Какими свойствами обладает сложение матрицы

Какими свойствами обладает сложение матрицы thumbnail

Какой задачник по высшей математике (математическому анализу) вы используете? Пожалуйста, проголосуйте за свой сборник в этой теме (регистрация не требуется).

Первая частьВторая часть

В этой теме будут рассмотрены такие операции, как сложение и вычитание матриц, умножение матрицы на число, умножение матрицы на матрицу, транспонирование матрицы. Все обозначения, которые используются на данной странице, взяты из предыдущей темы «Матрицы. Виды матриц. Основные термины».

Содержание темы:

  1. Сложение и вычитание матриц.
  2. Умножение матрицы на число.
  3. Произведение двух матриц.
  4. Транспонированная матрица.
  5. Некоторые свойства операций над матрицами.
  6. Возведение матрицы в степень.

Сложение и вычитание матриц.

Суммой $A+B$ матриц $A_{mtimes n}=(a_{ij})$ и $B_{mtimes n}=(b_{ij})$ называется матрица $C_{mtimes n}=(c_{ij})$, где $c_{ij}=a_{ij}+b_{ij}$ для всех $i=overline{1,m}$ и $j=overline{1,n}$.

Аналогичное определение вводят и для разности матриц:

Разностью $A-B$ матриц $A_{mtimes n}=(a_{ij})$ и $B_{mtimes n}=(b_{ij})$ называется матрица $C_{mtimes n}=(c_{ij})$, где $c_{ij}=a_{ij}-b_{ij}$ для всех $i=overline{1,m}$ и $j=overline{1,n}$.

Пояснение к записи $i=overline{1,m}$: показатьскрыть

Стоит обратить внимание, что операции сложения и вычитания определены только для матриц одинакового размера. Вообще, сложение и вычитание матриц – операции, ясные интуитивно, ибо означают они, по сути, всего лишь суммирование или вычитание соответствующих элементов.

Пример №1

Заданы три матрицы:

$$
A=left(begin{array} {ccc} -1 & -2 & 1 \
5 & 9 & -8
end{array} right);;
B=left(begin{array} {ccc} 10 & -25 & 98 \
3 & 0 & -14
end{array} right); ;; F=left(begin{array} {cc} 1 & 0 \
-5 & 4
end{array} right).
$$

Можно ли найти матрицу $A+F$? Найти матрицы $C$ и $D$, если $C=A+B$ и $D=A-B$.

Решение

Матрица $A$ содержит 2 строки и 3 столбца (иными словами – размер матрицы $A$ равен $2times 3$), а матрица $F$ содержит 2 строки и 2 столбца. Размеры матрицы $A$ и $F$ не совпадают, поэтому сложить их мы не можем, т.е. операция $A+F$ для данных матриц не определена.

Размеры матриц $A$ и $B$ совпадают, т.е. данные матрицы содержат равное количество строк и столбцов, поэтому к ним применима операция сложения.

$$
C=A+B=left(begin{array} {ccc}
-1 & -2 & 1 \
5 & 9 & -8
end{array} right)+
left(begin{array} {ccc}
10 & -25 & 98 \
3 & 0 & -14
end{array} right)=\=
left(begin{array} {ccc}
-1+10 & -2+(-25) & 1+98 \
5+3 & 9+0 & -8+(-14)
end{array} right)=

left(begin{array} {ccc}
9 & -27 & 99 \
8 & 9 & -22
end{array} right)
$$

Найдем матрицу $D=A-B$:

$$
D=A-B=left(begin{array} {ccc}
-1 & -2 & 1 \
5 & 9 & -8
end{array} right)-
left(begin{array} {ccc}
10 & -25 & 98 \
3 & 0 & -14
end{array} right)=\=
left(begin{array} {ccc}
-1-10 & -2-(-25) & 1-98 \
5-3 & 9-0 & -8-(-14)
end{array} right)=

left(begin{array} {ccc}
-11 & 23 & -97 \
2 & 9 & 6
end{array} right)
$$

Ответ: $C=left(begin{array} {ccc}
9 & -27 & 99 \
8 & 9 & -22
end{array} right)$, $D=left(begin{array} {ccc}
-11 & 23 & -97 \
2 & 9 & 6
end{array} right)$.

Умножение матрицы на число.

Произведением матрицы $A_{mtimes n}=(a_{ij})$ на число $alpha$ называется матрица $B_{mtimes n}=(b_{ij})$, где $b_{ij}=alphacdot a_{ij}$ для всех $i=overline{1,m}$ и $j=overline{1,n}$.

Попросту говоря, умножить матрицу на некое число – означает умножить каждый элемент заданной матрицы на это число.

Пример №2

Задана матрица: $
A=left(begin{array} {ccc} -1 & -2 & 7 \ 4 & 9 & 0 end{array} right)$. Найти матрицы $3cdot A$, $-5cdot A$ и $-A$.

Решение

$$
3cdot A=3cdot left(begin{array} {ccc} -1 & -2 & 7 \ 4 & 9 & 0 end{array} right)
=left(begin{array} {ccc} 3cdot(-1) & 3cdot(-2) & 3cdot 7 \ 3cdot 4 & 3cdot 9 & 3cdot 0 end{array} right)=
left(begin{array} {ccc} -3 & -6 & 21 \ 12& 27 & 0 end{array} right).\

-5cdot A=-5cdot left(begin{array} {ccc} -1 & -2 & 7 \ 4 & 9 & 0 end{array} right)
=left(begin{array} {ccc} -5cdot(-1) & -5cdot(-2) & -5cdot 7 \ -5cdot 4 & -5cdot 9 & -5cdot 0 end{array} right)=
left(begin{array} {ccc} 5 & 10 & -35 \ -20 & -45 & 0 end{array} right).
$$

Запись $-A$ есть сокращенная запись для $-1cdot A$. Т.е., чтобы найти $-A$ нужно все элементы матрицы $A$ умножить на (-1). По сути, это означает, что знак всех элементов матрицы $A$ изменится на противоположный:

$$
-A=-1cdot A=-1cdot left(begin{array} {ccc} -1 & -2 & 7 \ 4 & 9 & 0 end{array} right)=
left(begin{array} {ccc} 1 & 2 & -7 \ -4 & -9 & 0 end{array} right)
$$

Ответ: $3cdot A=left(begin{array} {ccc} -3 & -6 & 21 \ 12& 27 & 0 end{array} right);;
-5cdot A=left(begin{array} {ccc} 5 & 10 & -35 \ -20 & -45 & 0 end{array} right);; -A=left(begin{array} {ccc} 1 & 2 & -7 \ -4 & -9 & 0 end{array} right)$.

Произведение двух матриц.

Определение этой операции громоздко и, на первый взгляд, непонятно. Поэтому сначала укажу общее определение, а потом подробно разберем, что оно означает и как с ним работать.

Произведением матрицы $A_{mtimes n}=(a_{ij})$ на матрицу $B_{ntimes k}=(b_{ij})$ называется матрица $C_{mtimes k}=(c_{ij})$, для которой каждый элемент $c_{ij}$ равен сумме произведений соответствующих элементов i-й строки матрицы $A$ на элементы j-го столбца матрицы $B$:

$$c_{ij}=sumlimits_{p=1}^{n}a_{ip}b_{pj}, ;; i=overline{1,m}, j=overline{1,n}.$$

Пошагово умножение матриц разберем на примере. Однако сразу стоит обратить внимание, что перемножать можно не все матрицы. Если мы хотим умножить матрицу $A$ на матрицу $B$, то сперва нужно убедиться, что количество столбцов матрицы $A$ равно количеству строк матрицы $B$ (такие матрицы часто называют согласованными). Например, матрицу $A_{5times 4}$ (матрица содержит 5 строк и 4 столбца), нельзя умножать на матрицу $F_{9times 8}$ (9 строк и 8 столбцов), так как количество столбцов матрицы $A$ не равно количеству строк матрицы $F$, т.е. $4neq 9$. А вот умножить матрицу $A_{5times 4}$ на матрицу $B_{4times 9}$ можно, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. При этом результатом умножения матриц $A_{5times 4}$ и $B_{4times 9}$ будет матрица $C_{5times 9}$, содержащая 5 строк и 9 столбцов:

Размер матрицы, полученной в результате произведения

Пример №3

Заданы матрицы:
$
A=left(begin{array} {cccc}
-1 & 2 & -3 & 0 \
5 & 4 & -2 & 1 \
-8 & 11 & -10 & -5
end{array} right)$ и

Читайте также:  Какие свойства смазочных масел обеспечивают надежную работу механизмов

$
B=left(begin{array} {cc}
-9 & 3 \
6 & 20 \
7 & 0 \
12 & -4
end{array} right)$. Найти матрицу $C=Acdot B$.

Решение

Для начала сразу определим размер матрицы $C$. Так как матрица $A$ имеет размер $3times 4$, а матрица $B$ имеет размер $4times 2$, то размер матрицы $C$ таков: $3times 2$:

Размер матрицы, полученной в результате произведения

Итак, в результате произведения матриц $A$ и $B$ мы должны получить матрицу $C$, состоящую из трёх строк и двух столбцов:

$
C=left(begin{array} {cc}
c_{11} & c_{12} \
c_{21} & c_{22} \
c_{31} & c_{32}
end{array} right)$. Если обозначения элементов вызывают вопросы, то можно глянуть предыдущую тему: «Матрицы. Виды матриц. Основные термины», в начале которой поясняется обозначение элементов матрицы. Наша цель: найти значения всех элементов матрицы $C$.

Начнем с элемента $c_{11}$. Чтобы получить элемент $c_{11}$ нужно найти сумму произведений элементов первой строки матрицы $A$ и первого столбца матрицы $B$:

Первый элемент

Чтобы найти сам элемент $c_{11}$ нужно перемножить элементы первой строки матрицы $A$ на соответствующие элементы первого столбца матрицы $B$, т.е. первый элемент на первый, второй на второй, третий на третий, четвертый на четвертый. Полученные результаты суммируем:

$$
c_{11}=-1cdot (-9)+2cdot 6+(-3)cdot 7 + 0cdot 12=0.
$$

Продолжим решение и найдем $c_{12}$. Для этого придётся перемножить элементы первой строки матрицы $A$ и второго столбца матрицы $B$:

Второй элемент

Аналогично предыдущему, имеем:

$$
c_{12}=-1cdot 3+2cdot 20+(-3)cdot 0 + 0cdot (-4)=37.
$$

Все элементы первой строки матрицы $C$ найдены. Переходим ко второй строке, которую начинает элемент $c_{21}$. Чтобы его найти придётся перемножить элементы второй строки матрицы $A$ и первого столбца матрицы $B$:

Третий элемент

$$
c_{21}=5cdot (-9)+4cdot 6+(-2)cdot 7 + 1cdot 12=-23.
$$

Следующий элемент $c_{22}$ находим, перемножая элементы второй строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$
c_{22}=5cdot 3+4cdot 20+(-2)cdot 0 + 1cdot (-4)=91.
$$

Чтобы найти $c_{31}$ перемножим элементы третьей строки матрицы $A$ на элементы первого столбца матрицы $B$:

$$
c_{31}=-8cdot (-9)+11cdot 6+(-10)cdot 7 + (-5)cdot 12=8.
$$

И, наконец, для нахождения элемента $c_{32}$ придется перемножить элементы третьей строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$
c_{32}=-8cdot 3+11cdot 20+(-10)cdot 0 + (-5)cdot (-4)=216.
$$

Все элементы матрицы $C$ найдены, осталось лишь записать, что $C=left(begin{array} {cc}
0 & 37 \
-23 & 91 \
8 & 216
end{array} right)$. Или, если уж писать полностью:

$$
C=Acdot B =left(begin{array} {cccc}
-1 & 2 & -3 & 0 \
5 & 4 & -2 & 1 \
-8 & 11 & -10 & -5
end{array} right)cdot left(begin{array} {cc}
-9 & 3 \
6 & 20 \
7 & 0 \
12 & -4
end{array} right)=left(begin{array} {cc}
0 & 37 \
-23 & 91 \
8 & 216
end{array} right).
$$

Ответ: $C=left(begin{array} {cc}
0 & 37 \
-23 & 91 \
8 & 216
end{array} right)$.

Кстати сказать, зачастую нет резона расписывать подробно нахождение каждого элемента матрицы-результата. Для матриц, размер которых невелик, можно поступать и так:

$$
left(begin{array} {cc}
6 & 3 \
-17 & -2
end{array}right)cdot

left(begin{array} {cc}
4 & 9 \
-6 & 90
end{array} right)

=left(begin{array} {cc}
6cdot{4}+3cdot(-6) & 6cdot{9}+3cdot{90} \
-17cdot{4}+(-2)cdot(-6) & -17cdot{9}+(-2)cdot{90}
end{array} right)

=left(begin{array} {cc}
6 & 324 \
-56 & -333
end{array} right)
$$

Стоит также обратить внимание, что умножение матриц некоммутативно. Это означает, что в общем случае $Acdot Bneq Bcdot A$. Лишь для некоторых типов матриц, которые именуют перестановочными (или коммутирующими), верно равенство $Acdot B=Bcdot A$. Именно исходя из некоммутативности умножения, требуется указывать как именно мы домножаем выражение на ту или иную матрицу: справа или слева. Например, фраза «домножим обе части равенства $3E-F=Y$ на матрицу $A$ справа» означает, что требуется получить такое равенство: $(3E-F)cdot A=Ycdot A$.

Транспонированная матрица.

Транспонированной по отношению к матрице $A_{mtimes n}=(a_{ij})$ называется матрица $A_{ntimes m}^{T}=(a_{ij}^{T})$, для элементов которой $a_{ij}^{T}=a_{ji}$.

Попросту говоря, для того, чтобы получить транспонированную матрицу $A^T$, нужно в исходной матрице $A$ заменить столбцы соответствующими строками по такому принципу: была первая строка – станет первый столбец; была вторая строка – станет второй столбец; была третья строка – станет третий столбец и так далее. Например, найдем транспонированную матрицу к матрице $A_{3times 5}$:

Транспонированная матрица

Соответственно, если исходная матрица имела размер $3times 5$, то транспонированная матрица имеет размер $5times 3$.

Некоторые свойства операций над матрицами.

Здесь предполагается, что $alpha$, $beta$ – некоторые числа, а $A$, $B$, $C$ – матрицы. Для первых четырех свойств я указал названия, остальные можно назвать по аналогии с первыми четырьмя.

  1. $A+B=B+A$ (коммутативность сложения)
  2. $A+(B+C)=(A+B)+C$ (ассоциативность сложения)
  3. $(alpha+beta)cdot A=alpha A+beta A$ (дистрибутивность умножения на матрицу относительно сложения чисел)
  4. $alphacdot(A+B)=alpha A+alpha B$ (дистрибутивность умножения на число относительно сложения матриц)
  5. $A(BC)=(AB)C$
  6. $(alphabeta)A=alpha(beta A)$
  7. $Acdot (B+C)=AB+AC$, $(B+C)cdot A=BA+CA$.
  8. $Acdot E=A$, $Ecdot A=A$, где $E$ – единичная матрица соответствующего порядка.
  9. $Acdot O=O$, $Ocdot A=O$, где $O$ – нулевая матрица соответствующего размера.
  10. $left(A^T right)^T=A$
  11. $(A+B)^T=A^T+B^T$
  12. $(AB)^T=B^Tcdot A^T$
  13. $left(alpha A right)^T=alpha A^T$

В следующей части будет рассмотрена операция возведения матрицы в целую неотрицательную степень, а также решены примеры, в которых потребуется выполнение нескольких операций над матрицами.

Первая частьВторая часть

Вернуться к списку тем
Задать вопрос на форуме
Мой аккаунт ВКонтакте
Записаться на курс онлайн-занятий

Источник

Формула

Сложение матриц $ A $ и $ B $ это арифметическая операция, в результате которой, должна получаться матрица $ C $, каждый элемент которой равен сумме соответствующих элементов складываемых матриц:

$$ c_{ij} = a_{ij} + b_{ij} $$

Более подробно формула сложения двух матриц выглядит так:

$$ A + B = begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} end{pmatrix} + begin{pmatrix} b_{11} & b_{12} & b_{13} \ b_{21} & b_{22} & b_{23} \ b_{31} & b_{32} & b_{33} end{pmatrix} = $$

$$ = begin{pmatrix} a_{11} + b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} end{pmatrix} = C $$

Обратите внимание, что складывать и вычитать матрицы можно только одинаковой размерности. При сумме или разности будет получаться матрица $ C $ такой же размерности как и слагаемые (вычитаемые) матрицы $ A $ и $ B $. Если матрицы $ A $ и $ B $ отличаются друг от друга размерами, то сложение (вычитание) таких матриц будет ошибкой!

В формуле складываются матрицы 3 на 3, значит и получиться должна матрица 3 на 3.

Читайте также:  Какими свойствами должно обладать основное электрозащитное средство

Вычитание матриц полностью аналогично по алгоритму сложения, только знак минус. Каждый элемент искомой матрицы $ C $ получается благодаря вычитанию соответствующих элементов матриц $ A $ и $ B $:

$$ c_{ij} = a_{ij} — b_{ij} $$

Запишем подробную формулу вычитания двух матриц:

$$ A — B = begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} end{pmatrix} — begin{pmatrix} b_{11} & b_{12} & b_{13} \ b_{21} & b_{22} & b_{23} \ b_{31} & b_{32} & b_{33} end{pmatrix} = $$

$$ = begin{pmatrix} a_{11} — b_{11} & a_{12}-b_{12} & a_{13}-b_{13} \ a_{21}-b_{21} & a_{22}-b_{22} & a_{23}-b_{23} \ a_{31}-b_{31} & a_{32}-b_{32} & a_{33}-b_{33} end{pmatrix} = C $$

Стоит так же заметить, что нельзя складывать и вычитать матрицы с обычными числами, а так же с другими какими-то элементами

Будет полезно знать для дальнейших решений задач с матрицами знать свойства сложения (вычитания).

Свойства

  1. Если матрицы $ A,B,C $ одинаковые по размеру, тогда для них действует свойство ассоциативности: $$ A + (B + C) = (A + B) + C $$
  2. Для каждой матрицы существует нулевая матрица, обозначаемая $ O $, при сложении (вычитании) с которой исходная матрица не изменяется: $$ A pm O = A $$
  3. Для каждой ненулевой матрицы $ A $ есть противоположная матрица $ (-A) $ сумма с которой обращается в нуль: $$ A + (-A) = 0 $$
  4. При сложении (вычитании) матриц допустимо свойство коммутативности, то есть матрицы $ A $ и $ B $ можно менять местами: $$ A + B = B + A $$ $$ A — B = B — A $$

Примеры решений

Пример 1

Даны матрицы $ A = begin{pmatrix} 2&3 \ -1& 4 end{pmatrix} $ и $ B = begin{pmatrix} 1&-3 \ 2&5 end{pmatrix} $.

Выполнить сложение матриц, а затем вычитание.

Решение

Первым делом проверяем матрицы на размерность. У матрицы $ A $ размерность $ 2 times 2 $, у второй матрицы $ B $ размерность тоже $ 2 times 2 $. Это значит, что с данными матрицами можно провести совместную операцию по сложению и вычитанию.

Напомним, что для суммы нужно выполнить попарное сложение соответствующих элементов матриц $ A text{ и } B $.

$$ A + B = begin{pmatrix} 2&3 \ -1& 4 end{pmatrix} + begin{pmatrix} 1&-3 \ 2&5 end{pmatrix} = $$

$$ = begin{pmatrix} 2 + 1 & 3 + (-3) \ -1 + 2 & 4 + 5 end{pmatrix} = begin{pmatrix} 3 & 0 \ 1 & 9 end{pmatrix} $$

Аналогично сумме находим разность матриц с помощью замены знака «плюс» на «минус»:

$$ A — B = begin{pmatrix} 2&3 \ -1& 4 end{pmatrix} + begin{pmatrix} 1&-3 \ 2&5 end{pmatrix} = $$

$$ = begin{pmatrix} 2 — 1 & 3 — (-3) \ -1 — 2 & 4 — 5 end{pmatrix} = begin{pmatrix} 1 & 6 \ -3 & -1 end{pmatrix} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

$$ A + B = begin{pmatrix} 3 & 0 \ 1 & 9 end{pmatrix}; A — B = begin{pmatrix} 1 & 6 \ -3 & -1 end{pmatrix} $$

Пример 2

Даны матрицы $ A = begin{pmatrix} 2&3&-1 \ -1&4&2 end{pmatrix} $ и $ B = begin{pmatrix} 1&-3 \ 2&5 \ -2&4 end{pmatrix} $.

Найти сумму и разность матриц.

Решение

Как обычно сначала проверяем матрицы на одинаковую размерность.

Для матрицы $ A (2times 3) $ , а у матрицы $ B (3times 2) $.

Видим, что размерности двух матриц не совпадают, поэтому по определению суммы и разности матриц операции провести не возможно! На этом заканчиваем решение данного примера и записываем ответ.

Ответ
Данные матрицы нельзя складывать и вычитать из-за разного размера

В статье: «Сложение и вычитание матриц» были даны определения, правила, замечания, свойства операций и практические примеры решения.

Источник

Конспект урока по теме «Действия над матрицами»

Учитель математики: Григорьева Е. Д.

Цели:

Образовательные:

  — рассмотреть операции сложения, вычитания, умножения матрицы на число и матрицы на матрицу, возведение в степень, нахождение обратной матрицы;

Развивающие:  

 — содействовать развитию у учащихся мыслительных операций:      умение анализировать, синтезировать, сравнивать;

  — отрабатывать навыки самооценивания знаний и умений, выбора заданий, соответствующего уровню мыслительной деятельности;

     — формировать и развивать умения и навыки: обобщение, поиск способов решения.

Воспитательные: 

 — воспитание личных качеств, обеспечивающих успешность творческой деятельности;

 — воспитание требовательности, принципиальности, самокритичности, благородства, чувства товарищества.

Тип урока: комбинированный.

Структура урока.

1) Организационный этап.

2) Постановка цели и задач урока. Мотивация учебной деятельности учащихся.

3) Актуализация знаний.

4) Изучение нового материала.

5) Закрепление изученного материала.

6) Домашнее задание.

1. Организационный этап.

Приветствия учащихся; проверка их явки и готовности аудитории к уроку.

2. Постановка цели и задач урока.

Сообщает тему и цели практического занятия. Слушают, записывают в тетрадь.

3. Актуализация знаний.

Организует фронтальный опрос по теоретическим вопросам с использованием записей на диске.

Продумывают ответы, работают с лекционным материалом, анализируют, сравнивают, обобщают, отвечают на вопросы преподавателя, аргументируют ответы.

Беседа.

4. Изучение нового материала.

Операции над матрицами, свойства операций.

В этой статье мы разберемся как проводится операция сложения над матицами одного порядка, операция умножения матрицы на число и операция умножения матриц подходящего порядка, аксиоматически зададим свойства операций, а также обсудим приоритет операций над матрицами. Параллельно с теорией будем приводить подробные решения примеров, в которых выполняются операции над матрицами.

Сразу заметим, что все нижесказанное относится к матрицам, элементами которых являются действительные (или комплексные) числа.

Операция сложения двух матриц.

Определение операции сложения двух матриц.

Операция сложения определена ТОЛЬКО ДЛЯ МАТРИЦ ОДНОГО ПОРЯДКА. Другими словами, нельзя найти сумму матриц разной размерности и вообще нельзя говорить о сложении матриц разной размерности. Также нельзя говорить о сумме матрицы и числа или о сумме матрицы и какого-нибудь другого элемента.

Определение.

Сумма двух матриц формула и формула — это матрица, элементы которой равны сумме соответствующих элементов матриц А и В, то есть, формула.

изображение

Таким образом, результатом операции сложения двух матриц является матрица того же порядка.

Свойства операции сложения матриц.

Какими же свойствами обладает операция сложения матриц? На этот вопрос достаточно легко ответить, отталкиваясь от определения суммы двух матриц данного порядка и вспомнив свойства операции сложения действительных (или комплексных) чисел.

  1. Для матриц АВ и С одного порядка характерно свойство ассоциативности сложенияА+(В+С)=(А+В)+С.

  2. Для матриц данного порядка существует нейтральный элемент по сложению, которым является нулевая матрица. То есть, справедливо свойство А+О=А.

  3. Для ненулевой матрицы А данного порядка существует матрица (–А), их суммой является нулевая матрица: А+(-А)=О.

  4. Для матриц А и В данного порядка справедливо свойство коммутативности сложения А+В=В+А.

Читайте также:  Какими свойствами обладают полимеры

Операция умножения матрицы на число.

Определение операции умножения матрицы на число.

Операция умножения матрицы на число определена ДЛЯ МАТРИЦ ЛЮБОГО ПОРЯДКА.

Определение.

Произведение матрицы формула и действительного (или комплексного) числа формула — это матрица, элементы которой получаются умножением соответствующих элементов исходной матрицы на число формула, то есть, формула.

изображение

Таким образом, результатом умножения матрицы на число является матрица того же порядка.

Свойства операции умножения матрицы на число.

  1. Для матриц одного порядка А и В, а также произвольного действительного (или комплексного) числа формула справедливо свойство дистрибутивности умножения относительно сложения формула.

  2. Для произвольной матрицы А и любых действительных (или комплексных) чисел формулаи формула выполняется свойство дистрибутивности формула.

  3. Для произвольной матрицы А и любых действительных (или комплексных) чисел формулаи формула справедливо свойство ассоциативности умножения формула.

  4. Нейтральным числом по умножению на произвольную матрицу А является единица, то есть, формула.

Из свойств операции умножения матрицы на число следует, что умножение нулевой матрицы на число ноль даст нулевую матрицу, а произведение произвольного числа и нулевой матрицы есть нулевая матрица.

Операция умножения двух матриц.

Определение операции умножения двух матриц.

Операция умножения двух матриц А и В определяется только для случая, когда ЧИСЛО СТОЛБЦОВ МАТРИЦЫ А РАВНО ЧИСЛУ СТРОК МАТРИЦЫ В.

Определение.

Произведение матрицы А порядка формула и матрицы В порядка формула — это такая матрица С порядка формула, каждый элемент которой равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицы В, то есть,
формула

изображение

Таким образом, результатом операции умножения матрицы порядка формула на матрицу порядка формула является матрица порядка формула.

Свойства операции умножения матриц.

Если матрицы АВ и С подходящих порядков, то справедливы следующие свойства операции умножения матриц.

  1. Свойство ассоциативности умножения матриц формула.

  2. Два свойства дистрибутивности формула и формула.

  3. В общем случае операция умножения матриц некоммутативна формула.

  4. Единичная матрица Е порядка n на n является нейтральным элементом по умножению, то есть, для произвольной матрицы А порядка p на n справедливо равенство формула, а для произвольной матрицы А порядка n на p — равенство формула.

Следует отметить, что при подходящих порядках произведение нулевой матрицы О на матрицуА дает нулевую матрицу. Произведение А на О также дает нулевую матрицу, если порядки позволяют проводить операцию умножения матриц.

Среди квадратных матриц существуют так называемые перестановочные матрицы, операция умножения для них коммутативна, то есть формула. Примером перестановочных матриц является пара единичной матрицы и любой другой матрицы того же порядка, так как справедливо формула.

5. Закрепление изученного материала.

Сложение матриц — решения примеров.

Рассмотрим несколько примеров сложения матриц.

Пример.

Найдите сумму матриц формула и формула.

Решение.

Порядки матриц А и В совпадают и равны 4 на 2, поэтому мы можем проводить операцию сложения матриц и в результате должны получить матрицу порядка 4 на 2. Согласно определению операции сложения двух матриц, сложение производим поэлементно:
формула

Пример.

Найдите сумму двух матриц формула и формулаэлементами которых являются комплексные числа.

Решение.

Так как порядки матриц равны, то мы можем выполнить сложение.
формула

Пример.

Выполните сложение трех матриц формула.

Решение.

Сначала сложим матрицу А с В, затем к полученной матрице прибавим С:
формула

Получили нулевую матрицу.

Умножение матрицы на число — примеры и их решение.

Разберемся с проведением операция умножения матрицы на число на примерах.

Пример.

Найдите произведение числа 2 и матрицы формула.

Решение.

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число:
формула

Пример.

Выполните умножение матрицы формула на число формула.

Решение.

Умножаем каждый элемент заданной матрицы на данное число:
формула

Умножение матрицы на матрицу — решения примеров.

Разберемся с умножением матриц на примерах, после этого перейдем к перечислению свойств операции умножения матриц.

Пример.

Найдите все элементы матрицы С, которая получается при умножении матриц формула и формула.

Решение.

Порядок матрицы А равен p=3 на n=2, порядок матрицы В равен n=2 на q=4, следовательно, порядок порядок произведения этих матриц будет p=3 на q=4. Воспользуемся формулой
формула

Последовательно принимаем значения i от 1 до 3 (так как p=3) для каждого j от 1 до 4(так как q=4), а n=2 в нашем случае, тогда
формула

Так вычислены все элементы матрицы С, и матрица, полученная при умножении двух заданных матриц, имеет вид формула.

Пример.

Выполните умножение матриц формула и формула.

Решение.

Порядки исходных матриц позволяют провести операцию умножения. В результате мы должны получить матрицу порядка 2 на 3.
формула

Пример.

Даны матрицы формула и формула. Найдите произведение матриц А и В, а также матриц В и А.

Решение.

Так как порядок матрицы А равен 3 на 1, а матрицы В равен 1 на 3, то АВ будет иметь порядок 3 на 3, а произведение матриц В и A будет иметь порядок 1 на 1.
формула

Как видите, формула. Это одно из свойств операции умножения матриц.

Пример.

Даны матрицы формула. Выполните с заданными матрицами указанные действия формула.

Решение.

Начинаем с умножения матрицы А на матрицу В:
формула

Теперь умножаем единичную матрицу второго порядка Е на два:
формула

Складываем две полученные матрицы: 
формула

Осталось выполнить операцию умножения полученной матрицы на матрицу А:
формула

Следует заметить, что операции вычитания матриц одного порядка А и В как таковой не существует. Разность двух матриц по сути есть сумма матрицы А и матрицы В, предварительно умноженной на минус единицу: формула.

Операция возведения квадратной матрицы в натуральную степень так же не самостоятельна, так как является последовательным умножением матриц.

Подведем итог.

На множестве матриц определены три операции: сложение матриц одного порядка, умножение матрицы на число и умножение матриц подходящих порядков.

6. Домашнее задание.

hello_html_4cf870c8.png

hello_html_m1891ee00.png

Источник