Какими свойствами обладает вихревое индукционное электрическое поле

Какими свойствами обладает вихревое индукционное электрическое поле thumbnail

Вихревое электрическое поле — это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.

Вихревое электрическое поле

Переменное магнитное поле порождает инду­цированное электрическое поле. Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.

   Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

   Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

Какими свойствами обладает вихревое индукционное электрическое поле

   Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

   В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

   Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

   Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.

   Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами; 
2) Силовые линии этого поля всегда замкнуты; 
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле
( вихревое электр. поле )

1. создается неподвижными электр. зарядами1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты — потенциальное поле2. силовые линии замкнуты — вихревое поле
3. источниками поля являются электр. заряды3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0.4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

Источник

Закон электромагнитной индукции. Вихревое электрическое поле. Вихревые токи

Подробности

Просмотров: 323

Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.

Учитывая направление индукционного тока, согласно правилу Ленца:

Какими свойствами обладает вихревое индукционное электрическое полеКакими свойствами обладает вихревое индукционное электрическое поле

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? — т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

Какими свойствами обладает вихревое индукционное электрическое поле

Величину индукционного тока можно рассчитать по закону Ома для замкнутой цепи

Какими свойствами обладает вихревое индукционное электрическое поле

где R — сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле.
Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Какими свойствами обладает вихревое индукционное электрическое поле

Индукционное электрическое поле является вихревым.
Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле — создается неподвижными электрическими зарядами, силовые линии поля разомкнуты — -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0.

Индукционное электрическое поле ( вихревое электр. поле ) — вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.

Вихревые токи

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин.
В ферритах — магнитных изоляторах вихревые токи практически не возникают.

Использование вихревых токов

— нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

— это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.

Электромагнитное поле — Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера —
Действие магнитного поля на движущийся заряд.Магнитные свойства вещества —
Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца —
ЭДС электромагнитной индукции. Вихревое электрическое поле —
ЭДС индукции в движущихся проводниках

Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

Какими свойствами обладает вихревое индукционное электрическое поле

Любознательным

Сальто-мортале жука-щелкуна

Если пощекотать лежащего на спинке жука-щелкуна, он подпрыгивает вверх сантиметров на 25,
при этом раздается громкий щелчок. Ерунда, возможно, скажете вы.
Но, действительно, жучок без помощи ног делает толчок с начальным ускорением 400 g, а затем переворачивается
в воздухе и приземляется уже на ноги. 400 g — удивительно!
Еще более удивительно то, что мощность, развиваемая при толчке, раз в сто больше мощности,
которую может обеспечить какая-либо из мышц жучка. Как удается жучку развить такую огромную мощность?
Часто ли он способен совершать свои изумительные прыжки? Чем ограничена частота их повторения?

Оказывается…
Когда жучок лежит вверх ногами, особый выступ на передней части его тела мешает ему распрямиться,
чтобы совершить прыжок. Какое-то время он накапливает мышечное напряжение, затем, резко изогнувшись, подбрасывает себя вверх.
Прежде чем жучок снова сможет подпрыгнуть, он должен снова медленно «напрячь» мышцы.

Источник: «Физический фейерверк» Дж. Уокер

Источник

Анонимный вопрос  ·  3 апреля 2018

7,2 K

Радиоинженер(Радиосвязь, электро-радионавигация)
В свободное время ремонтирую…

Для вихревого электрического поля характерно следующее:

  • замкнутость силовых линий;

  • порождается только при наличии переменного магнитного поля, а не зарядами

  • работа по перемещению заряда в замкнутом контуре,а также циркуляция вихревого электрического поля не равны нулю

Не только переменным магнитном полем

Почему ветряные турбины имеют три лопасти?

Стажер исследователь ОИВТ РАН, лаборатория водородной и возобновляемой энергетики…  ·  t.me/century_arch

Чем меньше лопастей у турбины, тем больше скорость ее вращения и тем меньше создаваемый на валу крутящий момент. Чем больше лопастей, тем выше крутящий момент и тем ниже скорость вращения за счет увеличения лобового сопротивления. Если оставить две лопасти, ветротурбина станет вращаться очень быстро, но с недостаточным крутящим моментом. Кроме того, существует проблема шума и высокого уровня изнашивающих конструкцию вибраций. По сравнению с трехлопастным вариантом четырехлопастная давала бы небольшой прирост крутящего момента, но вращалась бы еще медленнее. Чем меньше скорость, тем сложнее система редукторов, передающих вращение валу генератора. Плюс сама дополнительная лопасть дает прирост стоимости конструкции, и немалый. Поэтому трехлопастная конструкция признана оптимальной, во всяком случае для установок мегаваттного класса.

Прочитать ещё 1 ответ

Что такое потенциал, какой его смысл? И что такое разность потенциалов?

⚡Информационный сайт «Заметки Электрика». Статьи и рекомендации по ремонту электрооборудов…  ·  asutpp.ru

Если вы ведете речь о потенциале, как о разновидности электрической величины и как о характеристике, определяющей функцию напряжения, то это мера количества энергии. Все предметы вокруг нас состоят из атомов, молекул, электронов и других частиц, которые постоянно взаимодействуют между собой посредством электромагнитных сил. Потенциал представляет собой количественное выражение той самой энергии, которая возникает при взаимодействии мельчайших частиц. Но, в отсутствии пути передачи этой энергии она будет находиться в одной точке или на одном объекте.

Если рассмотреть суть электрического потенциала не с электрической стороны, а на более понятном примере, можете представить себе рогатку, в которую вы заряжаете шарик. Если оттянуть резинку на полметра и зафиксировать шар в этом положении, то он получит количество энергии, которая при освобождении запустит шар на 10 метров. Если тот же шар в резинке отвести на метр и зафиксировать в таком положении, то он будет обладать потенциалом энергии, которая сможет запустить его на 20 метров. Так вот потенциал представляет собой невидимую энергию, которая до возникновения определенных условий не может реализоваться или расходоваться.

Под разностью потенциалов понимается ситуация, когда в двух точках присутствует разное количество энергии. Классическим вариантом разности потенциалов является пальчиковая батарейка, на концах которой присутствует разность потенциалов в 1,5В – это означает, что потенциал плюсового полюса больше потенциала минусового полюса на 1,5В. Если рассмотреть напряжение в розетке, то разность потенциалов в ней составит 220В, но в отличии от батарейки, величина потенциала в каждой точке постоянно меняется, однако их разность остается постоянной – 220В.

Прочитать ещё 1 ответ

Что такое торсионные поля и как они связаны с сознанием?

У нас настолько стало модным считать, что всё сознание в другом измерении, что просто само собой разумеющий факт. Но не получится вытащить рыбку из пруда без труда. Если человек живет животной жизнью и не развивается духовно, то мышление у него животное — мозговое, а еще чаще инстинктивно-мозжечковое.

Различные торсионные поля вокруг человека можно увидеть и они вообще будут, если наблюдатель способен видеть духовно или наблюдаемый человек хоть как-то их развивал. Если что-то не развивать — то это атрофируется. У нас если мышцы не задействовать хотя бы год, то те же космонавты прилетая из космоса и тренируясь там, всё равно первые пару дней не могут привыкнуть к гравитации, чтобы спокойно перемещаться по поверхности Земли. Так и с вашими торсионными полями. Они в другом измерении, как то же магнитное поле или гравитация, но имеют связь с нашим как единое целое.

У человека три духовных уровня, они идут последовательно включая друг друга — растительный(одна самая первая душа отличающая живое от не живого), животный (включает растительную душу и присуще всему инстинктивному и более менее думающему) и осознанный(включает все предыдущие души и дающая человеку полную свободу в развитии, чего нет даже у тех же ангелов или демонов). Большинству людей хватает задействованию 2х душ и они с удовольствием жили бы как животные. Но если развивать третью душу(дух), то можно достичь необычайных способностей. Но всё развивается только через труд и дискомфорт. Вернемся к торсионным полям и сознанию. Когда мы развили третью душу на какой-то уровень, то они даёт нам возможность видеть другие измерения и взаимодействовать с ними. Эта душа как единый организм и что зрение, что виденье происходит полностью всем этим организмом. В другом измерении всё выглядит по-другому и наше тело будет представлять собой совокупность как раз этих торсионных полей. И чем мы будем более развиты третьей душой — тем мощнее будут эти поля, а соответственно и мышление с помощью духовного тела. Но люди не заинтересованы во всем этом — им нужна животная выгода: комфортнее отдыхать, вкуснее есть и удовлетворять свои инстинкты послаще. Все остальные желания людские из этих трех вытекают. Мы слишком сосредоточены на внешнем мире, забывая что главный мир внутри нас.

Что происходит с электронами металла при возникновении в нем электрического поля?

⚡Информационный сайт «Заметки Электрика». Статьи и рекомендации по ремонту электрооборудов…  ·  asutpp.ru

Увы, не совсем корректная постановка вопроса, все дело в том, что любые предметы, которые нас окружают, уже обладают собственным электрическим полем, в том числе и металл. Поэтому поле в металле присутствует само по себе, как его неотъемлемая составляющая, совсем другое дело, если металл помещается в разность потенциалов, которая создает искусственное электромагнитное поле и направленное движение заряженных частиц – электрический ток.

Если вы помещаете любой металл под напряжение, в нем возникает электродвижущая сила и все атомы в металле попадают под воздействие электрического поля. До этого система атомов находится в равновесии, состав атомарных орбит соответствует нормальному состоянию, но в случае появления направленного электрического поля, основные носители заряда в металле – электроны получают дополнительную энергию, которой становится достаточно для преодоления силы притяжения ядра атома.

!

Электроны в металле начинают переходить на дальние орбиты, число которых определяются валентностью металла, к которому прикладывается напряжение. При удалении от ядра атома связь между электронами и ядром ослабевает и у электронов появляется большая свобода в движении. После чего электроны начинают взаимодействовать не только с ядром, но и притягиваться друг к другу при сближении по орбитам. Атом, в этой ситуации принимает уж более вытянутую форму, как показано на рисунке выше.

Прочитать ещё 1 ответ

Что лежит в основе диффузии?

Диффузия (лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму.

Прочитать ещё 1 ответ

Источник

Помимо потенциального кулоновского электрического, существует вихревое поле, в котором имеются замкнутые линии напряженности. Зная общие свойства электрического поля, легче понять природу вихревого. Оно порождается изменяющимся магнитным полем.

вихревое электрическое поле

Что вызывает индукционный ток проводника, находящегося в неподвижном состоянии? Что такое индукция электрического поля? Ответ на эти вопросы, а также об отличии вихревого от электростатического и стационарного, токах Фуко, ферритах и другом вы узнаете из следующей статьи.

Как меняется магнитный поток

Магнитный поток Ф=BSosɑ может меняться через контур в двух вариантах: при неподвижном контуре в изменяющемся поле и в состоянии движения в поле, неподвижном или изменяющемся. Электродвижущая индукционная сила в обоих случаях будет подчиняться одному закону, но происходить будет по-разному.

Возникновение индукционного тока и силы, движущие заряд

Сначала нужно понять, как возникает индукционный ток. Для этого круглый виток из проволоки кладут в магнитное однородное тело. Если индукция в нем будет увеличиваться, то за ней последует и магнитный поток через поверхность. Вслед за этим возникнет ток. Если индукция магнитного поля станет меняться согласно линейному закону, ток останется постоянным.

индукция электрического поля

Вопрос в том, что за силы начинают двигать заряды в витке. Магнитное поле в катушке на это не способно, потому что оно оказывает влияние только на движущиеся заряды. Но ведь проводник в нем остается неподвижным!

На заряды оказывает действие электрическое поле. Но стационарное и электростатическое образуются зарядами, а индукционный ток — вслед за меняющемся магнитным полем!

Логично было бы предположить, что электроны начинает двигать электрическое поле, порождаясь в результате изменяющегося магнитного поля. Так, физик Масквелл пришел к выводу, что магнитное поле со временем зарождает электрическое.

свойства электрического поля

Электромагнитная индукция

Тогда электромагнитная индукция показывается с новой стороны, где главным свойством предстает порождение электрического поля магнитным. Проводящий контур здесь ничего не меняет. Проводник со свободными электронами становится прибором, позволяя выявить появляющееся электрическое поле, благодаря тому, что оно движется в проводнике. Электромагнитная индукция проводника, находящегося в неподвижном состоянии, заключается не только в возникновении индукционного тока, но и электрического поля, начинающего движение электрических зарядов.

Вихревое электрическое поле, появившееся вслед за магнитным, совсем иного рода, нежели электростатическое. Оно не имеет прямой связи с зарядами, и напряженности на его линиях не начинаются и не заканчиваются. Это замкнутые линии, как у магнитного поля. Поэтому оно и называется вихревое электрическое поле.

Магнитная индукция

Магнитная индукция будет меняться тем быстрее, чем больше напряженность. Правило Ленца гласит: при увеличении магнитной индукции направление вектора напряженности электрополя создает левый винт с направлением другого вектора. То есть при вращении левого винта по направлению с линиями напряженности его поступательное перемещение станет таким же, как и у вектора магнитной индукции.

вихревое электрическое поле

Если же магнитная индукция будет убывать, то направление вектора напряженности создаст правый винт с направлением другого вектора.

Силовые линии напряженности имеют то же направление, что и индукционный ток. Вихревое электрическое поле действует на заряд с той же силой, что и до него. Однако в данном случае его работа по перемещению заряда является отличной от нуля, как в стационарном электрическом поле. Так как сила и перемещение имеют одно направление, то и работа на всем протяжении пути по замкнутой линии напряженности будет прежней. Работа положительного единичного заряда здесь будет равна электродвижущей силе индукции в проводнике.

Токи индукции в массивных проводниках

В массивных проводниках индукционные токи получают максимальные значения. Это происходит потому, что они имеют малое сопротивление.

Называются такие токи токами Фуко (это французский физик, исследовавший их). Их можно применять для изменения температуры проводников. Именно этот принцип заложен в индукционных печах, к примеру, бытовых СВЧ. Он же применяется для плавления металлов. Электромагнитная индукция используется и в металлических детекторах, расположенных в аэровокзалах, театрах и других общественных местах со скоплением большого количества людей.

Но токи Фуко приводят к потерям энергии для получения тепла. Поэтому сердечники трансформаторов, электрических двигателей, генераторов и других устройств из железа изготавливают не сплошными, а из разных пластин, которые друг от друга изолированы. Пластины должны находиться строго в перпендикулярном положении относительно вектора напряженности, который имеет вихревое электрическое поле. Пластины тогда будут иметь максимальное сопротивление току, а тепла будет выделяться минимальное количество.

индукция электрического поля

Ферриты

Радиоаппаратура функционирует на высочайших частотах, где число достигает миллионов колебаний в секунду. Катушки сердечников здесь не будут эффективны, так как токи Фуко появятся в каждой пластине.

Существуют изоляторы магнитов под названием ферриты. Вихревые токи в них не появятся при перемагничивании. Поэтому потери энергии для тепла сводятся к минимальным. Из них изготавливают сердечники, используемые для высокочастотных трансформаторов, транзисторные антенны и так далее. Их получают из смеси первоначальных веществ, которую прессуют и обрабатывают термическим путем.

Если магнитное поле в ферромагнетике быстро изменяется, это ведет к появлению индукционных токов. Их магнитное поле будет препятствовать изменению магнитного потока в сердечнике. Поэтому поток не будет меняться, а сердечник — перемагничиваться. Вихревые токи в ферритах так малы, что могут быстро перемагничиваться.

Источник