Какими свойствами обладает железо и сера

Сера,
её физические и химические свойства. Биологическое значение серы, её применение
(демеркуризация).СЕРА S
Cера в природе
Самородная сера
Сульфиды
PbS — свинцовый блеск
Cu2S – медный блеск
ZnS – цинковая обманка
FeS2 – пирит, серный колчедан, кошачье золото
H2S – сероводород (в минеральных источниках и природном газе)
Белки
Сульфаты
CaSO4 * 2H2O — гипс
MgSO4 * 7H2O – горькая соль (английская)
Na2SO4 *10H2O – глауберова соль (мирабилит)
Физические свойства
Твердое кристаллическое вещество желтого цвета, нерастворима в воде, водой не смачивается (плавает на поверхности), t°кип = 445°С.
Одно из особенных физических свойств серы — флотация, способность мелкого порошка серы всплывать, тогда, как ее крупные кристаллы тонут в воде. Дело в том, что сера не смачивается водой, и ее частички держатся на поверхности воды за счет прилипших к ним мелких пузырьков воздуха. Это свойство используют при отделении самородной серы от примесей. Руду размалывают, заливают водой, а снизу продувают воздухом, сера всплывает, а примеси остаются на дне.
Аллотропия
Для серы характерны несколько аллотропных модификаций, но наиболее известные видоизменения: ромбическая (кристаллическая), моноклинная (игольчатая) и пластическая.
Ромбическая (a — сера) — S8
t°пл. = 113°C; ρ = 2,07 г/см3. Наиболее устойчивая модификация.
Моноклинная (b — сера) — S8
темно-желтые иглы, t°пл. = 119°C; ρ = 1,96 г/см3. Устойчивая при температуре более 96°С; при обычных условиях превращается в ромбическую.
Пластическая Sn
коричневая резиноподобная (аморфная) масса. Неустойчива, при затвердевании превращается в ромбическую.
ПОЛУЧЕНИЕ ПЛАСТИЧЕСКОЙ СЕРЫ
Взаимопревращение аллотропных модификаций серы
Строение атома серы
Размещение электронов по уровням и подуровням
Основное состояние
1s22s22p63s23p4
Размещение электронов по
орбиталям (последний слой)Степень
окисленияВалентность
-2
В основном состоянии
II
+4
Первое возбуждённое состояние
IV
+6
Второе возбуждённое состояние
VI
Получение серы
1. Промышленный метод — выплавление из руды с помощью водяного пара.
2. Неполное окисление сероводорода (при недостатке кислорода).
2H2S + O2 = 2S + 2H2O
3. Реакция Вакенродера
2H2S + SO2 = 3S + 2H2O
Химические свойства серы
Сера — окислитель S0 + 2ē→ S-2 | Сера — восстановитель: S — 4ē → S+4; S — 6ē →S+6 |
1. Взаимодействие серы со всеми щелочными и щелочноземельными металлами, медью, ртутью, серебром без нагревания: 2Na + S → Na2S ОПЫТ S + Hg = HgS Ртуть обладает высокой летучестью. Её пары ядовиты. Эта реакция лежит в основе удаления и обезвреживания ртути, например из разбитого медицинского термометра. Места, из которых нельзя извлечь капельки ртути, засыпают порошком серы. Сера и ртуть вступают в реакцию при соприкосновении. В результате образуется химически инертное и безвредное вещество. Этот процесс называется демеркуризацией 2. Взаимодействие серы c остальными металлами (кроме Au,Pt) при повышенной t°: 2Al + 3S t→ Al2S3 Zn + S t°→ ZnS ОПЫТ Cu + S t→ CuS ОПЫТ 3.Взаимодействие серы с некоторыми неметаллами с образованием бинарных соединений: H2 + S → H2S 2P + 3S→ P2S3 C + 2S → CS2 | 1. Взаимодействие серы c кислородом: S + O2 t°→ S+4O2 2S + 3O2 t°;pt→ 2S+6O3 2. Взаимодействие серы c галогенами (кроме йода): S + Cl2 → S+2Cl2 **Взаимодействие серы с кислотами — окислителями: S + 2H2SO4(конц) → 3S+4O2 + 2H2O S + 6HNO3(конц) → H2S+6O4 + 6NO2 + 2H2O **Реакции диспропорционирования: 4. 3S0 + 6KOH→ K2S+4O3 + 2K2S-2 + 3H2O |
Тренажёр №1 — Характеристика серы по её положению в периодической системе Д. И. Менделеева
Тренажёр №2 — Химические свойства серы
Тренажёр №3 — Взаимодействие серы с металлами
Применение
Вулканизация каучука, получение эбонита, производство спичек, пороха, в борьбе с вредителями сельского хозяйства, для медицинских целей (серные мази для лечения кожных заболеваний), для получения серной кислоты и т.д.
Применение серы и её соединений
Домашнее задание параграф 21; упражнения 1, 3, 4 стр. 99-100.
Дополнительные зхадания
Закончите уравнения реакций, расставьте коэффициенты методом электронного баланса, укажите окислитель, восстановитель.
- S + O2
- S + Na
- S + H2
№2. Осуществите превращения по схеме:
Это интересно…
- Содержание серы в организме человека массой 70 кг — 140 г.
- В сутки человеку необходимо 1 г серы.
- Серой богаты горох, фасоль, овсяные хлопья, пшеница, мясо, рыба, плоды и сок манго.
- Сера входит в состав гормонов, витаминов, белков, она есть в хрящевой ткани, в волосах, ногтях. При недостатке серы в организме наблюдается хрупкость ногтей и костей, выпадение волос.
Следите за своим здоровьем!
Знаете ли вы..
- Соединения серы могут служить лекарственными препаратами;
- Сера – основа мази для лечения грибковых заболеваний кожи, для борьбы с чесоткой. Тиосульфат натрия Na2S2O3 используется для борьбы с нею.
- Многие соли серной кислоты содержат кристаллизационную воду: ZnSO4×7H2O и CuSO4×5H2O. Их применяют как антисептические средства для опрыскивания растений и протравливания зерна в борьбе с вредителями сельского хозяйства.
- Железный купорос FeSO4×7H2O используют при анемии.
- BaSO4 применяют при рентгенографическом исследовании желудка и кишечника.
- Алюмокалиевые квасцы KAI(SO4)2×12H2O — кровоостанавливающее средство при порезах.
- Минерал Na2SO4×10H2O носит название «глауберова соль» в честь открывшего его в VIII веке немецкого химика Глаубера И.Р.Глаубер во время своего путешествия внезапно заболел. Он ничего не мог есть, желудок отказывался принимать пищу. Один из местных жителей направил его к источнику. Как только он выпил горькую соленую воду, сразу стал есть. Глаубер исследовал эту воду, из нее выкристаллизовалась соль Na2SO4×10H2O. Сейчас ее применяют как слабительное в медицине, при окраске хлопчато- бумажных тканей. Соль также находит применение в производстве стекла.
- Тысячелистник обладает повышенной способностью извлекать из почвы серу и стимулировать поглощение этого элемента с соседними растениями.
- Чеснок выделяет вещество – альбуцид, едкое соединение серы. Это вещество предотвращает раковые заболевания, замедляет старение, предупреждает сердечные заболевания.
Железо – химический элемент
1. Положение железа в
периодической таблице химических элементов и строение его атома
Железо
— это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar(Fe) = 56; состав атома: 26-протонов;
30 – нейтронов; 26 – электронов.
Схема
строения атома:
Электронная
формула: 1s22s22p63s23p63d64s2
Металл
средней активности, восстановитель:
Fe0-2e-→Fe+2, окисляется восстановитель
Fe0-3e-→Fe+3, окисляется восстановитель
Основные
степени окисления: +2, +3
2. Распространённость
железа
Железо – один из
самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%,
по этому показателю оно уступает только
кислороду, кремнию и алюминию. Много железа находится и в небесных телах,
что установлено по данным спектрального анализа. В образцах лунного грунта,
которые доставила автоматическая станция “Луна”, обнаружено железо в
неокисленном состоянии.
Железные
руды довольно широко распространены на Земле. Названия гор на Урале говорят
сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят
соединения железа.
Железо
входит в состав большинства горных пород. Для получения железа используют
железные руды с содержанием железа 30-70% и более.
Основными железными
рудами являются:
магнетит (магнитный железняк) – Fe3O4 содержит 72%
железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:
гематит (железный блеск, кровавик)– Fe2O3содержит до
65% железа, такие месторождения встречаются в Криворожском районе:
лимонит (бурый железняк) – Fe2O3*nH2O
содержит до 60% железа, месторождения встречаются в Крыму:
пирит (серный колчедан, железный
колчедан, кошачье золото) – FeS2
содержит примерно 47% железа, месторождения встречаются на Урале.
3. Роль железа в жизни
человека и растений
Биохимики
открыли важную роль железа в жизни растений, животных и человека. Входя в
состав чрезвычайно сложно построенного органического соединения, называемого
гемоглобином, железо обусловливает красную окраску этого вещества, от которого
в свою очередь, зависит цвет крови человека и животных. В организме взрослого
человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина.
Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном
направлении – CO2.
Железо
необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе
фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют
белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый
цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо,
и вскоре смазанное место зеленеет.
Так
от одной и той же причины – наличия железа в соках и тканях – весело зеленеют
листья растений и ярко румянятся щеки человека.
4. Физические свойства железа.
Железо
– это серебристо-белый металл с температурой плавления 1539оС. Очень
пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется.
Железо обладает способностью намагничиваться и размагничиваться, поэтому
применяется в качестве сердечников электромагнитов в различных электрических
машинах и аппаратах. Ему можно придать большую прочность и твердость методами
термического и механического воздействия, например, с помощью закалки и
прокатки.
Различают
химически чистое и технически чистое железо. Технически чистое железо, по сути,
представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода,
а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо
содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый,
блестящий, по внешнему виду очень похожий на платину металл. Химически чистое
железо устойчиво к коррозии и хорошо
сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих
драгоценный свойств.
5. Получение железа
Восстановлением
из оксидов углём или оксидом углерода (II), а также водородом:
FeO + C =
Fe + CO
Fe2O3
+ 3CO = 2Fe + 3CO2
Fe2O3
+ 3H2 = 2Fe + 3H2O
Опыт «Получение железа алюминотермией»
6. Химические свойства железа
Как
элемент побочной подгруппы железо может проявлять несколько степеней окисления.
Мы рассмотрим только соединения, в которых железо проявляет степени окисления
+2 и +3. Таким образом, можно говорить, что у железа имеется два ряда
соединений, в которых оно двух- и трехвалентно.
1) На воздухе железо легко
окисляется в присутствии влаги (ржавление):
4Fe +
3O2 + 6H2 O = 4Fe(OH)3
2) Накалённая железная проволока
горит в кислороде, образуя окалину — оксид железа (II,III) — вещество чёрного цвета:
3Fe +
2O2 = Fe3O4
C кислородом во влажном воздухе образуется Fe2O3*nH2O
Опыт «Взаимодействие железа с кислородом»
3) При высокой
температуре (700–900°C) железо реагирует с парами воды:
3Fe + 4H2O t˚C→
Fe3O4 + 4H2
4) Железо
реагирует с неметаллами при нагревании:
2Fe + 3Br2 t˚C→
2FeBr3
Fe + S t˚C→ FeS
5) Железо
легко растворяется в соляной и разбавленной серной кислотах при обычных
условиях:
Fe + 2HCl = FeCl2 + H2
Fe + H2SO4(разб.) = FeSO4
+ H2
6) В концентрированных кислотах –
окислителях железо растворяется только при нагревании
2Fe + 6H2SO4(конц.) t˚C→
Fe2(SO4)3 + 3SO2 + 6H2O
Fe + 6HNO3(конц.) t˚C→ Fe(NO3)3
+ 3NO2 + 3H2O
На холоде
концентрированные азотная и серная кислоты пассивируют железо!
Опыт «Взаимодействие железа с концентрированными кислотами»
7) Железо
вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.
Fe +
CuSO4 = FeSO4 + Cu
8) Качественные реакции на
Железо (II)
Железо (III)
7. Применение железа.
Основная
часть получаемого в мире железа используется для получения чугуна и стали —
сплавов железа с углеродом и другими металлами. Чугуны содержат около 4%
углерода. Стали содержат углерода менее 1,4%.
Чугуны
необходимы для производства различных отливок — станин тяжелых машин и т.п.
Изделия из чугуна
Стали
используются для изготовления машин, различных строительных материалов, балок,
листов, проката, рельсов, инструмента и множества других изделий. Для
производства различных сортов сталей применяют так называемые легирующие
добавки, которыми служат различные металлы: Мn, Сr, Мо и другие, улучшающие
качество стали.
Изделия из стали
«ПОЯВЛЕНИЕ ЖЕЛЕЗА»
ЭТО ИНТЕРЕСНО
ТРЕНАЖЁРЫ
Тренажёр №1
— Генетический ряд Fe 2+
Тренажёр №2
— Генетический ряд Fe 3+
Тренажёр №3
— Уравнения реакций железа с простыми и сложными веществами
Задания для закрепления
№1. Составьте
уравнения реакций получения железа из его оксидов Fe2O3 и
Fe3O4 , используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.
№2. Осуществите
превращения по схеме:
Fe2O3 -> Fe -+H2O,
t -> X -+CO, t-> Y -+HCl-> Z
Назовите продукты X, Y, Z?
Сера — элемент VIa группы 3 периода периодической таблицы Д.И. Менделеева. Относится к
группе халькогенов — элементов VIa группы.
Сера — S — простое вещество имеет светло-желтый цвет. Использовалась еще до нашей эры в составе священных курений при
религиозных обрядах.
Основное и возбужденное состояние атома серы
Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных
электронов отражает количество возможных связей у атома.
В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.
Природные соединения
- FeS2 — пирит, колчедан
- ZnS — цинковая обманка
- PbS — свинцовый блеск (галенит), Sb2S3 — сурьмяный блеск, Bi2S3 — висмутовый блеск
- HgS — киноварь
- CuFeS2 — халькопирит
- Cu2S — халькозин
- CuS — ковеллин
- BaSO4 — барит, тяжелый шпат
- CaSO4 — гипс
В местах вулканической активности встречаются залежи самородной серы.
Получение
В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S,
SO2.
H2S + O2 = S + H2O (недостаток кислорода)
SO2 + C = (t) S + CO2
Серу можно получить разложением пирита
FeS2 = (t) FeS + S
В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.
H2S + H2SO4 = S + H2O
Химические свойства
- Реакции с неметаллами
- Реакции с металлами
- Реакции с кислотами
- Реакции с щелочами
На воздухе сера окисляется, образуя сернистый газ — SO2. Реагирует со многими неметаллами, без нагревания —
только со фтором.
S + O2 = (t) SO2
S + F2 = SF6
S + Cl2 = (t) SCl2
S + C = (t) CS2
При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.
K + S = (t) K2S
Al + S = Al2S3
Fe + S = (t) FeS
При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.
S + H2SO4 = (t) SO2 + H2O
S + HNO3 = (t) H2SO4 + NO2 + H2O
Сера вступает в реакции диспропорционирования с щелочами.
S + KOH = (t) K2S + K2SO3 + H2O
Сероводород — H2S
Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные
ванны).
Получение
Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.
Al2S3 + H2O = (t) Al(OH)3↓ + H2S↑
FeS + HCl = FeCl2 + H2S↑
Химические свойства
- Кислотные свойства
- Восстановительные свойства
- Качественная реакция
Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит
от соотношения основания и кислоты).
MgO + H2S = (t) MgS + H2O
KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)
2KOH + H2S = K2S + 2H2O
Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.
Ca + H2S = (t) CaS + H2
Сероводород — сильный восстановитель (сера в минимальной степени окисления S2-). Горит в кислороде синим пламенем, реагирует с кислотами.
H2S + O2 = H2O + S (недостаток кислорода)
H2S + O2 = H2O + SO2 (избыток кислорода)
H2S + HClO3 = H2SO4 + HCl
Качественной реакцией на сероводород является реакция с солями свинца, при котором образуется сульфид свинца.
H2S + Pb(NO3)2 = PbS↓ + HNO3
Оксид серы — SO2
Сернистый газ — SO2 — при нормальных условиях бесцветный газ с характерным резким запахом (запах загорающейся
спички).
Получение
В промышленных условиях сернистый газ получают обжигом пирита.
FeS2 + O2 = (t) FeO + SO2
В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота,
распадающаяся на сернистый газ и воду.
K2SO3 + H2SO4 = (t) K2SO4 + H2O + SO2↑
Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.
Cu + H2SO4(конц.) = (t) CuSO4 + SO2 + H2O
- Кислотные свойства
- Восстановительные свойства
- Как окислитель
С основными оксидами, основаниями образует соли сернистой кислоты — сульфиты.
K2O + SO2 = K2SO3
NaOH + SO2 = NaHSO3
2NaOH + SO2 = Na2SO3 + H2O
Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.
Fe2(SO4)3 + SO2 + H2O = FeSO4 + H2SO4
SO2 + O2 = (t, кат. — Pt) SO3
В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).
CO + SO2 = CO2 + S
H2S + SO2 = S + H2O
Сернистая кислота
Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.
Получение
SO2 + H2O ⇄ H2SO3
Химические свойства
- Диссоциация
- Кислотные свойства
- Окислительные свойства
- Восстановительные свойства
Диссоциирует в водном растворе ступенчато.
H2SO3 = H+ + HSO3-
HSO3- = H+ + SO32-
В реакциях с основными оксидами, основаниями образует соли — сульфиты и гидросульфиты.
CaO + H2SO3 = CaSO3 + H2O
H2SO3 + 2KOH = 2H2O + K2SO3 (соотношение кислота — основание, 1:2)
H2SO3 + KOH = H2O + KHSO3 (соотношение кислота — основание, 1:1)
С сильными восстановителями сернистая кислота принимает роль окислителя.
H2SO3 + H2S = S↓ + H 2O
Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.
H2SO3 + Br2 = H2SO4 + HBr
Оксид серы VI — SO3
Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.
Получение
В промышленности данный оксид получают, окисляя SO2 кислородом при нагревании и присутствии катализатора
(оксид ванадия — Pr, V2O5).
SO2 + O2 = (кат) SO3
В лабораторных условиях разложением солей серной кислоты — сульфатов.
Fe2(SO4)3 = (t) SO3 + Fe2O3
Химические свойства
- Кислотные свойства
- Окислительные свойства
Является кислотным оксидом, соответствует серной кислоте. При реакции с основными оксидами и основаниями образует ее соли — сульфаты и
гидросульфаты. Реагирует с водой с образованием серной кислоты.
SO3 + 2KOH = K2SO4 + 2H2O (основание в избытке — средняя соль)
SO3 + KOH = KHSO4 + H2O (кислотный оксид в избытке — кислая соль)
SO3 + Ca(OH)2 = CaSO4 + H2O
SO3 + Li2O = Li2SO4
SO3 + H2O = H2SO4
SO3 — сильный окислитель. Чаще всего восстанавливается до SO2.
SO3 + P = SO2 + P2O5
SO3 + H2S = SO2 + H2O
SO3 + KI = SO2 + I2 + K2SO4
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.