Какими свойствами обладает пропан и пропилен

Какими свойствами обладает пропан и пропилен thumbnail
Пропилен[1][2][3]
Систематическое
наименование
пропен
Традиционные названия пропилен, метилэтилен
Хим. формула C3H6
Состояние бесцветный газ
Молярная масса 42,081 г/моль
Плотность 0,5139 (при давлении насыщенного пара)
Поверхностное натяжение 17,1 (–50 °C); 6,8 (20 °C) мН/м Н/м
Динамическая вязкость жидкости: 0,370 (–100 °C); 0,128 (0 °C); 0,027 (90 °C) мПа·с;
газа: 6,40 (–50 °C); 7,81 (0 °C); 10,76 (100 °C) мкПа·с
Температура
 • плавления –187,65 °C
 • кипения –47,7 °C
 • вспышки –108 °C
 • самовоспламенения 410 °C
Пределы взрываемости в воздухе, 2,4—11 об. % %
Критическая точка  
 • температура 92[4] °C
 • давление 4,6 МПа[4]
Критическая плотность 181 см³/моль
Уд. теплоёмк. жидкости: 2,077 (–100 °С); 2,303 (0 °С); 3,475 (70 °С) кДж/(кг·К);
пара: 1,277 (–50 °С); 1,805 (100 °С) кДж/(кг·К) Дж/(кг·К)
Теплопроводность жидкости: 0,138 (–50 °С); 0,110 (0 °С); 0,077 (60 °С) Вт/(м·К);
пара: 0,0105 (–50 °С); 0,0256 (100 °С) Вт/(м·К) Вт/(м·K)
Энтальпия
 • образования –20,42 кДж/моль
 • плавления 3,00 кДж/моль
 • кипения 18,41 кДж/моль (–41 °С)
Давление пара 1,73 (–110 °С); 590 (0 °С); 4979 (100 °С) кПа
Растворимость
 • в воде 0,083 (0 °С); 0,041 (20 °С); 0,012 (50 °С); 0,002 (90 °С) мас. %
Диэлектрическая проницаемость 1,87 (20 °С); 1,44 (90 °С)
Дипольный момент 1,134·10–30 Кл·м
Рег. номер CAS 115-07-1
PubChem 8252
Рег. номер EINECS 204-062-1
SMILES

C=CC

InChI

1S/C3H6/c1-3-2/h3H,1H2,2H3

QQONPFPTGQHPMA-UHFFFAOYSA-N

RTECS UC6740000
ChEBI 16052
Номер ООН 1077
ChemSpider 7954
Предельная концентрация 100 мг/м³[4][5][6]
Краткие характер. опасности (H)

H220, H280

Меры предостор. (P)

P210, P377, P381, P410+P403

Сигнальное слово Опасно
Пиктограммы СГС
NFPA 704

4

1

1

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Пропиле́н (пропе́н, метилэтиле́н) СН2=СН-СН3 — органическое вещество, ненасыщенный углеводород из класса алкенов.

При нормальных условиях — бесцветный газ со слабым неприятным запахом.

Является важным продуктом промышленного синтеза и исходным сырьём для производства полипропилена и других органических соединений.

Химические свойства[править | править код]

Пропилен обладает широким набором химических свойств, которые определяются наличием двойной углерод-углеродной связи. Прежде всего, пропилен склонен к реакциям присоединения с разрывом π-связи. Эти превращения часто протекают по гетеролитическому типу и относятся к реакциями электрофильного присоединения[1][7].

Реакции присоединения[править | править код]

Пропилен вступает в реакцию с водородом в присутствии типичных катализаторов гидрирования, например никеля или платины[8].

Пропилен реагирует с галогеноводородами и серной кислотой, давая продукт присоединения по двойной связи (галогенпропан или изопропилсульфат). Пропилен является несимметричным алкеном, поэтому при присоединении этих реагентов он может давать два изомерных продукта, из которых (согласно правилу Марковникова) преобладает более замещённый галогенид или эфир[8].

По аналогичной схеме в присутствии кислотного катализатора пропилен реагирует с водой, давая изопропиловый спирт[8].

Пропилен быстро реагирует с галогенами, давая дигалогениды. Быстрее всего в реакцию вступает фтор (со взрывом), медленно реагирует иод. В присутствии посторонних нуклеофилов, кроме дигалогенидов, могут получаться также продукты сопряжённого присоединения[8].

Пропилен вступает в реакции оксосинтеза, образуя масляный и изомасляный альдегиды, а при повышенной температуре — соответствующие им спирты (бутиловый спирт и изобутиловый спирт)[9].

Реакции окисления[править | править код]

Для пропилена характерен ряд реакций окисления. При взаимодействии с раствором перманганата калия в слабощелочной среде он превращается в пропиленгликоль. Оксид хрома(VI) расщепляет алкены по двойной связи с образованием кетонов и карбоновых кислот. Аналогичному расщеплению пропилен подвергается в условиях реакции озонолиза[10].

При взаимодействии с надкислотами пропилен даёт оксид пропилена. Аналогичная реакция протекает и с кислородом воздуха в присутствии серебряного катализатора[10].

Реакции полимеризации[править | править код]

Пропилен вводят в радикальную полимеризацию, получая атактический полипропилен высокого давления, имеющий нерегулярное строение. Напротив, координационная полимеризация пропилена на катализаторах Циглера — Натты даёт изотактический полипропилен низкого давления, имеющий более высокую температуру размягчения[11].

Реакции по аллильному положению[править | править код]

Пропилен вступает в реакции по аллильному положению. При 500 °С он хлорируется, образуя аллилхлорид[12].

Лабораторное получение[править | править код]

В лабораторных условиях пропилен можно получить стандартными методами получения алкенов. Так, пропилен можно получить дегидратацией пропилового или изопропилового спирта нагреванием в присутствии серной кислоты[13].

Также пропилен можно получить из галогенидов путём отщепления галогеноводорода или из дигалогенидов путём отщепления галогена[13].

Пропин можно частично гидрировать до пропилена в присутствии отравленных катализаторов[13].

Промышленное производство[править | править код]

В течение долгого времени пропилен получали как побочный продукт в процессах парового и каталитического крекинга углеводородов. С 1990-х годов заводы парового крекинга переориентировались на производство этилена, в ходе которого пропилен как побочный продукт не образуется. Соответственно, компенсация этого процесса происходит за счёт методов целевого получения пропилена. В некоторых регионах эти методы оказываются более выгодными за счёт дешёвого сырья[14].

Побочный продукт в производстве этилена[править | править код]

В процессе производства этилена методом крекинга в депропанизаторе выделяется безводная, обессеренная фракция C3, которая содержит пропан, пропилен, пропадиен и пропин, а также следы углеводородов С2 и С4. Доля пропадиена и пропина может достигать 8 мол. %, поэтому эту фракцию селективно гидрируют на палладиевых катализаторах, рассчитывая количество водорода так, чтобы превратить углеводороды C3H4 в C3H6, но не позволить пропену превратиться в пропан. При жидкофазном гидрировании эту стадию контролируют парциальным давлением водорода, а при газофазном гидрировании — регулированием температуры в пределах 50—120 °С. При необходимости пропилен затем очищают от пропана в специальной колонне[15].

Читайте также:  Какие общие свойства у луны и солнца

Побочный продукт нефтепереработки[править | править код]

Пропилен, получаемый при нефтепереработке, также образуется в ходе процессов крекинга, однако эти процессы существенно отличаются от получения этилена паровым крекингом, так как используется другое сырьё, а процессы проводятся с другой целью. Для получения пропилена основным процессом является жидкостный каталитический крекинг (англ. fluid catalytic cracking), в котором катализатор используется в виде кипящего слоя. В ходе этого процесса тяжёлый газойль превращается в бензин и лёгкий газойль. При этом пропилен получается в количестве 3 %, однако его долю можно повысить до 20 % путём модификации катализатора[16].

Пропилен также является побочным продуктом термического крекинга и образуется в процессе коксования и висбрекинга. В случае коксования остаток от перегонки сырой нефти в жёстких условиях разлагают до газойля, кокса, бензина и крекинг-газа (6—12 % последнего). В этом крекинг-газе присутствует фракция С3 в количестве 10—15 мол. %, из которой и получают пропилен. При висбрекинге происходит более мягкий крекинг, нацеленный на уменьшение вязкости смеси. При этом также образуется небольшое количество крекинг-газа[16].

Целевое получение пропилена[править | править код]

В связи с изменением структуры производства пропилена всё большее значение приобретают методы его целевого получения. В США доступность дешёвого пропана, получаемого из сланцевого газа, привела к разработке экономичных методов дегидрирования пропана до пропилена. Аналогичная ситуация наблюдается и в Саудовской Аравии, которая имеет запасы дешёвого пропана. Другим способом промышленного синтеза пропилена является метатезис этилена и бутена-2. Он особенно перспективен при наличии источников дешёвого бутена и этилена. Наконец, пропилен можно получать из угля: путём газификации синтезируется метанол, который затем превращается в этилен и пропилен[17].

Дегидрирование пропана[править | править код]

Дегидрирование пропана — это эндотермическая реакция, которую проводят в присутствии платиновых и хромовых катализаторов на специальных носителях. Селективность этой реакции составляет 85-92 %. Согласно принципу Ле-Шателье, выход пропилена повышается при увеличении температуры и уменьшении давления. Однако высокая температура приводит к побочному процессу разложения пропана на метан и этилен, а также к образованию пропадиена. Поэтому дегидрирование пропана проводят при 500—700 °С и атмосферном (или чуть более низком) давлении[18].

Существует несколько реализаций этого процесса под названиями Oleflex, Catofin и STAR. Они отличаются друг от друга устройством реакторов, применяемыми катализаторами и методами регенерации катализаторов. В некоторых случаях пропан дополнительно разбавляют водородом или паром, чтобы снизить его парциальное давление[18].

Метатезис[править | править код]

Метатезис алкенов представляет собой химический процесс, в котором две молекулы алкенов перегруппировываются, формально обмениваясь друг с другом заместителями. Соответственно, к пропилену в такой схеме приводит метатезис бутена-2 и этилена[19].

В 1960-е годы этот процесс проводился в обратную сторону: компания Phillips проводила так называемый триолефиновый процесс, превращая пропен в бутен-2 и этилен с целью получения последнего. В 1972 году это производство было остановлено в связи с ростом потребности в пропилене. С тех пор процесс проводится в сторону образования пропилена; его доля в производстве пропилена составляет 3 %[19].

Крекинг и интерконверсия алкенов[править | править код]

В данном процесс смеси алкенов пропускают над катализатором с целью перераспределения соотношения между компонентами. Условия подбирают таким образом, чтобы основным компонентом этой смеси стал пропилен. Исключительно этот метод используют лишь немногие заводы: более экономично использовать его в комбинации с другими подходами[20].

Производство из метанола[править | править код]

Исходным сырьём в этом методе является газ либо уголь. Сначала их превращают в синтез-газ, который затем превращают в метанол. Метанол затем превращается в этилен и пропилен. Соотношение этилена и пропилена можно регулировать от примерно равных количеств до селективного получения пропилена с выходом 70 %[21].

Экономические аспекты[править | править код]

Большая часть производственных мощностей по пропилену сосредоточена в Европе, Северной Америке и Азии. По состоянию на 2011 год в мире производилось более 78 млн тонн пропилена. Из этого количества 58 % приходилось на заводы по производству этилена паровым крекингом, 32 % — на заводы по каталитическому крекингу нефти, 10 % — на целевой синтез пропилена[22].

Диаграммы по состоянию на 2006 год[источник не указан 409 дней]:

Хранение и транспортировка[править | править код]

Большая трубопроводная сеть для пропилена существует в США (штаты Техас и Луизиана); также небольшая сеть есть в странах Бенилюкса. В остальных странах пропилен перемещают по автодорогам, железной дороге или по морю, что приводит к необходимости иметь большие склады как на стороне производителя, так и на стороне потребителя[23].

При обычных температурах жидкий пропилен хранят под давлением в цистернах до 20 м в диаметре. Также его можно хранить в больших количествах без давления при температуре −47 °С. По железной дороге пропилен перемещают под давлением: в стандартную цистерну помещается 42 т пропилена. По автодорогам можно перевезти 20 т пропилена, поскольку суммарный вес автомобиля ограничен 40 т. По морю перевозят как небольшие цистерны под давлением, так и сжиженный пропилен при низкой температуре[23].

Применение[править | править код]

В 1990-е годы сферы использования пропилена изменились, поскольку его цена возросла и в некоторых местах возникла его нехватка. Соответственно, практически прекратилось его использование, связанное со сжиганием; кроме того, пропилен начали выделять из фракций крекинга при любой возможности[24].

Читайте также:  Каким свойством обладает душица

Для использования в промышленности пропилен выпускается с тремя степенями чистоты:

  • нефтехимический пропилен (50—70 % пропилен в пропане) получают в процессах крекинга; такой пропилен используют в производстве сжиженного нефтяного газа, как присадку для повышения октанового числа моторных топлив и в некоторых химических синтезах;
  • химически чистый пропилен используют для промышленного синтеза некоторых продуктов;
  • пропилен для полимеризации содержит минимальные количества примесей, способных отравлять катализаторы полимеризации[24].

По состоянию на 2013 год большая часть пропилена (около 2/3) расходуется на получение полипропилена — полимера, занимающего 25 % среди всех пластмасс.

Также из пропилена получают оксид пропилена, акриловую кислоту, акрилонитрил, пропиленгликоль и кумол. Производство полипропилена и акриловой кислоты возрастает, поэтому ожидается повышение спроса на пропилен[24].

Токсическое действие[править | править код]

Как и другие алкены, пропилен действует на животных как сильный наркотик, хоть это воздействие обнаруживается при концентрациях пропилена в воздухе порядка десятков процентов. Минимальная наркотическая концентрация в смеси с воздухом или кислородом составляет около 40—50 % (мыши, крысы, кошки, собаки). Концентрация 65—80 % для животных летальна. Человек ощущает запах пропилена в концентрации свыше 0,0173—0,024 мг/л. При концентрации в воздухе 15 % человек теряет сознание через 30 мин, при 24 % — через 3 мин, при 35—40 % — через 20 с[25].

Примечания[править | править код]

  1. 1 2 Химическая энциклопедия, 1995.
  2. ↑ Propylene. Sigma-Aldrich. Дата обращения 22 апреля 2019.
  3. ↑ Propylene. Cameo Chemicals — NOAA. Дата обращения 22 апреля 2019.
  4. 1 2 3 Пропилен (пропен, метилэтилен).
  5. ↑ Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны.
  6. ↑ ГОСТ 25043—87 (СТ СЭВ 633—77) Пропилен. Технические условия.
  7. ↑ Нейланд, 1990, с. 109.
  8. 1 2 3 4 Нейланд, 1990, с. 110–114.
  9. ↑ Нейланд, 1990, с. 115–116.
  10. 1 2 Нейланд, 1990, с. 116–118.
  11. ↑ Нейланд, 1990, с. 118–122.
  12. ↑ Нейланд, 1990, с. 123–124.
  13. 1 2 3 Нейланд, 1990, с. 105–106.
  14. ↑ Ullmann, 2013, p. 1–2.
  15. ↑ Ullmann, 2013, p. 2–3.
  16. 1 2 Ullmann, 2013, p. 3–5.
  17. ↑ Ullmann, 2013, p. 5.
  18. 1 2 Ullmann, 2013, p. 5–9.
  19. 1 2 Ullmann, 2013, p. 9–10.
  20. ↑ Ullmann, 2013, p. 10.
  21. ↑ Ullmann, 2013, p. 12.
  22. ↑ Ullmann, 2013, p. 2.
  23. 1 2 Ullmann, 2013, p. 13.
  24. 1 2 3 4 Ullmann, 2013, p. 14–16.
  25. ↑ Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей : в 3 т. / Под ред. Н. В. Лазарева и Э. Н. Левиной. — Л. : Химия, 1976. — Т. 1. — С. 21—22.

Литература[править | править код]

  • Далин М. А. Пропилен // Химическая энциклопедия: в 5 т. / Н. С. Зефиров (гл. ред.). — М.: Большая Российская энциклопедия, 1995. — Т. 4: Полимерные—Трипсин. — С. 103. — 639 с. — 40 000 экз. — ISBN 5-85270-039-8.
  • Zimmermann H. Propene (англ.) // Ullmann’s Encyclopedia of Industrial Chemistry. — Wiley, 2013. — doi:10.1002/14356007.a22_211.pub3.
  • Нейланд О. Я. Органическая химия. — М. : Высшая школа, 1990. — С. 218–236. — ISBN 5-06-001471-1.
  • Андреас Ф., Гребе К. Химия и технология пропилена / Пер. с нем. В. Н. Тихомировой и Э. З. Черниной, под ред. З. Н. Полякова. — Ленинград : Химия, 1973.
  • ГОСТ 24975.0-89 (СТ СЭВ 1499-79) Этилен и пропилен. Методы отбора проб

Источник

Пропан

Хим. формула C3H8
Рац. формула CH3CH2CH3
Молярная масса 44,1 г/моль
Плотность газ: 1,8641 кг/м³ в стандартных условиях по ГОСТ 2939—63; жидк. при +20°C 0,5005 г/см3 (4 атм.)
Энергия ионизации 11,07 ± 0,01 эВ[2]
Температура
 • плавления −187,6 °C
 • кипения −42,09 °C
 • самовоспламенения 472 °C
Пределы взрываемости 2,1 ± 0,1 об.%[2]
Энтальпия
 • образования −104 680 Дж/моль[1]
Давление пара 8,4 ± 0,1 атм[2]
Рег. номер CAS 74-98-6
PubChem 6334
Рег. номер EINECS 200-827-9
SMILES

CCC

InChI

1S/C3H8/c1-3-2/h3H2,1-2H3

ATUOYWHBWRKTHZ-UHFFFAOYSA-N

Кодекс Алиментариус E944
RTECS TX2275000
ChEBI 32879
ChemSpider 6094
NFPA 704

4

1

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Пропа́н (лат. propanum), C3H8 — органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов, при разделении попутного нефтяного газа, «жирного» природного газа как побочная продукция при различных химических реакциях. Чистый пропан не имеет запаха, однако в технический газ могут добавляться компоненты, обладающие сигнальным запахом. Как представитель углеводородных газов пожаро- и взрывоопасен. Малотоксичен, но оказывает вредное воздействие на центральную нервную систему (отравление, рвота, возможен летальный исход)[3][4].

Физические свойства[править | править код]

Бесцветный газ без запаха[5]. Очень мало растворим в воде. Точка кипения −42,1 °C. Точка замерзания −188 °C.
Образует с воздухом взрывоопасные смеси при концентрации паров от 1,7 до 10,9 %.
Критическая температура пропана Tкр = 370 К, критическое давление Pкр = 4,27 МПа, критический удельный объём Vкр = 0,00444 м3/кг[6] Плотность сжиженного пропана при 298 K — 0,493 т/м3. Газ легко сжижается при повышении давления.

  • Плотность газовой фазы при нормальных условиях = 2,019 кг/м3.
  • Плотность газовой фазы при температуре 15°С = 1,900 кг/м3.
  • Удельная теплота сгорания = 48 МДж/кг.

Химические свойства[править | править код]

Аналогичны свойствам других представителей ряда алканов (дегидрирование, хлорирование и т. д.)

  • Окисление
  • Галогирование
    • Хлорирование.

При термическом хлорировании пропана массовый выход 1-хлорпропан составляет — 75 %, 2-хлорпропан — 25 %

При фотохимическом хлорировании пропана массовый выход 1-хлорпропан составляет 43 %, 2-хлорпропан 57 %

    • Бромирование протекает медленнее, чем хлорирование, а значит селективно, то есть с образованием преимущественно одного продукта. Так, при фотохимическом бромировании пропана образуется преимущественно 2-бромпропан (92 %)

Применение[править | править код]

Топливо[править | править код]

Несмотря на более высокую цену, пропан во многом удобнее природного газа (метана), так как в отличие от метана сжижается при комнатной температуре и сравнительно невысоком давлении (12-15 атм), а метан при комнатной температуре не сжижается, и его приходится хранить сжатым под высоким давлением (200—250 атм), либо транспортировать в жидком виде при криогенных температурах. Поэтому баллоны для пропана значительно легче и дешевле метановых, и содержат гораздо больше газа (например, 50-литровый метановый баллон весит 55 кг и вмещает 9 кг газа, а пропановый такого же объема весит 19 кг и вмещает 22 кг газа, кроме того, баллон для метана в 3-4 раза дороже. Композитные баллоны в 2-3 раза легче, но еще в несколько раз дороже). Это делает пропан гораздо более удобным для хранения и транспортировки, поэтому пропан (или его смесь с бутаном) широко применяется для подключения переносного газового оборудования (переносные газовые плитки, газовые горелки для кровельных работ и т. д.), в качестве автомобильного топлива, а также для газификации небольших отдаленных населенных пунктов или отдельных зданий, для которых строительство газопровода природного газа экономически нецелесообразно.

Пропан товарный — жидкость, содержащая не менее 93 % пропана или пропилена, упругость паров которой при 45 °С не превышает 1,6 МПа. Содержание бутанов-бутилен допускается до 3 %, этана-этилена (до 4 %) ограничивается максимальным давлением паров. Коррозионная активность, содержание серы, влаги и плотность товарного пропана регламентируются техническими условиями на его доставку. Если пропан используется в качестве моторного топлива, то ограничивается допустимое содержание пропилена. Жидкостный остаток при −20 °С ограничивается 2 %, содержание сероводорода — 50 мг/м3 газа[7].

Пропан-бутановая смесь товарная — жидкость, содержащая этан-этилена до 4 %, пентана до 3 %, сероводорода до 50 мг м3 газа. Упругость паров при 45 °С не должна превышать упругость паров пропана (см. Пропан товарный). Температура испарения (объемная доля 95 %) должна быть равной температуре испарения бутана. Состав смеси (сжиженного газа), которая используется в качестве топлива для коммунально-бытового потребления, ограничивается упругостью пара 1,6 МПа при температуре 45 °С. При этом обеспечивается достаточная летучестью газового топлива[7].

Пропан применяется:

Баллон пропана на лёгком грузовике

  • При выполнении газопламенных работ на заводах и предприятиях:
    • в заготовительном производстве;
    • для резки металлолома;
    • для сварки неответственных металлоконструкций.
  • При кровельных работах.
  • При дорожных работах для разогрева битума и асфальта.
  • В качестве топлива для переносных электрогенераторов.
  • Для обогрева производственных помещений в строительстве.
  • Для обогрева производственных помещений (на фермах, птицефабриках, в теплицах).
  • Для газовых плит, водогрейных колонок в пищевой промышленности.
  • В быту
    • при приготовлении пищи в домашних и походных условиях;
    • для подогрева воды;
    • для сезонного обогрева отдалённых помещений — частных домов, отелей, ферм;
    • для сварки труб, теплиц, гаражей и других хозяйственных конструкций с использованием газосварочных постов.
  • В последнее время широко используется в качестве автомобильного топлива, так как дешевле бензина.

Хранится и перевозится в металлических баллонах ярко-красного цвета и полимерно-композитных баллонах (не путать с коричневыми баллонами для гелия)

Химия и пищевая промышленность[править | править код]

В химической промышленности используется для получения пропилена, сырья для производства полипропилена.

Является исходным сырьём для производства растворителей.

Используется как пропеллент.

В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944.

Хладагент[править | править код]

Смесь из осушенного чистого пропана (R-290a) (коммерческое обозначение для описания изобутаново-пропановых смесей) с изобутаном (R-600a) не разрушает озоновый слой и обладает низким коэффициентом парникового потенциала (GWP). Смесь подходит для функционального замещения устаревших хладагентов (R-12, R-22) в традиционных стационарных холодильных установках и системах кондиционирования воздуха (с обязательной сменой типа компрессорного масла).

Токсикомания[править | править код]

В 2000-е годы стало входить в моду употребление пропана в качестве наркотического средства. Главным образом дышали из баллонов для зажигалок или же из самих зажигалок .Вдыхание пропана вызывает галлюцинации, также может вызвать удушье. В России зафиксировано множество смертей, вызванных газовой токсикоманией.

Примечания[править | править код]

  1. Smith J. M., H.C. Van Ness, M.M. Abbott Introduction to Chemical Engineering Thermodynamics (англ.) // J. Chem. Educ. — American Chemical Society, 1950. — Vol. 27, Iss. 10. — P. 789. — ISSN 0021-9584; 1938-1328 — doi:10.1021/ED027P584.3
  2. 1 2 3 https://www.cdc.gov/niosh/npg/npgd0524.html
  3. ↑ ГОСТ 20448-90. Газы углеводородные сжиженные топливные для коммунально-бытового потребления
  4. ↑ Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, нбутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (Утв. главным государственным санитарным врачом РФ 30.03.2003) (недоступная ссылка)
  5. ↑ [www.xumuk.ru/encyklopedia/2/3699.html XuMuK.ru — ПРОПАН — Химическая энциклопедия]
  6. ↑ Библиографическая проработка по теме: Критическая температура
  7. 1 2 Мала гірнича енциклопедія : у 3 т. / за ред. В. С. Білецького. — Д. : Східний видавничий дім, 2004—2013.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных доменов

Источник

Читайте также:  Каким образом можно узнать свойства интересующих вас объектов информатика