Какими свойствами обладает ромб
Ðîìá — ýòî ïàðàëëåëîãðàìì ñ ðàâíûìè ñòîðîíàìè. Ðîìá ñ ïðÿìûìè óãëàìè ÿâëÿåòñÿ êâàäðàòîì.
Ðîìá ðàññìàòðèâàþò êàê âèä ïàðàëëåëîãðàììà, ñ äâóìÿ ñìåæíûìè ðàâíûìè ñòîðîíàìè ëèáî ñ âçàèìíî ïåðïåíäèêóëÿðíûìè äèàãîíàëÿìè, ëèáî ñ äèàãîíàëÿìè äåëÿùèìè óãîë íà 2 ðàâíûå ÷àñòè.
Ñâîéñòâà ðîìáà.
1. Ðîìá – ýòî ïàðàëëåëîãðàìì, ïîýòîìó ïðîòèâîïîëîæíûå ñòîðîíû èìåþò îäèíàêîâóþ äëèíó è ïàðàëëåëüíû ïîïàðíî, ÀÂ || CD, AD || ÂÑ.
2. Óãîë ïåðåñå÷åíèÿ äèàãîíàëåé ðîìáà ÿâëÿåòñÿ ïðÿìûì (AC ⊥ BD) è òî÷êîé ïåðåñå÷åíèÿ äåëÿòñÿ íà äâå îäèíàêîâûå ÷àñòè. Òî åñòü äèàãîíàëè äåëÿò ðîìá íà 4 òðåóãîëüíèêà — ïðÿìîóãîëüíûõ.
3. Äèàãîíàëè ðîìáà — ýòî áèññåêòðèñû åãî óãëîâ (∠DCA = ∠BCA, ∠ABD = ∠CBD è ò. ä.).
4. Ñóììà êâàäðàòîâ äèàãîíàëåé ðàâíÿåòñÿ êâàäðàòó ñòîðîíû, óìíîæåííîìó íà ÷åòûðå (âûâîä èç òîæäåñòâà ïàðàëëåëîãðàììà).
Ïðèçíàêè ðîìáà.
Ïàðàëëåëîãðàìì ABCD áóäåò íàçûâàòüñÿ ðîìáîì òîëüêî â ñëó÷àå âûïîëíåíèÿ õîòÿ áû îäíîãî èç óñëîâèé:
1. 2 åãî ñìåæíûå ñòîðîíû èìåþò îäèíàêîâóþ äëèíó (òî åñòü, âñå ñòîðîíû ðîìáà ðàâíû, AB=BC=CD=AD).
2. Óãîë ïåðåñå÷åíèÿ äèàãîíàëåé ïðÿìîé (AC⊥BD).
3. 1-íà èç äèàãîíàëåé äåëèò óãëû, êîòîðûå åå ñîäåðæàò ïîïîëàì.
Ïóñòü ìû çàðàíåå íå çíàåì, ÷òî ÷åòûð¸õóãîëüíèê îêàçûâàåòñÿ ïàðàëëåëîãðàììîì, îäíàêî èçâåñòíî, ÷òî âñå åãî ñòîðîíû ðàâíû. Çíà÷èò ýòîò ÷åòûð¸õóãîëüíèê ÿâëÿåòñÿ ðîìáîì.
Ñèììåòðèÿ ðîìáà.
Ðîìá ñèììåòðè÷åí îòíîñèòåëüíî âñåõ ñâîèõ äèàãîíàëåé, çà÷àñòóþ åãî èñïîëüçóþò â îðíàìåíòàõ è ïàðêåòàõ.
Ïåðèìåòð ðîìáà.
Ïåðèìåòð ãåîìåòðè÷åñêîé ôèãóðû – ñóììàðíàÿ äëèíà ãðàíèö ïëîñêîé ãåîìåòðè÷åñêîé ôèãóðû. Ó ïåðèìåòðà òà æå ðàçìåðíîñòü âåëè÷èí, ÷òî è ó äëèíû.
Ïåðèìåòð ðîìáà ðàâíÿåòñÿ ñóììå ÷åòûðåõ äëèí åãî ñòîðîí ëèáî ïðîèçâåäåíèþ äëèíû âñÿêîé èç åãî ñòîðîíû íà 4 (ò.ê. ó ðîìáà âñå ñòîðîíû ðàâíû).
ãäå:
P – ïåðèìåòð ðîìáà;
a – äëèíà ñòîðîíû ðîìáà.
Ïëîùàäü ðîìáà.
Êàëüêóëÿòîðû ïî ãåîìåòðèè | |
Ïîìîùü â ðåøåíèè çàäà÷ ïî ãåîìåòðèè, ó÷åáíèê îíëàéí (âñå êàëüêóëÿòîðû ïî ãåîìåòðèè). | |
Êàëüêóëÿòîðû ïî ãåîìåòðèè |
Ãåîìåòðè÷åñêèå ôèãóðû. | |
Ãåîìåòðè÷åñêèå ôèãóðû — ïèðàìèäà, ïðÿìîóãîëüíèê, ðîìá, óãëû, øàð, ïàðàëëåëîãðàìì, ïàðàëëåëåïèïåä, ïðèçìà, ñâîéñòâà, ôîðìóëû ãåîìåòðè÷åñêèõ ôèãóð | |
Ãåîìåòðè÷åñêèå ôèãóðû. |
Ãåîìåòðèÿ 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ãåîìåòðèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Ãåîìåòðèÿ 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Что такое ромб? Известно, что это равносторонний четырехугольник, который также является параллелограммом. А если у ромба все углы равны, то эту фигуру уже можно назвать квадратом. А все противолежащие стороны ромба являются параллельными.
Что такое ромб
Ромб — это равносторонний параллелограмм. Само слово греческого происхождения, и означает «бубен». Это сегодня бубны круглой формы, раньше же их изготавливали в форме квадрата. Именно поэтому ромб имеет такое название. Также имеет наименование как геральдическая фигура. Обратимся к словарю Ушакова. Что же такое ромб? По сравнению с квадратом, это косоугольник с равными углами. А также квадрат — это частный случай ромба. Иногда даже говорят, что эти фигуры можно сравнить.
Также с ромбом связано изображение масти «бубна» на картах, которые используют в азартных играх. Также эту фигуру применяли для изображения на знаменах, флагах и различных гербах, но она встречается намного реже, чем другие геометрические конструкции. А сегодня ромб также используется для изображения баскетбольного поля. Что такое ромб, нам известно, но давайте рассмотрим свойства и признаки этой фигуры.
Свойства ромба
- Ромб представляется параллелограммом, все стороны которого лежат противоположно, являются равными и параллельными.
- Диагонали этой математической конструкции пересекаются лишь под прямым углом и делятся пополам в точке пересечения. То есть эти диагонали делят ромб на четыре абсолютно равных треугольника.
- Биссектрисами углов являются именно диагонали.
- Совокупность квадратов диагоналей равняется квадрату стороны, которая умножена на четыре.
- Вершинами прямоугольника являются середины четырех сторон этой конструкции под названием ромб.
- Диагонали фигуры перпендикулярны осями своей симметрии.
- Окружность с лежащим на пересечении центром можно вписать в любую фигуру под названием ромб.
- Что такое диагональ ромба? Это линия, которая соединяет его углы.
Признаки ромба
Мы узнали, что такое ромб, но помимо свойств у этой фигуры существуют еще и признаки. Любой параллелограмм будет являться ромбом, если будет выполнять хоть одно из приведенных ниже условий:
- Две смежные стороны ромба являются равными по отношению друг к другу.
- Диагонали этой математической конструкции могут пересекаться лишь под прямым углом и никак иначе.
- Одна из диагоналей обязательно делит пополам все ее углы, которые в ней содержаться.
- А если предположить, что нам не известно, что четырехугольник является параллелограммом, но известно, что стороны фигуры равны, тогда уверенно можно сказать: четырехугольник — это ромб.
- Это часть прямой, которая образует угол равный 90 градусам при пересечении противолежащей стороны.
- Что такое высота ромба? Это часть прямой, которая образует угол 90 градусов, пересекая противолежащую сторону.
Площадь ромба
Нам известно, что такое ромб, каковы его свойства и признаки, но как же найти его площадь? Для того чтобы найти площадь ромба, следует поделить пополам произведения диагоналей этой фигуры. Так как ромб — это тот же параллелограмм, площадь такой математической конструкции равна произведению высоты на длину его сторон. Помимо этого, площадь фигуры можно найти при вычислении по формулам со смежными сторонами или же с радиусом вписанной окружности. Радиус вписанной окружности выражается через диагонали. Для того чтобы вычислить периметр ромба, следует умножить длину одной из четырех сторон на четыре.
А для того, чтобы изобразить эту фигуру в виде рисунка, нужно соблюдать нижеприведенные наставления. Ведь при построении этой фигуры у многих появляются трудности. Так вот, для того чтобы аккуратно изобразить ромб, следует для начала нарисовать первую диагональ, следом перпендикулярно вторую, в конце соединить края отрезков. Нужно очень внимательно и аккуратно рисовать эту фигуру, для того чтобы вместо ромба вы не нарисовали квадрат.