Какими свойствами обладает гидроксид железа

Какими свойствами обладает гидроксид железа thumbnail

Соединения
двухвалентного железа

I. Гидроксид
железа (II)

Образуется при действии растворов щелочей на соли
железа (II) без доступа воздуха:

FeCl2 + 2KOH = 2KCl + Fе(OH)2↓

Fe(OH)2 — слабое основание, растворимо в
сильных кислотах:

Fe(OH)2
+ H2SO4 = FeSO4 + 2H2O

Fe(OH)2
+ 2H+ =  Fe2+ + 2H2O

Дополнительный материал:

Fe(OH)2 – проявляет и слабые амфотерные
свойства, реагирует с концентрированными щелочами:

Fe(OH)2
+ 2
NaOH = Na2[Fe(OH)4].
образуется соль тетрагидроксоферрат (
II) натрия

При прокаливании Fe(OH)2 без доступа
воздуха образуется оксид железа (II) FeO — соединение черного цвета:

Fe(OH)2 
t˚C→  FeO + H2O

В присутствии кислорода воздуха белый осадок Fe(OH)2,
окисляясь, буреет – образуя гидроксид железа (III) Fe(OH)3: 

4Fe(OH)2
+ O2 + 2H2O = 4Fe(OH)3↓

Дополнительный материал:

Соединения железа (II) обладают восстановительными
свойствами, они легко превращаются в соединения железа (III) под действием  окислителей:
 

10FeSO4 + 2KMnO4
+ 8H2SO4 = 5Fe2(SO4)3 +
K2SO4 + 2MnSO4 + 8H2O

6FeSO4 + 2HNO3
+ 3H2SO4 = 3Fe2(SO4)3 +
2NO­ + 4H2O

Соединения железа склонны к комплексообразованию: 

FeCl2 + 6NH3 = [Fe(NH3)6]Cl2

Fe(CN)2 + 4KCN = K4[Fe(CN)6]
(жёлтая кровяная соль)
 

Качественная
реакция на Fe2+

 Опыт

При действии гексацианоферрата
(III) калия K3[Fe(CN)6] (красной кровяной соли)
на
растворы солей двухвалентного железа образуется синий осадок (турнбулева синь):

3Fe2+Cl2
+ 3
K3[Fe3+(CN)6] → 6KCl + 3KFe2+[Fe3+(CN)6]↓

(турнбулева синь – гексацианоферрат (III) железа (II)-калия)

Турнбуллева
синь
очень похожа по свойствам на берлинскую лазурь и тоже служила
красителем.  Названа по имени одного из основателей шотландской
фирмы  по производству красителей «Артур и Турнбуль».

Соединения трёхвалентного
железа

I. Оксид железа
(III)

Образуется при сжигании сульфидов железа, например,
при обжиге пирита:

4FeS2 + 11O2 t˚C→   2Fe2O3 + 8SO2­

или при прокаливании солей железа:

2FeSO4 
t˚C→  Fe2O3 + SO2­ + SO3­

Fe2O3 — оксид красно-коричневого цвета, в незначительной
степени проявляющий амфотерные свойства

Fe2O3
+ 6HCl  t˚C→  2FeCl3 + 3H2O

Fe2O3
+ 6H+  t˚C→  2Fe3+ + 3H2O

Fe2O3 + 2NaOH + 3H2O  t˚C→  2Na[Fe(OH)4], 
образуется соль – тетрагидроксоферрат
(
III) натрия

Fe2O3
+ 2OH- + 3H2O t˚C→   2[Fe(OH)4]-

При сплавлении с основными оксидами  или карбонатами щелочных металлов образуются
ферриты:

Fe2O3
+ Na2O t˚C→ 2NaFeO2

Fe2O3 + Na2CO3
= 2NaFeO2 + CO2

II.Гидроксид железа (III)

Образуется при действии растворов щелочей на соли
трёхвалентного железа: выпадает в виде красно–бурого осадка

Fe(NO3)3
+ 3KOH = Fe(OH)3↓ + 3KNO3

Fe3+ + 3OH- = Fe(OH)3↓

Дополнительно:

Fe(OH)3 – более слабое основание, чем
гидроксид железа (II).

Это объясняется тем, что у Fe2+ меньше
заряд иона и больше его радиус, чем у Fe3+, а поэтому, Fe2+
слабее удерживает гидроксид-ионы, т.е. Fe(OH)2 более легко
диссоциирует.

В связи с этим соли железа (II) гидролизуются
незначительно, а соли железа (III) — очень сильно.

Гидролизом объясняется и цвет растворов солей Fe(III):
несмотря на то, что ион Fe3+ почти бесцветен, содержащие его
растворы окрашены в жёлто-бурый цвет, что объясняется присутствием
гидроксоионов железа или молекул Fe(OH)3, которые образуются
благодаря гидролизу:
 

Fe3+ + H2O
↔ [Fe(OH)]2+ + H+

[Fe(OH)]2+ + H2O
↔ [Fe(OH)2]+ + H+

[Fe(OH)2]+
+ H2O ↔ Fe(OH)3 + H+
 

При нагревании окраска темнеет, а при прибавлении
кислот становится более светлой вследствие подавления гидролиза.

Fe(OH)3 обладает слабо выраженной
амфотерностью: он растворяется в разбавленных кислотах и в концентрированных
растворах щелочей:

Fe(OH)3
+ 3HCl = FeCl3 + 3H2O

Fe(OH)3
+ 3H+ = Fe3+ + 3H2O

Fe(OH)3
+ NaOH = Na[Fe(OH)4]

Fe(OH)3
+ OH- = [Fe(OH)4]-

Дополнительный материал:

Соединения железа (III) — слабые окислители, реагируют
с сильными восстановителями:
 

2Fe+3Cl3 + H2S-2 = S0↓ + 2Fe+2Cl2 + 2HCl

FeCl3 + KI = I2↓ + FeCl2 + KCl 

Качественные реакции на Fe3+

 Опыт

1)     При действии гексацианоферрата (II) калия K4[Fe(CN)6]
(жёлтой кровяной соли)
на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):

4Fe3+Cl3 + 4K4[Fe2+(CN)6]
→ 12
KCl
+ 4
KFe3+[Fe2+(CN)6]↓

(берлинская лазурь — гексацианоферрат
(
II)
железа (
III)-калия)

Берлинская
лазурь
была получена случайно в
начале 18 века в Берлине красильных дел мастером Дисбахом. Дисбах купил у
торговца необычный поташ (карбонат калия): раствор этого поташа при добавлении
солей железа получался синим. При проверке поташа оказалось, что он был прокален  с
бычьей кровью. Краска оказалась подходящей для тканей: яркой, устойчивой и
недорогой. Вскоре стал известен и рецепт получения краски: поташ сплавляли с
высушенной кровью животных и железными опилками. Выщелачиванием такого сплава
получали желтую кровяную соль. Сейчас берлинскую лазурь используют для
получения печатной краски и подкрашивания полимеров.

Установлено, что берлинская лазурь и турнбулева синь
– одно и то же вещество, так как комплексы, образующиеся в реакциях находятся между собой в равновесии:

KFeIII[FeII(CN)6]KFeII[FeIII(CN)6]

2)     При добавлении к раствору,
содержащему ионы Fe3+ роданистого калия или аммония появляется
интенсивная кроваво-красная окраска раствора роданида железа(III):

2FeCl3
+ 6KCNS = 6KCl + FeIII[FeIII(CNS)6]

Читайте также:  Свойства таких какая часть речи

(при взаимодействии же с роданидами ионов Fe2+
раствор остаётся практически бесцветным).

Тренажёры

Тренажёр №1 — Распознавание соединений, содержащих ион
Fe (2+)

Тренажёр №2 — Распознавание соединений, содержащих ион
Fe (3+)

Задания для закрепления

№1. Осуществите превращения:
FeCl2 -> Fe(OH)2 -> FeO -> FeSO4
Fe -> Fe(NO3)3 -> Fe(OH)3 -> Fe2O3->
NaFeO2

№2. Составьте уравнения реакций, при помощи которых
можно получить:
а) соли железа (II) и соли железа (III);
б) гидроксид железа (II) и гидроксид железа (III);
в) оксиды железа.

Источник

12.9. Соединения железа (III)

Степень окисления +3 характерна для железа.

Полиморфные модификации оксида железа (III)

α-форма – минерал гематит, кристаллизуется в тригональной сингонии.

γ-форма – маггемит, кристаллизуется в кубической сингонии.

δ-форма – кристаллизуется в тригональной сингонии.

Температуры фазовых переходов:

α-Fe2O3 γ-Fe2O3 δ-Fe2O3.

Оксид железа (III) Fe2O3 – вещество бурого цвета, существует в трех полиморфных модификациях.

Проявляет слабовыраженные амфотерные свойства с преобладанием основных. Легко реагирует с кислотами:

    Fe2O3 + 6HCl = 2FeCl3 + 3H2O.

С растворами щелочей не реагирует, но при сплавлении образует ферриты:

    Fe2O3 + 2NaOH = 2NaFeO2 + H2O.

Проявляет окислительные и восстановительные свойства. При нагревании восстанавливается водородом или оксидом углерода (II), проявляя окислительные свойства:

    Fe2O3 + H2 = 2FeO + H2O,

    Fe2O3 + CO = 2FeO + CO2.

В присутствии сильных окислителей в щелочной среде проявляет восстановительные свойства и окисляется до производных железа (VI):

    Fe2O3 + 3KNO3 + 4KOH = 2K2FeO4 + 3KNO2 + 2H2O.

При температуре выше 1400°С разлагается:

    6Fe2O3 = 4Fe3O4 + O2.

Получается при термическом разложении гидроксида железа (III):

    2Fe(OH)3 = Fe2O3 + 3H2O

или окислением пирита:

    4FeS2 + 11O2 = 2Fe2O3 + 8SO2.

Гидроксид железа (III) Fe(OH)3 – кристаллическое или аморфное вещество бурого цвета. Как и оксид, проявляет слабовыраженные амфотерные свойства с преобладанием основных. Легко реагирует с кислотами:

    Fe(OH)3 + 3HCl = FeCl3 + 3H2O.

Реагирует с концентрированными растворами щелочей с образованием гексагидроксоферратов (III):

    Fe(OH)3 + 3NaOH = Na3[Fe(OH)6],

при сплавлении со щелочами или щелочными реагентами образует ферриты:

    Fe(OH)3 + NaOH = NaFeO2 + 2H2O,

    2Fe(OH)3 + Na2CO3 = 2NaFeO2 + CO2 + 3H2O.

В присутствии сильных окислителей в щелочной среде проявляет восстановительные свойства и окисляется до производных железа (VI):

    2Fe(OH)3 + 3Br2 + 10KOH = 2K2FeO4 + 6NaBr + 8H2O.

При нагревании разлагается:

    Fe(OH)3 = FeO(OH) + H2O,

    2FeO(OH) = Fe2O3 + H2O.

Получается при взаимодействии солей железа (III) с растворами щелочей:

    Fe2(SO4)3 + 6NaOH = 2Fe(OH)3 + 3Na2SO4.

img src=»file:///C:%5cDOCUME%7e1%5cxbz_Nax%5cLOCALS%7e1%5cTemp%5cmsohtml1%5c01%5cclip_image001.gif» alt=»Подпись: Рис. Соли железа (III)» height=»54″ width=»210″ align=»left» hspace=»12″ v:shapes=»_x0000_s1026″ ?>Соли железа (III). Железо (III) образует соли практически со многими анионами. Обычно соли кристаллизуются в виде бурых кристаллогидратов: Fe(NO3)3·6H2O, FeCl3·6H2O, NaFe(SO4)2·12H2O (железные квасцы) и др. В растворе соли железа (III) значительно более устойчивы, чем соли железа (II). Растворы солей имеют желто-бурую окраску и, вследствие гидролиза, кислую среду:

    Fe3+ + H2O = FeOH2+ + H+.

Соли железа (III) гидролизуют в большей степени, чем соли железа (II), по этой причине соли железа (III) и слабых кислот нельзя выделить из раствора, они мгновенно гидролизуют с образованием гидроксида железа (III):

    Fe2(SO4)3 + 3Na2CO3 + 3H2O = 2Fe(OH)3 + 3CO2 + 3Na2SO4.

Проявляют все свойства солей.

Обладают преимущественно восстановительными свойствами:

    2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl.

Качественная реакция на катион Fe3+ – взаимодействие с гексацианоферратом (II) калия (желтой кровяной солью) :

    FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6]↓ + 3KCl

    Fe3+ + K+ + [Fe(CN)6]4- = KFe[Fe(CN)6]↓

в результате реакции образуется осадок синего цвета – гексацианоферрат (III) железа (II) — калия.

Кроме того, ионы Fe3+ определяют по характерному кроваво-красному окрашиванию роданида железа (III), который образуется в результате взаимодействия соли железа (III) с роданидом калия или аммония:

    FeCl3 + 3KCNS = Fe(CNS)3 + 3KCl,

    Fe3+ + 3CNS- = Fe(CNS)3.

Источник

Ãèäðîêñèäû – ýòî õèìè÷åñêèå ñîåäèíåíèÿ, ñîñòîÿùèå èç àòîìà ìåòàëëà è ãèäðîêñèëüíîé ãðóïïû (ÎÍ). Íàïðèìåð, ãèäðîêñèä íàòðèÿ – NaOH, ãèäðîêñèä êàëüöèÿ – Ca(OH)2, ãèäðîêñèä áàðèÿ – Ba(OH)2 è ò.ä.

Ïîëó÷åíèå ãèäðîêñèäîâ.

1. Ðåàêöèÿ îáìåíà:

CaSO4 + 2NaOH = Ca(OH)2 + Na2SO4,

2. Ýëåêòðîëèç âîäíûõ ðàñòâîðîâ ñîëåé:

2KCl + 2H2O = 2KOH + H2 ↑+ Cl2↑,

3. Âçàèìîäåéñòâèå ùåëî÷íûõ è ùåëî÷íî-çåìåëüíûõ ìåòàëëîâ èëè èõ îêñèäîâ ñ âîäîé:

Ê + 2H2O = 2KOH + H2 ↑,

Õèìè÷åñêèå ñâîéñòâà ãèäðîêñèäîâ.

1. Ãèäðîêñèäû èìåþò ùåëî÷íîé õàðàêòåð ñðåäû.

2. Ãèäðîêñèäû ðàñòâîðÿþòñÿ â âîäå (ùåëî÷è) è áûâàþò íåðàñòâîðèìûìè. Íàïðèìåð, KOH – ðàñòâîðÿåòñÿ â âîäå, à Ca(OH)2 – ìàëîðàñòâîðèì, èìååò ðàñòâîð áåëîãî öâåòà. Ìåòàëëû 1-îé ãðóïïû ïåðèîäè÷åñêîé òàáëèöû Ä.È. Ìåíäåëååâà äàþò ðàñòâîðèìûå îñíîâàíèÿ (ãèäðîêñèäû).

3. Ãèäðîêñèäû ðàçëàãàþòñÿ ïðè íàãðåâå:

Cu(OH)2=CuO + H2O.

4. Ùåëî÷è ðåàãèðóþò ñ êèñëîòíûìè è àìôîòåðíûìè îêñèäàìè:

2KOH + CO2 = K2CO3 + H2O.

5. Ùåëî÷è ìîãóò ðåàãèðîâàòü ñ íåêîòîðûìè íåìåòàëëàìè ïðè ðàçëè÷íûõ òåìïåðàòóðàõ ïî-ðàçíîìó:

NaOH + Cl2 = NaCl + NaOCl + H2O (õîëîä),

NaOH + 3Cl2 = 5NaCl + NaClO3 + 3H2O (íàãðåâ).

6. Âçàèìîäåéñòâóþò ñ êèñëîòàìè:

KOH + HNO3 = KNO3 + H2O.

  

Êàëüêóëÿòîðû ïî õèìèè

Õèìèÿ îíëàéí íà íàøåì ñàéòå äëÿ ðåøåíèÿ çàäà÷ è óðàâíåíèé.
Êàëüêóëÿòîðû ïî õèìèè
Читайте также:  Какими свойствами обладают газы кратко
  

Ñîåäèíåíèÿ õèìè÷åñêèõ ýëåìåíòîâ

Àëêàíû, âîäà, ãàëîãåíû, ìûëà, æèðû, ãèäðîêñèäû; îêñèäû, õëîðèäû, ïðîèçâîäíûå õèìè÷åñêèõ ýëåìåíòîâ òàáëèöû Ìåíäåëååâà
Ñîåäèíåíèÿ õèìè÷åñêèõ ýëåìåíòîâ
  

Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó õèìèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Õëîðèäû ìåòàëëîâ.

Õëîðèä ìåòàëëî⠖ ýòî ïðîèçâîäíîå îò õëîðîâîäîðîäíîé êèñëîòû è àòîìîì ìåòàëëà.
Õëîðèäû ìåòàëëîâ.
  

Ôòîðîâîäîðîä.

Ôòîðîâîäîðîä – ýòî êèñëîòà ñðåäíåé ñèëû HF .
Ôòîðîâîäîðîä.

Источник

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Основания – сложные вещества, которые состоят из катиона металла Ме+ (или металлоподобного катиона, например, иона аммония NH4+) и гидроксид-аниона ОН—.

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания. Также есть неустойчивые основания, которые самопроизвольно разлагаются.

Какими свойствами обладает гидроксид железа

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например, оксид натрия в воде образует гидроксид натрия (едкий натр):

Na2O + H2O → 2NaOH

При этом оксид меди (II)  с водой не реагирует:

CuO + H2O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий), кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например, калий реагирует с водой очень бурно:

2K0 + 2H2+O →  2K+OH + H20

Какими свойствами обладает гидроксид железа

Какими свойствами обладает гидроксид железа

3. Электролиз растворов некоторых солей щелочных металлов. Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2↑ + Cl2↑

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

щелочь + соль1 = соль2↓ + щелочь

либо

щелочь + соль1 = соль2↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):

CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl

Какими свойствами обладает гидроксид железа

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами  (и некоторыми средними кислотами). При этом образуются соль и вода.

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например, гидроксид меди (II) взаимодействует с сильной соляной кислотой:

 Cu(OH)2 + 2HCl = CuCl2 + 2H2O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH)2 + CO2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например, гидроксид железа (III) разлагается на оксид железа (III)  и воду при прокаливании:

2Fe(OH)3 = Fe2O3 + 3H2O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид  ≠

нерастворимое основание + амфотерный гидроксид  ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например, гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe+2(OH)2 + O20 + 2H2O → 4Fe+3(O-2H)3

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации. Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при  мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H3PO4  → NaH2PO4 + H2O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H3PO4 → Na2HPO4 + 2H2O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H3PO4 → Na3PO4 + 3H2O

Какими свойствами обладает гидроксид железа

Какими свойствами обладает гидроксид железа

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли, а в растворе – комплексные соли.

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Читайте также:  Какими основными свойствами обладает нервная ткань

Например, при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH)3 = NaAlO2 + 2H2O

А в растворе образуется комплексная соль:

NaOH + Al(OH)3 = Na[Al(OH)4]

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

Какими свойствами обладает гидроксид железа

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь(избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид(избыток) = кислая соль

Например, при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO2 = Na2CO3 + H2O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO2 = NaHCO3 

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе, при условии, что в продуктах образуется газ или  осадок. Такие реакции протекают по механизму ионного обмена.

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например, гидроксид натрия взаимодействует с сульфатом меди в растворе:

Cu2+SO42- + 2Na+OH— = Cu2+(OH)2—↓ + Na2+SO42-

Также щёлочи взаимодействуют с растворами солей аммония.

Например, гидроксид калия взаимодействует с раствором нитрата аммония:

NH4+NO3— + K+OH— = K+NO3— + NH3↑ + H2O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид, взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла.

Например, избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO4 + 2KOH = Zn(OH)2↓ + K2SO4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей. Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO4 + 4KOH = K2[Zn(OH)4] + K2SO4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь(избыток) = комплексная соль + соль

Какими свойствами обладает гидроксид железа

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например, гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO3 + KOH = K2SO3 + H2O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например, железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H2+O = 2Na[Al+3(OH)4] + 3H20

Какими свойствами обладает гидроксид железа

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2 ≠

NaOH +N2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например, хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl20 = NaCl— + NaOCl+ + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl20 = 5NaCl— + NaCl+5O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например, в растворе:

2NaOH + Si0 + H2+O=  Na2Si+4O3 + 2H20

Фтор окисляет щёлочи:

2F20 + 4NaO-2H = O20 + 4NaF— + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

Какими свойствами обладает гидроксид железа

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li2O + H2O

Источник