Какими свойствами обладает катушка с током

Какими свойствами обладает катушка с током thumbnail

Анонимный вопрос  ·  24 апреля 2018

10,7 K

⚡Информационный сайт «Заметки Электрика». Статьи и рекомендации по ремонту элект…  ·  asutpp.ru

Если вы сравниваете две одинаковых катушки по габаритам, количеству витков и способу намотки, то катушка с сердечником обладает значительно большей индуктивностью. С физической точки зрения это обуславливается следующим.

Если рассмотреть катушку, намотанную без сердечника или на основании, которое является магнитным диэлектриком, то протекающий по виткам электрический ток будет создавать магнитное поле внутри катушки согласно правила правой руки. Единственным проводником для электромагнитного поля, создаваемого катушкой, будет воздух, находящийся вокруг и внутри катушки. Если катушка не полая, а намотана на дерево, гетинакс или картон, соответственно, часть магнитного потока будет распространяться в них.

Если рассмотреть катушку, намотанную на сердечник, то принцип действия будет выглядеть идентично – при протекании электрического тока по виткам будет создаваться магнитный поток внутри катушки.

Но, в виду того, что витки помещены на сердечник, изготовленный из ферромагнитного материала, линиям магнитного поля будет значительно проще перемещаться в этом пространстве. Поэтому за счет наличия магнитного сердечника внутри катушки магнитное поле значительно усиливается, повышая индуктивность.

Благодаря чему можно получить более мощную катушку при тех же габаритных параметрах. Еще один вариант катушки с сердечником – это соленоид с втягиваемым сердечником. Такая катушка совершает механическую работу при протекании электрического тока по обмоткам и применяется в логических цепях.

ЕГЭ и поступление в вуз — новости и законы. Веду ютуб-канал и паблик в ВК  ·  vk.com/grandexam

Сердечник — это как правило железный стержень, вставленный в катушку для увеличения ее магнитных свойств. Катушка с током появляет магнитные свойства, катушка с сердечником и током проявляет их ещё сильнее. Катушку с сердечником называют «электромагнит»

Откуда появилось выражение «на всю катушку»?

Любительница кошек, книг и теплых пледов

На всю (полную) катушку делать что-либо — прост. До конца, предельно, полностью, вовсю делать что-либо. Есть несколько версий происхождения этого оборота:
1. Выражение вошло в современную речь из языка связистов во время Великой Отечественной войны, а затем расширило свое значение.
2. Выражение — от регулирования громкости звучания радиоаппарата: регулятор громкости по форме напоминает катушку
Еще одна версия:
3. Выражение довольно новое (в словарях В. И. Даля и Д. Н. Ушакова не упоминается) . Пришло к нам из среды рыбаков. Когда ловят рыбу на спиннинг, то выброс крючка на всю длину лески (катушка с леской полностью разматывается) означает, что рыбак делает все возможное для ловли рыбы.

Что такое электромагнит?

Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока.

Это терминология Википедии, а я могу объяснить проще. Электромагнит — это такое устройство, состоящее из железного стержня и обмотанной на нем медной проволки, когда пускают ток по такому устройству железный стержень начинает вести себя как магнит, из-за электромагнитого поля, создающегося медной обмоткой

Как влияет скорость магнита на величину эдс индукции возникающей в катушке и от чего зависит направление эдс?

Если в результате движения магнита увеличивается магнитный поток через катушку (магнит вдвигается в катушку), индукционный поток стремится компенсировать это увеличение, т.е. направлен против направления магнитного потока, созданного магнитом.

Если в результате движения магнита уменьшается магнитный поток через катушку (магнит выдвигается из катушки), индукционный поток стремится компенсировать это уменьшение, т.е. направлен по направлению магнитного потока, созданного магнитом.

Таким образом, направление индукционного тока и ЭДС зависят от знака изменения магнитного потока через катушку и всегда имеют противоположенный знак, что выражается знаком «минус» в законе электромагнитной индукции:

E = — dФ/dt.

Прочитать ещё 1 ответ

Для чего нужна катушка индуктивности в гибсон люсиль? Без неё будет работать варитон?

Образование Высшее — закончил в 2000г ВГАСУ. Слушаю рок, панк, рок как русский…

Varitone — это система переключения между конденсаторами разной электроёмкости, которые стоят в параллели звукоснимателей. Используется на гитарах GIbson ES-355, Lucille.

Конденсатор (подключенный параллельно звукоснимателю) выступает в качестве частотного фильтра, и позволяет подправить резонансную частоту звукоснимателей. А резонансная частота — одна из самых основных звуковых характеристик.

Иногда последовательно с такими регуляторами ставят катушки индуктивности для смещения пика не только в сторону низких частот, но и в сторону высоких.

По Вашему вопросу не ясно какая катушка имееется в виду — которая включена в конструкцию варитона или которая поставлена дополнительно рядом с ним.

Если катушка поставлена дополнительно, то ее можно смело убирать — изменится только звучание гитары.

А вот если Вы хотите разобрать варитон и удалить оттуда катушку, то насчет работоспособности прибора я не уверен. Хотя, если все аккуратно сделать, то возможно тоже ничего не произойдет — прибор работать будет,если все верно сделать, но также звук будет другой.

Можете более подробно почитать (и даже попытаться сделать варитон своими руками) статью «Альтернативный регулятор тона» (Автор: Павел Грязнов) на странице блога «О гитаризме и гитарных примочках».

Читайте также:  Какие свойства предельных одноатомных спиртов

Прочитать ещё 1 ответ

Источник

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку ???? То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Катушки индуктивности

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название ???? Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

Магнитное поле проводника с током

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

Магнитное поле катушки индуктивности

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

L = frac{mu_0thinspace mu S N^2}{l}

Давайте разберемся, что за величину входят в это выражение:

  • mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: mu_0 = 4 pi cdot 10^{-7}medspacefrac{Гн}{м}
  • mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет ???? Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Катушка индуктивности в цепи постоянного тока

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

varepsilon_s = -frac{dPhi}{dt}

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот  будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

Напряжение и ток катушки индуктивности

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Читайте также:  Какими физическими свойствами обладает крахмал

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

Напряжение и ток в катушке

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

varepsilon_s = -Lmedspacefrac{dI}{dt}

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Катушка индуктивности в цепи переменного тока

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Зависимость тока и ЭДС самоиндукции в катушке в цепи переменного тока

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

varepsilon_L = -Lmedspacefrac{dI}{dt}

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу ????

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: varepsilon < 0, i > 0, участок 3-4: varepsilon > 0, i < 0). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника).

А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока).

И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

X_L = wmedspace L

Где w – круговая частота: w = 2 pi f. [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный (f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

u + varepsilon_L = 0

А следовательно:

u = – varepsilon_L

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Сдвиг фаз при включении катушки индуктивности

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Читайте также:  Какое из перечисленных ниже свойств кристалла зависит от

Источник

Представление о катушке

Наибольший практический интерес представляет собой магнитное поле катушки с током. Чтобы получить катушку, надо взять изолированный проводник и намотать его на каркас. Такая катушка содержит в себе большое количество витков провода. Обратите внимание: эти провода намотаны на пластмассовый каркас и у этого провода есть два вывода (рис. 1).

Рис. 1. Катушка

Магнитное поле катушки с током

Исследованием магнитного поля катушки занимались два известных ученых: Андре-Мари Ампер и Франсуа Араго. Они выяснили, что магнитное поле катушки полностью соответствует магнитному полю постоянного магнита (рис. 2).

Рис. 2. Магнитное поле катушки и постоянного магнита

Почему магнитные линии катушки имеют такой вид

Если через прямой проводник протекает постоянный ток, вокруг него возникает магнитное поле. Направление магнитного поля можно определить по «правилу буравчика» (рис. 3).

Рис. 3. Магнтное поле проводника

Сгибаем этот проводник по спирали. Направление тока остается таким же, магнитное поле проводника так же существует вокруг проводника, поле разных участков проводника складывается. Внутри катушки магнитное поле будет сосредоточено. В итоге получим следующую картину магнитного поля катушки (рис. 4).

Рис. 4. Магнитное поле катушки

Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого проводника, можно обнаружить при помощи опилок (рис. 5). Линии магнитного поля катушки с током являются также замкнутыми.

Рис. 5. Расположение металлических опилок около катушки с током

Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой – к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса – северный и южный (рис. 6).

Рис. 6. Полюса катушки

Применение катушки с током в технике

На электрических схемах катушка обозначается следующим образом:

Рис. 7. Обозначение катушки на схемах

Катушки с током широко используют в технике в качестве магнитов. Они удобны тем, что их магнитное действие можно изменять в широких пределах.

Магнитное поле катушки велико по сравнению с магнитным полем проводника (при одинаковой силе тока).

При пропускании тока через катушку вокруг нее образуется магнитное поле. Чем больший ток протекает по катушке, тем сильнее будет магнитное поле.

Его можно фиксировать с помощью магнитной стрелки или металлической стружки.
Также магнитное поле катушки зависит от количества витков. Магнитное поле катушки с током тем сильнее, чем больше число витков в ней. То есть мы можем регулировать поле катушки, изменяя количество ее витков или электрический ток, протекающий по катушке.

Электромагнит

Но самым интересным оказалось открытие английского инженера Стёрджента. Он продемонстрировал следующее: ученый взял и надел катушку на железный сердечник. Дело все в том, что, пропуская электрический ток по виткам этих катушек, магнитное поле многократно увеличивалось – и все железные предметы, которые находились вокруг, стали притягиваться к этому устройству (рис. 8). Это устройство получило название «электромагнит».

Рис. 8. Электромагнит

Когда сообразили сделать железный крючок и присоединить его к этому устройству, получили возможность перетаскивать различные грузы. Итак, что такое электромагнит?

Определение

Электромагнит – это катушка с большим количеством витков обмотки, надетая на железный сердечник, которая обретает свойства магнита при прохождении по обмотке электрического тока.

Электромагнит на схеме обозначается как катушка, а сверху располагается горизонтальная линия (рис. 9). Эта линия обозначает железный сердечник.

Рис. 9. Обозначение электромагнита

Когда мы изучали электрические явления, то говорили, что у электрического тока есть разные свойства, в том числе магнитные. И один из экспериментов, которые мы обсуждали, был связан с тем, что мы берем проволоку, присоединенную к источнику тока, наматываем на железный гвоздь и наблюдаем, как к этому гвоздю начинают притягиваться различные железные предметы (рис. 10). Вот это и есть простейший электромагнит. И теперь мы понимаем, что простейший электромагнит нам обеспечивают протекание тока в катушке, большое количество витков и обязательно – металлический сердечник.

Рис. 10. Простейший электромагнит

Применение электромагнитов

На сегодняшний день электромагниты очень широко распространены. Электромагниты работают практически везде и всюду. Например, если нам надо перетащить достаточно большие грузы, мы используем электромагниты. И, регулируя силу тока, мы будем, соответственно, силу либо увеличивать, либо уменьшать. Еще одним примером использования электромагнитов является электрический звонок.

Открытие и закрытие дверей и тормоза некоторых транспортных средств (например, трамвая) тоже обеспечиваются электромагнитами.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Инернет-портал «interneturok.ru» (Источник)
  2. Инернет-портал «interneturok.ru» (Источник)
  3. Инернет-портал «class-fizika.narod.ru» (Источник)

Домашнее задание

  1. Что представляет собой катушка?
  2. У любой ли катушки есть магнитное поле?
  3. Опишите простейший электромагнит.

Источник