Какими свойствами обладает межклеточное вещество костной ткани
Матрикс костной ткани (костный матрикс) составляет 50% сухого веса кости и включает в себя неорганическую (50%) и органическую (25%) части, а также воду (25%).
Неорганический компонент в большом количестве содержит кальций (35%) и фосфор (50%), а также другие составляющие. Минеральные соли представлены в основном аморфным фосфатом кальция и кристаллами гидроксиапатита; последние соединяются с молекулами коллагена через остеонектин.
Основу органического компонента составляют коллагены (в основном I типа – 90-95%). Также в состав матрикса входят и другие органические соединения.
Чаще всего различают два основных типа костной ткани – грубоволокнистую и пластинчатую.
Грубоволокнистая костная ткань является первичной как в филогенезе (т. е. характерна для древних групп позвоночных), так и в онтогенезе (то есть у животных филогенетически более молодых групп встречается на эмбриональных стадиях). У взрослых млекопитающих она имеется в швах костей свода черепа и в местах прикрепления сухожилий. В составе этой ткани коллагеновые волокна образуют толстые беспорядочно расположенные пучки, между которыми находится относительно большое количество остеоцитов в костных полостях (лакунах), также не имеющих упорядоченной ориентировки.
Костное вещество формирует перекладины и перегородки, которые лежат беспорядочно и интенсивно анастомозируют между собой. Каждая костная перекладина образована костными пластинками, обычно направленными параллельно друг другу и её поверхности; лишь изредка здесь встречаются короткие примитивные остеоны (см. пластинчатая костная ткань) с небольшим числом слоёв. Костные трабекулы выстланы эндостом, а питание остеоцитов, лежащих в костных пластинках, в основном осуществляется за счёт сосудов красного костного мозга.
С поверхности грубоволокнистая кость покрыта соединительнотканной оболочкой – надкостницей (периостом). В этом типе костной ткани отсутствуют кровеносные сосуды, а степень её минерализации ниже, чем пластинчатой кости (см. ниже).
Основу скелета наземных позвоночных образует более сложно устроенная и более прочная пластинчатая костная ткань (Приложение, рис. 15). Это обусловлено гораздо большими механическими нагрузками, которые она испытывает на суше под действием силы тяжести. Как следует из названия, структурной и функциональной единицей этой ткани является костная пластинка. Последняя образована параллельными пучками коллагеновых волокон, пропитанных минерализованным аморфным веществом.
В каждой пластинке ряды волокон лежат под прямым углом относительно волокон соседней, что наиболее ярко видно в остеонах (см. ниже).Это ещё более повышает прочность ткани. Остеоциты (см. ниже) могут быть замурованы внутри пластинок, но чаще располагаются между ними.
Пластинчатая костная ткань образует:
1) компактное (плотное) вещество кости, которое формирует стенку диафиза трубчатых костей, а также покрывает большую часть костей;
2) губчатое вещество (локализовано в эпифизах трубчатых костей, а также преобладает в плоских костях).
Структурно пластинчатая костная ткань (рис. 12) формирует три слоя:
1) сразу под периостом – слой наружных общих (генеральных) пластинок, в которых костные пластинки лежат параллельно поверхности кости;
2) слой остеонов и
3) слой внутренних общих (генеральных) пластинок, прилегающих к внутренней полости кости (эндосту).
Рис. 12. Схема строения трубчатой кости (пластинчатая костная ткань)
(по А. Хэму, Д. Кормаку, 1983): 1 – общая (генеральная) костная пластинка;
2 – Остеогенный слой надкостницы; 3 – фиброзный слой надкостницы;
4 – лакуны с остеоцитами; 5 – канальцы (отростки остеоцитов);
6 – компактная кость; 7 – вставочная пластинка; 8 – гаверсова система;
9 – кровеносный сосуд; 10 – выстилка эндоста; 11 – гаверсов канал;
12 — эндост; 13 – канал Фолкмана.
Остеон (гаверсова система) — структурная единица компактного вещества. Он образован кровеносным сосудом и окружающими его несколькими слоями костных пластинок (4-6 в молодом остеоне, до 10 и более – в старом). Таким образом, по осиостеона располагается центральный (гаверсов) канал, в котором и проходят один-два сосуда, нервы и сопровождающая их соединительная ткань с камбиальными клетками.
Остеоны отграничены друг от друга либо аморфным веществом костной ткани, либо вставочными пластинками. Последние образуются в результате того, что в костной ткани постоянно происходит перестройка уже сформировавшихся пластинок — на месте одних возникают новые. Таким образом, вставочные пластинки представляют собой фрагменты остеонов, существовавших ранее.
Снаружи кости покрыты надкостницей (периостом). В ней различают наружный волокнистый и внутренний клеточный слои. Наружный слой построен из плотной соединительной ткани с кровеносными сосудами. К нему прикрепляются сухожилиями мышцы и связки. Внутренний слой содержит многочисленные камбиальные клетки: стволовые и полустволовые скелетогенные клетки, остеобласты и остеокласты, непосредственно прилежащие к поверхности кости. Для более прочного прикрепления надкостницы из её внутреннего слоя в само вещество кости внедряются пучки плотных коллагеновых волокон – т. н. прободающих или шарпеевских. Они как бы «пришивают» периост к поверхности кости.
Костномозговая полость покрыта эндостом, который также состоит из соединительной ткани, содержащей остеогенные клетки.
Губчатое вещество, также как и компактное, построено из костных пластинок, но имеет другую анатомическую структуру. Представляет собой многочисленные костные перекладины (трабекулы) и тонкие перегородки между многочисленными мелкими полостями, заполненными красным костным мозгом.
Клетки костной ткани
В ходе развития костной ткани образуются два дифферона:
1) последовательность дифференцирующихся клеток собственно костной ткани: стволовая скелетогенная клетка – полустволовая клетка (преостеобласт) – остеобласт – остеоцит;
2) стволовая клетка крови – полустволовые кроветворные клетки.
В данном разделе рассмотрим клетки собственно костной ткани
Размер остеобластов – 15-20 мкм. При помощи отростков они контактируют друг с другом и остеоцитами. Это молодые клетки, создающие межклеточное вещество костной ткани. В образующейся кости они покрывают почти всю поверхность будущей кости; в сформированной же кости встречаются только в глубоких слоях надкостницы, в эндосте, в остеонах вдоль кровеносных сосудов, а также в зоне регенерации на месте травмы. Первоначально остеобласты синтезируют волокна и органический матрикс, а затем обеспечивают его минерализацию. «Замуровав» себя в межклеточном веществе, они превращаются в остеоциты.
Остеоциты – наиболее многочисленны клетки костной ткани. Они имеют отростчатую форму; их длина 22-25 мкм, ширина – 6-14 мкм. Органоидов мало, клеточного центра нет, так как клетки утратили способность к делению.
Как уже неоднократно отмечалось, остеоциты располагаются в костных полостях (лакунах), повторяющих их контуры. Во все стороны от лакун отходят слегка ветвящиеся канальцы, анастомозирующие между собой и с периваскулярными пространствами сосудов внутри кости. В этих пространствах между отростками остеоцитов и стенками канальцев содержится тканевая (лакунарно-канальцевая) жидкость, отличающаяся по химическому составу от плазмы крови или жидкостей в матриксе других тканей. Движению этой жидкости способствуют «пульсирующие» колебания остеоцитов и их отростков.
Остеоциты – единственная живая и активно функционирующая структура зрелой костной ткани. Их основная роль – стабилизация органического и минерального состава кости, обмен веществ (в том числе транспортировка ионов кальция из кости в кровь и обратно). Костная ткань, не содержащая живых остеоцитов, быстро разрушается.
Остеокласты – симпластические структуры, образованные слиянием нескольких моноцитов крови, и, таким образом, по происхождению являются макрофагальными структурами. Они имеют от трёх ядер до нескольких десятков; в диаметре достигают 90 и более мкм.
Остеокласт выделяет двуокись углерода и фермент карбоангидразу, в результате чего образуется угольная кислота; здесь же выявляется и лимонная кислота. Кислая среда способствует растворению кристаллов гидроксиапатита и вымыванию в кровь минеральных веществ кости. После чего обнажённый органический матрикс разрушается с помощью гидролитических лизосомальных ферментов. То есть функция остеокластов – разрушение межклеточного вещества, что необходимо для роста и регенерации костной ткани.
Характерной особенностью так называемой дентиноидной костной ткани, так же как и грубоволокнистой, является беспорядочное расположение волокон; в толще её межклеточного вещества отсутствуют костные клетки. У высших позвоночных единственным примером этой ткани является дентин зуба, у низших (особенно вымерших) животных дентиноидная костная ткань имеет широкое распространение в наружных, так называемых накладных костях.
КОСТЬ, плотная соединительная ткань, свойственная только позвоночным. Кость обеспечивает структурную опору организма, благодаря ей тело сохраняет свою общую форму и размеры. Местоположение некоторых костей таково, что они служат защитой для мягких тканей и органов, например мозга, и противостоят нападению хищников, неспособных разбить твердую оболочку добычи. Кости придают прочность и жесткость конечностям, а также служат местом прикрепления мышц, позволяя конечностям выполнять роль рычагов в их важной функции передвижения и поиска пищи. Наконец, благодаря высокому содержанию минеральных отложений кости оказываются резервом неорганических веществ, которые они запасают и по мере надобности расходуют; эта функция крайне важна для поддержания баланса кальция в крови и других тканях. При внезапном увеличении потребности в кальции в каких-либо органах и тканях кости могут стать источником его пополнения; так, у некоторых птиц необходимый для формирования скорлупы яиц кальций поступает из скелета.
Древность костной системы.
Кости присутствуют в скелете самых ранних из известных ископаемых позвоночных – панцирных бесчелюстных ордовикского периода (ок. 500 млн. лет назад). У этих рыбообразных существ кости служили для формирования рядов наружных пластин, защищавших тело; некоторые из них обладали, кроме того, внутренним костным скелетом головы, но иных элементов внутреннего костного скелета не имелось. Среди современных позвоночных есть группы, характеризующиеся полным или почти полным отсутствием костей. Однако для большинства из них известно наличие костного скелета в прошлом, и отсутствие костей у современных форм – следствие их редукции (утраты) в ходе эволюции. Например, у всех видов современных акул кости отсутствуют и заменены хрящом (очень небольшое количество костной ткани может быть в основании чешуй и в позвоночнике, состоящем преимущественно из хряща), но многие их предки, ныне вымершие, имели развитый костный скелет.
Первоначальная функция костей до сих пор точно не установлена. Судя по тому, что бóльшая их часть у древних позвоночных располагалась на или вблизи поверхности тела, маловероятно, что эта функция была опорной. Некоторые исследователи полагают, что изначальная функция кости заключалась в защите древнейших панцирных бесчелюстных от крупных беспозвоночных хищников, например ракоскорпионов (эвриптеридов); иными словами, наружный скелет играл роль буквально брони. Не все исследователи разделяют подобную точку зрения. Другой функцией кости у древнейших позвоночных могло быть поддержание кальциевого баланса в организме, как это наблюдается и у многих современных позвоночных.
Межклеточное костное вещество.
Большинство костей состоит из костных клеток (остеоцитов), рассеянных в плотном межклеточном костном веществе, вырабатываемым клетками. Клетки занимают лишь незначительную часть общего объема кости, а у некоторых взрослых позвоночных, особенно у рыб, они отмирают после того, как сделают свой вклад в создание межклеточного вещества, и потому отсутствуют в зрелой кости.
Межклеточное пространство кости заполнено веществом двух основных типов – органическим и минеральным. Органическая масса – результат деятельности клеток – состоит в основном из белков (включая коллагеновые волокна, образующие пучки), углеводов и липидов (жиров). В норме бóльшая часть органической составляющей костного вещества представлена коллагеном; у некоторых животных он занимает более 90% объема костного вещества. Неорганическая составляющая представлена в первую очередь фосфатом кальция. В ходе нормального костеобразования кальций и фосфаты поступают в развивающуюся костную ткань из крови и отлагаются на поверхности и в толще кости вместе с органическими компонентами, вырабатываемыми костными клетками.
Бóльшая часть наших сведений об изменениях состава кости в процессе роста и старения получена при изучении млекопитающих. У этих позвоночных абсолютное количество органической составляющей более или менее постоянно на протяжении всей жизни, тогда как минеральная (неорганическая) составляющая постепенно увеличивается с возрастом, и у взрослого организма на ее долю приходится почти 65% сухого веса всего скелета.
Физические свойства
костей хорошо соответствуют функции защиты и опоры организма. Кость должна быть прочной и жесткой и в то же время достаточно эластичной, чтобы не ломаться в обычных условиях жизнедеятельности. Эти свойства обеспечиваются межклеточным костным веществом; вклад самих костных клеток незначителен. Жесткость, т.е. способность сопротивляться сгибанию, растяжению или сжатию, обеспечивается органической составляющей, в первую очередь коллагеном; последний придает кости и эластичность – свойство, позволяющее восстановить исходную форму и длину в случае небольшой деформации (сгибания или скручивания). Неорганическая составляющая межклеточного вещества, фосфат кальция, тоже способствует жесткости кости, но главным образом придает ей твердость; если путем специальной обработки удалить из кости фосфат кальция, она сохранит свою форму, но потеряет значительную долю твердости. Твердость – важное качество кости, но, к сожалению, именно она делает кость подверженной переломам при избыточной нагрузке.
Классификация костей.
Строение костей существенно различается как у разных организмов, так и в разных частях тела одного организма. Кости можно классифицировать по их плотности. Во многих частях скелета (в частности, в эпифизах длинных костей), и особенно в скелете эмбриона, костная ткань имеет много пустот и каналов, заполненных рыхлой соединительной тканью или кровеносными сосудами, и выглядит как сеть перекладин и распорок, напоминающих конструкцию металлического моста. Кость, образованную такой костной тканью, называют губчатой. По мере роста организма значительная часть пространства, занятого рыхлой соединительной тканью и кровеносными сосудами, заполняется дополнительным костным веществом, что приводит к увеличению плотности кости. Такого рода кость с относительно редкими узкими каналами называют компактной или плотной.
Кости взрослого организма состоят из плотного, компактного вещества, расположенного по периферии, и губчатого, находящегося в центре. Соотношение этих слоев в костях разных типов различно. Так, в губчатых костях толщина компактного слоя очень невелика, и основную массу занимает губчатое вещество.
Кости можно классифицировать также по относительному количеству и расположению костных клеток в межклеточном веществе и ориентации коллагеновых пучков, которые составляют значительную часть этого вещества. В трубчатых костях пучки коллагеновых волокон пересекаются в самых разных направлениях, а костные клетки распределены по межклеточному веществу более или менее случайно. Плоские кости имеют более упорядоченную пространственную организацию: они состоят из последовательных слоев (пластинок). В различных частях отдельно взятого слоя коллагеновые волокна, как правило, ориентированы в одном направлении, но в соседних слоях оно может быть разным. В плоских костях меньше костных клеток, чем в трубчатых, и они могут находиться как внутри слоев, так и между ними. Остеоновые кости, как и плоские, имеют слоистую структуру, но их слои представляют собой концентрические кольца вокруг узких, т.н. гаверсовых каналов, по которым проходят кровеносные сосуды. Слои формируются, начиная с наружного, и их кольца, сужаясь постепенно, уменьшают диаметр канала. Гаверсов канал и окружающие его слои называются гаверсовой системой или остеоном. Остеоновые кости обычно формируются в процессе перехода губчатого вещества кости в компактное.
Поверхностные мембраны и костный мозг.
Исключая те случаи, когда близко расположенные кости соприкасаются в суставе и покрыты хрящом, наружная и внутренняя поверхности костей выстланы плотной мембраной, которая жизненно важна для функционирования и сохранности кости. Наружную мембрану называют надкостницей или периостом (от греч. peri – вокруг, osteon – кость), а внутреннюю, обращенную в костную полость, – внутренней надкостницей, или эндостом (от греч. eondon – внутри). Надкостница состоит из двух слоев: наружного волокнистого (соединительнотканного) слоя, представляющего собой не только упругую защитную оболочку, но и место прикрепления связок и сухожилий; и внутреннего слоя, обеспечивающего рост кости в толщину. Эндост имеет важное значение для восстановления кости и в известной степени сходен с внутренним слоем надкостницы; он содержит клетки, обеспечивающие как рост, так и рассасывание кости.
В глубине многих костей, особенно в костях конечностей, позвонках, ребрах и костях таза, находится костный мозг, являющийся основным источником клеток крови в организме. В эмбриональный период и сразу после рождения у многих позвоночных, в том числе у млекопитающих, костный мозг (красный) содержится практически во всех костях и очень богат кроветворными клетками. С возрастом кроветворная деятельность костного мозга снижается, и основным его компонентом становятся жировые клетки (желтый костный мозг).
Клеточные элементы и развитие кости.
В течение всей жизни животных кость постоянно обновляется. Многие кости, особенно те, что формируются на ранних этапах развития, образуются из неспециализированных мезенхимных клеток – источника всех видов соединительной ткани. В местах будущей локализации кости группы мезенхимных клеток постепенно дифференцируются, начиная активно продуцировать и выделять органическую составляющую межклеточного костного вещества; эти клетки называются остеобластами. После того как образована органическая составляющая, начинается кальцификация – отложение фосфата кальция. На более поздней стадии остеобласты превращаются в зрелые костные клетки – остеоциты. Главная функция остеоцитов – поддержание нужного уровня кальцификации ткани. Описанным образом происходит развитие т.н. первичных костей, например теменных и лобных. Формирование трубчатых и других (вторичных) костей, происходящее на более поздних этапах внутриутробного развития, протекает иначе: сначала образуется растущая хрящевая модель будущей кости, а затем по мере развития плода, равно как и после рождения ребенка, хрящ постепенно замещается костной тканью. Рассасывание костной ткани обеспечивают остеокласты – специального типа костные макрофаги, развивающиеся из моноцитов крови. Остеокласты вырабатывают ферменты, эффективно растворяющие и разрушающие костное вещество.
Перестройка кости.
Почти все кости в процессе роста животного изменяют свою форму, что достигается наращиванием кости в одном месте и разрушением в другом. Например, кости конечностей растут не только в длину, но и в ширину. Надкостница является источником остеобластов, обеспечивающих отложение костной ткани на наружной поверхности, в то время как остеокласты эндоста разрушают и рассасывают кость, тем самым расширяя костномозговую полость. Даже при отсутствии общего роста происходит постоянная перестройка костной ткани: старая костная ткань рассасывается и заменяется новой. У собак, например, каждый год заменяется до 10% костной ткани.
Перестройка кости регулярно происходит в ответ на функциональные изменения, например при нарастании кости в тех участках, где увеличивается давление за счет веса; она также играет ведущую роль при восстановлении кости после травм, в частности при переломах, когда за первичным заживлением раны следует перестройка, которая постепенно восстанавливает исходную форму кости.
Кровоснабжение
имеет решающее значение в формировании кости. Дифференцировка мезенхимных клеток в остеобласты протекает только при наличии капиллярного кровотока; лишенная капилляров мезенхима превращается в клетки, продуцирующие хрящевую ткань. В силу того что кость (в частности, остеоновая) часто откладывается вокруг кровеносных сосудов, они определяют формирование трехмерной тканевой структуры многих костей скелета.
Заболевания.
Костные заболевания могут нарушать все три основных процесса, сопровождающих рост и перестройку кости: выработку остеобластами органической основы кости; кальцификацию костной основы; рассасывание кости остеокластами. Цинга затрагивает самые разные соединительные ткани, в том числе она влияет на рост кости, нарушая выработку коллагена – органической составляющей костной ткани. Поскольку кальцификация при этом непосредственно не затрагивается, происходит избыточное известкование небольшого количества продуцируемого органического вещества. Рост кости практически полностью прекращается, она становится очень ломкой. Наоборот, при рахите (которым болеют дети) и остеомаляции (болезни взрослых) существенно нарушается кальцификация. Остеобласты продуцируют коллаген, но он не кальцифицируется из-за низкого содержания в крови растворенного фосфата кальция. Симптомы обоих заболеваний включают деформацию костей и общее размягчение костной ткани. Еще одно распространенное поражение костной ткани – остеопороз, часто возникающий у пожилых людей. При этом заболевании соотношение органической и минеральной составляющих костного вещества не меняется, но повышенная активность остеокластов приводит к тому, что рассасывание кости идет интенсивнее, чем ее формирование. Пораженная остеопорозом кость постепенно истончается и становится слабой и подверженной переломам. Эти последствия особенно часто отмечаются при остеопорозе позвоночника.