолог, к.б.н., научный консультант студии научной графики Visual…

Клеткам самых разных организмов действительно надо принимать и реагировать на сигналы из окружающей среды, а также отправлять свои собственные. И эти сигналы имеют в основном химическую природу. То есть, клетки, грубо говоря, перекидываются молекулами.

Это нужно на каждом шагу. Например, клетки должны уметь реагировать на гормоны и нейромедиаторы (вещества, участвующие в передаче нервных импульсов), одни клетки должны иметь возможность передать другим, что столкнулись с вредным (или полезным) микробом, клетки должны получать сигналы о том, что им пора делиться, или наоборот, останавливать деления и менять каким-то образом свою жизнедеятельность (например, начать что-нибудь выделять, поменять форму или вообще умереть).

В роли сигнальных молекул могут быть как небольшие белки, так и совсем маленькая химия типа производных аминокислот или холестерина. В роли приемников сигнала выступают рецепторы — это обычно белки, сидящие в клеточных мембранах. Когда к ним снаружи клетки приходит сигнальная молекула, они могут немного поменять свою форму или отсоединить от себя кусок. Это, в свою очередь, запускает каскад подобных превращений уже внутри клетки. В результате, сигнал доходит до какого-нибудь белка, который умеет запускать работу, допустим, пары десятков определенных генов, продукты которых нужны для ответа на химический сигнал.

С «пузырьками жидкого вещества» история следующая. Вся эта увлекательная биохимия происходит преимущественно в водных растворах. Без жидкости биологии не бывает. Но если речь идет об одной-двух молекулах, мы не можем сказать, жидкое это вещество или нет. Это просто молекулы в растворе.

Насчет пузырьков. Внутри клеток есть много разных отделов (органелл), которые выполняют разные задачи. Где-то хранятся гены, где-то синтезируются белки, где-то вырабатывается энергия и так далее. Органеллы преимущественно окружены мембранами — это такие двойные слои из молекул, которые не смешиваются с водой, как жир в бульоне, и умеют не пропускать через себя многие соединения. Мембраны очень важны для клеток, поскольку отделяют одни части от других и позволяют разделять в пространстве и упорядочивать разные процессы. Из мембран, помимо прочего, внутри клеток могут образовываться пузырьки. Если клетка что-то выделяет наружу, она очень часто использует именно такие пузырьки. В таком случае внутри клетки пузырек нагружается нужными веществами (да хоть теми же сигнальными молекулами) и отправляется к внешней клеточной мембране. После того, как пузырек с этой внешней мембраной сливается, его содержимое выбрасывается во внешнюю среду, где может достичь других клеток и что-то им, например, сообщить важное.

Прочитать ещё 1 ответ

Число стадий в окисления жирной кислоты?

Не перестаю узнавать новое. Люблю путешествия и все с этим связанное. Много лет…

Процесс окисления жирной кислоты проходит 3 условных этапа:

  • активация и транспортировка в митохондрии. Так как сами молекулы жирных кислот инертны, то для биохимических реакций их нужно подготавливать. На этом этапе жирые кислоты могут проникнуть в мембраны метохондрий.
  • само окисление. Оно проходит в 4 стадии, по завершению которых жирная кислота превращается в молекулы ацетил-коэнзима. Эти 4 стадии: д6гидрирование-отщипление водорода, гидратация-присоединение воды, дегидрирование-окисление и расщепление.
  • окисление образовавшегося ацетил-коэнзима А через цикл Кребса и электротранспортную цепь

Источник