Какими свойствами обладает сероводород
Свойства, опасность для человека, ПДК, токсикология, как образуется.
Сероводород H2S — наиболее активное из серосодержащих соединений. В нормальных условиях бесцветный газ с неприятным запахом тухлых яиц. Очень ядовит: острое отравление человека наступает уже при концентрациях 0,2–0,3 мг/л, концентрация выше 1 мг/л — смертельна. Сероводород хорошо растворим в воде. Диапазон взрывоопасных концентраций его смеси с воздухом достаточно широк и составляет от 4 до 45% об. При контакте с металлами (особенно если в газе содержится влага) вызывает сильную коррозию. Самый нежелательный компонент в газах нефтепереработки.
Опасность сероводорода для человека.
Сероводород – очень токсичный газ, действующий непосредственно на нервную систему. По шкале опасности он отнесён к 3 классу. Обязательно учитывайте этот факт всякий раз, когда чувствуете его отчётливый запах. Но что особенно опасно – так это свойство сероводорода притуплять обонятельный нерв, из-за чего человек просто перестаёт различать окружающие его ядовитые пары, и интоксикация может произойти внезапно.
Смертельная концентрация этого газа в воздухе очень мала – всего 0,1%. Такое количество сероводорода может привести человека к летальному исходу за 10 минут. Стоит лишь немного увеличить концентрацию – и смерть наступает мгновенно, после первого же вдоха. Для примера: в канализационной системе концентрация сероводорода иногда достигает 16%.
Наиболее заметные признаки сильного отравления сероводородом: отёк лёгких, судороги, паралич нервов, последующая кома. Если в атмосфере сероводород содержится в меньших количествах (от 0,02%), симптомы не столь фатальны, но очень неприятны: головокружение и головная боль, тошнота и быстрое привыкание к запаху «тухлых яиц».
Люди, работающие или живущие в непосредственной близости от заводов с сероводородными выбросами, испытывают так называемое хроническое отравление H2S. При этом они начинают хуже себя чувствовать, испытывают головные боли, стремительно теряют вес, учащаются случаи обмороков, а во рту появляется привкус металла. Сероводород также отрицательно действует на зрение, поражая слизистую оболочку глаза и вызывая конъюнктивит, светобоязнь.
Отравление сероводородом вылечить можно, если быстро принять необходимые меры: вывести пострадавшего на свежий воздух, обогатить его лёгкие кислородом, ввести сердечные и дыхательные аналептики, препараты железа, глюкозу, витамины.
ПДК (Предельно-допустимая концентрация)
ПДК сероводорода (H2S) в воздухе в рабочей зоне—10 мг/м3 (ГН 2.2.5.1313-03 Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны), в смеси с углеводородами —3 мг/м3.
ПДК сероводорода (H2S) в воздухе населенных мест—0,008 мг/м3(ГН 2.1.6.1338-03 Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест).
Ощутимый запах сероводорода отмечается при концентрации сероводорода 1,4—2,3 мг/м3, значительный запах —при 4 мг/м3, тяжелый запах при 7—11 мг/м3
Токсикология.
Очень токсичен. Вдыхание воздуха с небольшим содержанием сероводорода вызывает головокружение, головную боль, тошноту, а со значительной концентрацией приводит к коме, судорогам, отёку лёгких и даже к летальному исходу. При высокой концентрации однократное вдыхание может вызвать мгновенную смерть. При вдыхании воздуха с небольшими концентрациями у человека довольно быстро возникает адаптация к неприятному запаху «тухлых яиц», и он перестаёт ощущаться. Во рту возникает сладковатый металлический привкус.
При вдыхании воздуха с большой концентрацией, из-за паралича обонятельного нерва, запах сероводорода почти сразу перестаёт ощущаться.
Как образуется.
В природе встречается довольно редко в составе попутных нефтяных газов, природного газа, вулканических газах, в растворённом виде в природных водах (например, в Чёрном море слои воды, расположенные глубже 150—200 м содержат растворённый сероводород). Образуется при гниении белков, только тех, которые содержат в составе серосодержащие аминокислоты метионин и/или цистеин. Небольшое количество сероводорода содержится в кишечных газах человека и животных. Также содержится в сырой нефти.
Сероводород, свойства, получение и применение.
Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.
Сероводород, формула, молекула, строение, состав, вещество
Физические свойства сероводорода
Получение сероводорода
Химические свойства сероводорода. Химические реакции (уравнения) сероводорода
Применение сероводорода
Сероводород, формула, молекула, строение, состав, вещество:
Сероводород (сернистый водород, сульфид водорода, дигидросульфид) – бесцветный газ со сладковатым вкусом с характерным неприятным тяжёлым запахом тухлых яиц (тухлого мяса).
Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.
Химическая формула сероводорода H2S.
Строение молекулы сероводорода, структурная формула сероводорода:
Сероводород – наиболее активное из серосодержащих соединений.
Сероводород тяжелее воздуха. Его плотность составляет 1,539 кг/м3, по отношении к воздуху – 1,19. Поэтому скапливается в низких непроветриваемых местах.
Сероводород плохо растворяется в воде. Раствор сероводорода в воде – очень слабая сероводородная кислота. Хорошо растворим в бензоле и этаноле.
Термически устойчив при температурах менее 400 °C. При температурах более 400 °C разлагается на составляющие – простые вещества: водород и серу.
В отличие от воды, в сероводороде не образуются водородные связи, поэтому сероводород в обычных условиях не сжижается.
Сероводород является сверхпроводником при температуре 203 К (-70 °C) и давлении 150 ГПа.
Сероводород коррозионно активен, поэтому предъявляются дополнительные требования при разработке нефтяных, газовых и газоконденсатных месторождений, содержащий сероводород.
Чрезвычайно огнеопасен. Смеси сероводорода и воздуха взрывоопасны. Возможно возгорание на расстоянии. Горит синим пламенем.
Соли сероводородной кислоты (раствор сероводорода в воде) называют сульфидами. В воде хорошо растворимы только сульфиды щелочных металлов, аммония. Сульфиды остальных металлов практически не растворимы в воде, они выпадают в осадок в ходе химических реакций. Многие сульфиды ярко окрашены. Многие природные сульфиды в виде минералов являются ценными рудами (пирит, халькопирит, киноварь, молибденит).
Сероводород в природе встречается редко, в незначительных количествах в составе природного газа, попутного нефтяного газа, сланцевого газа, а также в вулканических газах, в растворённом виде – в нефти, сланцевой нефти и в природных водах. Например, в Чёрном море слои воды, расположенные глубже 150-200 м, содержат растворённый сероводород (концентрация 14 мл/л).
Образуется при гниении белков, которые содержат в составе серосодержащие аминокислоты метионин и (или) цистеин. Небольшое количество сероводорода содержится в кишечных газах человека и животных.
Сероводород высокотоксичен и ядовит. Предельно допустимая концентрация (ПДК) сероводорода в воздухе населенных пунктов в России – 0,008 мг/м3, в России – 0,007 мг/м3.
Порог ощутимости запаха составляет 0,012-0,03 мг/м3. При вдыхании воздуха с небольшими концентрациями у человека довольно быстро возникает адаптация к неприятному запаху «тухлых яиц» и он перестаёт ощущаться. Во рту возникает сладковатый металлический привкус. При вдыхании воздуха с большой концентрацией из-за паралича обонятельного нерва запах сероводорода почти сразу перестаёт ощущаться.
При острых отравлениях возникает жжение и боль в горле при глотании, конъюнктивит, одышка, головная боль, головокружение, слабость, рвота, тахикардия, возможны судороги. Смертельная концентрация составляет 830 мг/м3 в течение 30 минут или 1100 мг/м3 в течение 5 минут.
При высокой концентрации сероводорода однократное вдыхание может вызвать мгновенную смерть.
Физические свойства сероводорода:
Наименование параметра: | Значение: |
Химическая формула | H2S |
Синонимы и названия иностранном языке | hydrogen sulfide (англ.) водород сернистый (рус.) водорода сульфид (рус.) сероводородная кислота (рус.) |
Тип вещества | неорганическое |
Внешний вид | бесцветный газ |
Цвет | бесцветный |
Вкус | сладковатый |
Запах | неприятный тяжёлый запах тухлых яиц (тухлого мяса) |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | газ |
Плотность (состояние вещества – твердое вещество, при -86 °C), кг/м3 | 1120 |
Плотность (состояние вещества – твердое вещество, при -86 °C), г/см3 | 1,12 |
Плотность (состояние вещества – жидкость, при -81 °C), кг/м3 | 938 |
Плотность (состояние вещества – жидкость, при -81 °C), г/см3 | 0,938 |
Плотность (состояние вещества – газ, при 0 °C), кг/м3 | 1,539 |
Плотность (состояние вещества – газ, при 0 °C), г/см3 | 0,001539 |
Температура кипения, °C | -60,28 |
Температура плавления, °C | -85,6 |
Температура самовоспламенения, °C | 260 |
Критическая температура*, °C | 100,4 |
Критическое давление, МПа | 9,01 |
Критический удельный объём, м3/кг | 349 |
Взрывоопасные концентрации смеси газа с воздухом, % объёмных | 4,3 – 46 |
Молярная масса, г/моль | 34,082 |
Растворимость в воде (20 oС), г/100 г | 0,379 |
Сверхпроводимость | -70 °C, давление 150 ГПа |
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Получение сероводорода:
Сероводород в лаборатории получают в результате следующих химических реакций:
- 1. взаимодействия разбавленных кислот с сульфидами, например, с сульфидом железа.
- 2. взаимодействия сульфида алюминия и воды:
Al2S3 + 6H2O → 2Al(OH)3 + 3H2S.
Данная реакция отличается чистотой полученного сероводорода
Химические свойства сероводорода. Химические реакции (уравнения) сероводорода:
Основные химические реакции сероводорода следующие:
1. реакция взаимодействия сероводорода и брома:
H2S + Br2 → 2HBr + S.
В результате реакции образуются бромоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.
2. реакция взаимодействия сероводорода и йода:
H2S + I2 → 2HI + S.
В результате реакции образуются йодоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.
3. реакция взаимодействия сероводорода и кислорода:
2H2S + O2 → 2S + 2H2O.
В результате реакции образуются сера и вода. Реакция протекает медленно на свету, в растворе или в газовой фазе. Сероводород в ходе реакции используется в виде насыщенного раствора. На данной реакции основан промышленный способ получения серы.
4. реакция горения сероводорода:
2H2S + 3O2 2SO2 + 2H2O (t = 250-300 °C).
В результате реакции образуются оксид серы и вода. Реакция горения сероводорода на воздухе.
5. реакция взаимодействия сероводорода и озона:
H2S + O3 → SO2 + H2O.
В результате реакции образуются оксид серы и вода. Сероводород в ходе реакции используется в виде газа.
6. реакция взаимодействия сероводорода и кремния:
Si + 2H2S → SiS2 + 2H2 (t = 1200-1300 °C).
В результате реакции образуются сульфид кремния и водород.
7. реакция взаимодействия сероводорода и цинка:
H2S + Zn → ZnS + H2 (t = 400-800 °C).
В результате реакции образуются сульфид цинка и водород.
8. реакция взаимодействия сероводорода и алюминия:
2Al + 3H2S → Al2S3 + 3H2 (t = 600-1000 °C).
В результате реакции образуются сульфид алюминия и водород.
9. реакция взаимодействия сероводорода и галлия:
2Ga + H2S → Ga2S + H2.
В результате реакции образуются сульфид галлия и водород.
10. реакция взаимодействия сероводорода и молибдена:
Mo + 2H2S → MoS2 + 2H2 (t > 800 °C).
В результате реакции образуются сульфид молибдена и водород.
11. реакция взаимодействия сероводорода и бария:
Ba + H2S → BaS + H2 (t > 350 °C).
В результате реакции образуются сульфид бария и водород.
12. реакция взаимодействия сероводорода и магния:
Mg + H2S → MgS + H2 (t = 500 °C).
В результате реакции образуются сульфид магния и водород.
13. реакция взаимодействия сероводорода и германия:
Ge + H2S → GeS + H2 (t = 600-800 °C).
В результате реакции образуются сульфид германия и водород.
14. реакция взаимодействия сероводорода и кобальта:
Co + H2S → CoS + H2 (t = 700 °C).
В результате реакции образуются сульфид кобальта и водород.
15. реакция взаимодействия сероводорода и серебра:
2Ag + H2S → Ag2S + H2.
В результате реакции образуются сульфид серебра и водород.
16. реакция взаимодействия сероводорода и оксида лития:
Li2O + H2S → Li2S + H2O (t = 900-1000 °C).
В результате реакции образуются сульфид лития и вода.
17. реакция взаимодействия сероводорода и оксида цинка:
ZnO + H2S → ZnS + H2O (t = 450-550 °C).
В результате реакции образуются сульфид цинка и вода.
18. реакция взаимодействия сероводорода и оксида железа:
FeO + H2S → FeS + H2O (t = 500 °C).
В результате реакции образуются сульфид железа и вода.
19. реакция взаимодействия сероводорода и оксида молибдена:
MoO2 + 2H2S → MoS2 + 2H2O (t = 400 °C).
В результате реакции образуются сульфид молибдена и вода.
20. реакция взаимодействия сероводорода и гидроксида натрия:
H2S + 2NaOH → Na2S + 2H2O.
В результате реакции образуются сульфид натрия и вода. В ходе реакции используется концентрированный раствор гидроксида натрия.
21. реакция взаимодействия сероводорода и гидроксида бария:
Ba(OH)2 + H2S → BaS + 2H2O.
В результате реакции образуются сульфид бария и вода. В ходе реакции используется разбавленный раствор сероводорода.
22. реакция взаимодействия сероводорода и гидроксида меди:
Cu(OH)2 + H2S → CuS + 2H2O.
В результате реакции образуются сульфид меди и вода. В ходе реакции используется насыщенный раствор сероводорода и гидроксид меди в виде суспензии.
23. реакция взаимодействия сероводорода и азотной кислоты:
H2S + 2HNO3 → S + 2NO2 + 2H2O.
В результате реакции образуются сера, оксид азота и вода. В ходе реакции используется насыщенный раствор сероводорода и концентрированный холодный раствор азотной кислоты.
Аналогичные реакции протекают и с другими минеральными кислотами.
24. реакция взаимодействия сероводорода и карбоната кальция:
CaCO3 + H2S → CaS + H2O + CO2 (t = 900 °C).
В результате реакции образуются сульфид кальция, оксид углерода и вода.
25. реакция взаимодействия сероводорода и карбоната бария:
BaCO3 + H2S → BaS + CO2 + H2O (t = 1000 °C, kat = H2).
В результате реакции образуются сульфид бария, оксид углерода и вода.
26. реакция взаимодействия сероводорода и карбоната натрия:
H2S + Na2CO3 → NaHS + NaHCO3 (t = 1000 °C, kat = H2).
В результате реакции образуются гидросульфид натрия и гидрокарбонат натрия. В ходе реакции используется насыщенный раствор сероводорода.
27. реакция взаимодействия сероводорода и нитрата серебра:
2AgNO3 + H2S → Ag2S + 2HNO3.
В результате реакции образуются сульфид серебра и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.
28. реакция взаимодействия сероводорода и нитрата висмута:
2Bi(NO3)3 + 3H2S → Bi2S3 + 6HNO3.
В результате реакции образуются сульфид висмута и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.
29. реакция взаимодействия сероводорода и нитрата свинца:
Pb(NO3)2 + H2S → PbS + HNO3.
В результате реакции образуются сульфид свинца и азотная кислота. Данная реакция является качественной реакцией на сероводород. В результате реакции образуются соль свинца – сульфид свинца черного цвета, который выпадает в осадок.
30. реакция термического разложения сероводорода:
H2S → H2 + S (t = 400-1700 °C).
В результате реакции образуются водород и сера. В ходе реакции используется насыщенный раствор сероводорода.
Применение сероводорода:
Из-за своей токсичности сероводород находит ограниченное применение:
– в аналитической химии сероводород и сероводородная вода используются как реагенты для осаждения тяжёлых металлов, сульфиды которых очень слабо растворимы;
– в медицине в составе природных и искусственных сероводородных ванн, а также в составе некоторых минеральных вод;
– в химической промышленности для получения серной кислоты, элементной серы, сульфидов;
– в органическом синтезе для получения тиофена и меркаптанов.
В последние годы рассматривается возможность использования сероводорода, накопленного в глубинах Чёрного моря, в качестве энергетического (сероводородная энергетика) и химического сырья.
Примечание: © Фото https://www.pexels.com, https://pixabay.com.
карта сайта
Коэффициент востребованности
4 147
Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.
Сероводород, формула, молекула, строение, состав, вещество:
Сероводород (сернистый водород, сульфид водорода, дигидросульфид) – бесцветный газ со сладковатым вкусом с характерным неприятным тяжёлым запахом тухлых яиц (тухлого мяса).
Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.
Химическая формула сероводорода H2S.
Строение молекулы сероводорода, структурная формула сероводорода:
Сероводород – наиболее активное из серосодержащих соединений.
Сероводород тяжелее воздуха. Его плотность составляет 1,539 кг/м3, по отношении к воздуху – 1,19. Поэтому скапливается в низких непроветриваемых местах.
Сероводород плохо растворяется в воде. Раствор сероводорода в воде – очень слабая сероводородная кислота. Хорошо растворим в бензоле и этаноле.
Термически устойчив при температурах менее 400 °C. При температурах более 400 °C разлагается на составляющие – простые вещества: водород и серу.
В отличие от воды, в сероводороде не образуются водородные связи, поэтому сероводород в обычных условиях не сжижается.
Сероводород является сверхпроводником при температуре 203 К (-70 °C) и давлении 150 ГПа.
Сероводород коррозионно активен, поэтому предъявляются дополнительные требования при разработке нефтяных, газовых и газоконденсатных месторождений, содержащий сероводород.
Чрезвычайно огнеопасен. Смеси сероводорода и воздуха взрывоопасны. Возможно возгорание на расстоянии. Горит синим пламенем.
Соли сероводородной кислоты (раствор сероводорода в воде) называют сульфидами. В воде хорошо растворимы только сульфиды щелочных металлов, аммония. Сульфиды остальных металлов практически не растворимы в воде, они выпадают в осадок в ходе химических реакций. Многие сульфиды ярко окрашены. Многие природные сульфиды в виде минералов являются ценными рудами (пирит, халькопирит, киноварь, молибденит).
Сероводород в природе встречается редко, в незначительных количествах в составе природного газа, попутного нефтяного газа, сланцевого газа, а также в вулканических газах, в растворённом виде – в нефти, сланцевой нефти и в природных водах. Например, в Чёрном море слои воды, расположенные глубже 150-200 м, содержат растворённый сероводород (концентрация 14 мл/л).
Образуется при гниении белков, которые содержат в составе серосодержащие аминокислоты метионин и (или) цистеин. Небольшое количество сероводорода содержится в кишечных газах человека и животных.
Сероводород высокотоксичен и ядовит. Предельно допустимая концентрация (ПДК) сероводорода в воздухе населенных пунктов в России – 0,008 мг/м3, в России – 0,007 мг/м3.
Порог ощутимости запаха составляет 0,012-0,03 мг/м3. При вдыхании воздуха с небольшими концентрациями у человека довольно быстро возникает адаптация к неприятному запаху «тухлых яиц» и он перестаёт ощущаться. Во рту возникает сладковатый металлический привкус. При вдыхании воздуха с большой концентрацией из-за паралича обонятельного нерва запах сероводорода почти сразу перестаёт ощущаться.
При острых отравлениях возникает жжение и боль в горле при глотании, конъюнктивит, одышка, головная боль, головокружение, слабость, рвота, тахикардия, возможны судороги. Смертельная концентрация составляет 830 мг/м3 в течение 30 минут или 1100 мг/м3 в течение 5 минут.
При высокой концентрации сероводорода однократное вдыхание может вызвать мгновенную смерть.
Физические свойства сероводорода:
Наименование параметра: | Значение: |
Химическая формула | H2S |
Синонимы и названия иностранном языке | hydrogen sulfide (англ.) водород сернистый (рус.) водорода сульфид (рус.) сероводородная кислота (рус.) |
Тип вещества | неорганическое |
Внешний вид | бесцветный газ |
Цвет | бесцветный |
Вкус | сладковатый |
Запах | неприятный тяжёлый запах тухлых яиц (тухлого мяса) |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | газ |
Плотность (состояние вещества – твердое вещество, при -86 °C), кг/м3 | 1120 |
Плотность (состояние вещества – твердое вещество, при -86 °C), г/см3 | 1,12 |
Плотность (состояние вещества – жидкость, при -81 °C), кг/м3 | 938 |
Плотность (состояние вещества – жидкость, при -81 °C), г/см3 | 0,938 |
Плотность (состояние вещества – газ, при 0 °C), кг/м3 | 1,539 |
Плотность (состояние вещества – газ, при 0 °C), г/см3 | 0,001539 |
Температура кипения, °C | -60,28 |
Температура плавления, °C | -85,6 |
Температура самовоспламенения, °C | 260 |
Критическая температура*, °C | 100,4 |
Критическое давление, МПа | 9,01 |
Критический удельный объём, м3/кг | 349 |
Взрывоопасные концентрации смеси газа с воздухом, % объёмных | 4,3 – 46 |
Молярная масса, г/моль | 34,082 |
Растворимость в воде (20 oС), г/100 г | 0,379 |
Сверхпроводимость | -70 °C, давление 150 ГПа |
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Получение сероводорода:
Сероводород в лаборатории получают в результате следующих химических реакций:
- 1. взаимодействия разбавленных кислот с сульфидами, например, с сульфидом железа.
- 2. взаимодействия сульфида алюминия и воды:
Al2S3 + 6H2O → 2Al(OH)3 + 3H2S.
Данная реакция отличается чистотой полученного сероводорода
Химические свойства сероводорода. Химические реакции (уравнения) сероводорода:
Основные химические реакции сероводорода следующие:
1. реакция взаимодействия сероводорода и брома:
H2S + Br2 → 2HBr + S.
В результате реакции образуются бромоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.
2. реакция взаимодействия сероводорода и йода:
H2S + I2 → 2HI + S.
В результате реакции образуются йодоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.
3. реакция взаимодействия сероводорода и кислорода:
2H2S + O2 → 2S + 2H2O.
В результате реакции образуются сера и вода. Реакция протекает медленно на свету, в растворе или в газовой фазе. Сероводород в ходе реакции используется в виде насыщенного раствора. На данной реакции основан промышленный способ получения серы.
4. реакция горения сероводорода:
2H2S + 3O2 2SO2 + 2H2O (t = 250-300 °C).
В результате реакции образуются оксид серы и вода. Реакция горения сероводорода на воздухе.
5. реакция взаимодействия сероводорода и озона:
H2S + O3 → SO2 + H2O.
В результате реакции образуются оксид серы и вода. Сероводород в ходе реакции используется в виде газа.
6. реакция взаимодействия сероводорода и кремния:
Si + 2H2S SiS2 + 2H2 (t = 1200-1300 °C).
В результате реакции образуются сульфид кремния и водород.
7. реакция взаимодействия сероводорода и цинка:
H2S + Zn ZnS + H2 (t = 400-800 °C).
В результате реакции образуются сульфид цинка и водород.
8. реакция взаимодействия сероводорода и алюминия:
2Al + 3H2S Al2S3 + 3H2 (t = 600-1000 °C).
В результате реакции образуются сульфид алюминия и водород.
9. реакция взаимодействия сероводорода и галлия:
2Ga + H2S → Ga2S + H2.
В результате реакции образуются сульфид галлия и водород.
10. реакция взаимодействия сероводорода и молибдена:
Mo + 2H2S MoS2 + 2H2 (t > 800 °C).
В результате реакции образуются сульфид молибдена и водород.
11. реакция взаимодействия сероводорода и бария:
Ba + H2S BaS + H2 (t > 350 °C).
В результате реакции образуются сульфид бария и водород.
12. реакция взаимодействия сероводорода и магния:
Mg + H2S MgS + H2 (t = 500 °C).
В результате реакции образуются сульфид магния и водород.
13. реакция взаимодействия сероводорода и германия:
Ge + H2S GeS + H2 (t = 600-800 °C).
В результате реакции образуются сульфид германия и водород.
14. реакция взаимодействия сероводорода и кобальта:
Co + H2S CoS + H2 (t = 700 °C).
В результате реакции образуются сульфид кобальта и водород.
15. реакция взаимодействия сероводорода и серебра:
2Ag + H2S → Ag2S + H2.
В результате реакции образуются сульфид серебра и водород.
16. реакция взаимодействия сероводорода и оксида лития:
Li2O + H2S Li2S + H2O (t = 900-1000 °C).
В результате реакции образуются сульфид лития и вода.
17. реакция взаимодействия сероводорода и оксида цинка:
ZnO + H2S ZnS + H2O (t = 450-550 °C).
В результате реакции образуются сульфид цинка и вода.
18. реакция взаимодействия сероводорода и оксида железа:
FeO + H2S FeS + H2O (t = 500 °C).
В результате реакции образуются сульфид железа и вода.
19. реакция взаимодействия сероводорода и оксида молибдена:
MoO2 + 2H2S MoS2 + 2H2O (t = 400 °C).
В результате реакции образуются сульфид молибдена и вода.
20. реакция взаимодействия сероводорода и гидроксида натрия:
H2S + 2NaOH → Na2S + 2H2O.
В результате реакции образуются сульфид натрия и вода. В ходе реакции используется концентрированный раствор гидроксида натрия.
21. реакция взаимодействия сероводорода и гидроксида бария:
Ba(OH)2 + H2S → BaS + 2H2O.
В результате реакции образуются сульфид бария и вода. В ходе реакции используется разбавленный раствор сероводорода.
22. реакция взаимодействия сероводорода и гидроксида меди:
Cu(OH)2 + H2S → CuS + 2H2O.
В результате реакции образуются сульфид меди и вода. В ходе реакции используется насыщенный раствор сероводорода и гидроксид меди в виде суспензии.
23. реакция взаимодействия сероводорода и азотной кислоты:
H2S + 2HNO3 → S + 2NO2 + 2H2O.
В результате реакции образуются сера, оксид азота и вода. В ходе реакции используется насыщенный раствор сероводорода и концентрированный холодный раствор азотной кислоты.
Аналогичные реакции протекают и с другими минеральными кислотами.
24. реакция взаимодействия сероводорода и карбоната кальция:
CaCO3 + H2S CaS + H2O + CO2 (t = 900 °C).
В результате реакции образуются сульфид кальция, оксид углерода и вода.
25. реакция взаимодействия сероводорода и карбоната бария:
BaCO3 + H2S BaS + CO2 + H2O (t = 1000 °C, kat = H2).
В результате реакции образуются сульфид бария, оксид углерода и вода.
26. реакция взаимодействия сероводорода и карбоната натрия:
H2S + Na2CO3 → NaHS + NaHCO3 (t = 1000 °C, kat = H2).
В результате реакции образуются гидросульфид натрия и гидрокарбонат натрия. В ходе реакции используется насыщенный раствор сероводорода.
27. реакция взаимодействия сероводорода и нитрата серебра:
2AgNO3 + H2S → Ag2S + 2HNO3.
В результате реакции образуются сульфид серебра и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.
28. реакция взаимодействия сероводорода и нитрата висмута:
2Bi(NO3)3 + 3H2S → Bi2S3 + 6HNO3.
В результате реакции образуются сульфид висмута и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.
29. реакция взаимодействия сероводорода и нитрата свинца:
Pb(NO3)2 + H2S → PbS + HNO3.
В результате реакции образуются сульфид свинца и азотная кислота. Данная реакция является качественной реакцией на сероводород. В результате реакции образуются соль свинца – сульфид свинца черного цвета, который выпадает в осадок.
30. реакция термического разложения сероводорода:
H2S H2 + S (t = 400-1700 °C).
В результате реакции образуются водород и сера. В ходе реакции используется насыщенный раствор сероводорода.
Применение сероводорода:
Из-за своей токсичности сероводород находит ограниченное применение:
- в аналитической химии сероводород и сероводородная вода используются как реагенты для осаждения тяжёлых металлов, сульфиды которых очень слабо растворимы;
- в медицине в составе природных и искусственных сероводородных ванн, а также в составе некоторых минеральных вод;
- в химической промышленности для получения серной кислоты, элементной серы, сульфидов;
- в органическом синтезе для получения тиофена и меркаптанов.
В последние годы рассматривается возможность использования сероводорода, накопленного в глубинах Чёрного моря, в качестве энергетического (сероводородная энергетика) и химического сырья.
Ссылка на источник