Какими свойствами обладает гидроксид цинка
Гидроксид цинка, характеристика, свойства и получение, химические реакции.
Гидроксид цинка – неорганическое вещество, имеет химическую формулу Zn(OH)2.
Краткая характеристика гидроксида цинка
Физические свойства гидроксида цинка
Получение гидроксида цинка
Химические свойства гидроксида цинка
Химические реакции гидроксида цинка
Применение и использование гидроксида цинка
Краткая характеристика гидроксида цинка:
Гидроксид цинка – неорганическое вещество белого цвета.
Химическая формула гидроксида цинка Zn(OH)2.
Практически нерастворим в воде.
Является аморфным веществом.
В природе встречается в виде редких минералов, например, ашоверита и суитита.
Физические свойства гидроксида цинка:
Наименование параметра: | Значение: |
Химическая формула | Zn(OH)2 |
Синонимы и названия иностранном языке | zinc hydroxide (англ.) |
Тип вещества | неорганическое |
Внешний вид | бесцветные тригональные кристаллы |
Цвет | белый, бесцветный |
Вкус | —* |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 3053 |
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 | 3,053 |
Температура разложения, °C | 125 |
Молярная масса, г/моль | 99,38474 |
Растворимость в воде, г/100 мл | 0,000199 |
* Примечание:
— нет данных.
Получение гидроксида цинка:
Гидроксид цинка получают в результате следующих химических реакций:
- 1. взаимодействия растворимых солей цинка с щелочью:
ZnSO4 + 2NaOH → Zn(OH)2 + Na2SO4,
Zn(NO3)2 + 2KOH → Zn(OH)2 + 2KNO3,
ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl,
Zn(NO3)2 + 2NaOH → Zn(OH)2 + 2NaNO3,
ZnI2 + 2NaOH → Zn(OH)2 + 2NaI.
При этом гидроксид цинка выпадает в виде осадка.
- 2. взаимодействия цинка, воды и кислорода:
2Zn + 2H2O + O2 → 2Zn(OH)2.
Реакция протекает медленно при комнатной температуре.
Химические свойства гидроксида цинка. Химические реакции гидроксида цинка:
Гидроксид цинка является амфотерным основанием, т. е. обладает как основными, так и кислотными свойствами.
Гидроксид цинка – слабое нерастворимое основание.
Химические свойства гидроксида цинка аналогичны свойствам гидроксидов других амфотерных металлов. Поэтому для него характерны следующие химические реакции:
1. реакция гидроксида цинка и гидроксида натрия:
Zn(OH)2 + 2NaOH → Na2[Zn(OH)4].
В результате реакции образуется тетрагидроксоцинкат натрия. В ходе реакции используется концентрированный раствор гидроксида натрия.
2. реакция гидроксида цинка и гидроксида калия:
Zn(OH)2 + 2KOH → K2[Zn(OH)4].
В результате реакции образуется тетрагидроксоцинкат натрия.
3. реакция гидроксида цинка и ортофосфорной кислоты:
3Zn(OH)2 + 2H3PO4 → Zn3(PO4)2 + 6H2O.
В результате реакции образуются ортофосфат цинка и вода.
4. реакция гидроксида цинка и азотной кислоты:
Zn(OH)2 + 2HNO3 → Zn(NO3)2 + 2H2O.
В результате реакции образуются нитрат цинка и вода.
Аналогично проходят реакции гидроксида цинка и с другими кислотами.
5. реакция гидроксида цинка и йодоводорода:
Zn(OH)2 + 2HI → ZnI2 + 2H2O.
В результате реакции образуются йодид цинка и вода.
6. реакция гидроксида цинка и оксида углерода:
2Zn(OH)2 + CO2 → Zn2(OH)2CO3 + H2O.
В результате реакции образуется дигидроксид-карбонат цинка и вода. В ходе реакции гидроксид цинка используется в виде суспензии.
7. реакция термического разложения гидроксида цинка:
Zn(OH)2 → ZnO + H2O (t = 100-250 °C).
В результате реакции образуются оксид цинка и вода.
Применение и использование гидроксида цинка:
Гидроксид цинка используется для синтеза различных соединений цинка, в основном, солей.
Примечание: © Фото //www.pexels.com, //pixabay.com
карта сайта
гидроксид цинка реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения реакции масса взаимодействие гидроксида цинка
Коэффициент востребованности
3 693
Гидроксид цинка, характеристика, свойства и получение, химические реакции.
Гидроксид цинка – неорганическое вещество, имеет химическую формулу Zn(OH)2.
Краткая характеристика гидроксида цинка
Физические свойства гидроксида цинка
Получение гидроксида цинка
Химические свойства гидроксида цинка
Химические реакции гидроксида цинка
Применение и использование гидроксида цинка
Краткая характеристика гидроксида цинка:
Гидроксид цинка – неорганическое вещество белого цвета.
Химическая формула гидроксида цинка Zn(OH)2.
Практически нерастворим в воде.
Является аморфным веществом.
В природе встречается в виде редких минералов, например, ашоверита и суитита.
Физические свойства гидроксида цинка:
Наименование параметра: | Значение: |
Химическая формула | Zn(OH)2 |
Синонимы и названия иностранном языке | zinc hydroxide (англ.) |
Тип вещества | неорганическое |
Внешний вид | бесцветные тригональные кристаллы |
Цвет | белый, бесцветный |
Вкус | —* |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 3053 |
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 | 3,053 |
Температура разложения, °C | 125 |
Молярная масса, г/моль | 99,38474 |
Растворимость в воде, г/100 мл | 0,000199 |
* Примечание:
— нет данных.
Получение гидроксида цинка:
Гидроксид цинка получают в результате следующих химических реакций:
- 1. взаимодействия растворимых солей цинка с щелочью:
ZnSO4 + 2NaOH → Zn(OH)2 + Na2SO4,
Zn(NO3)2 + 2KOH → Zn(OH)2 + 2KNO3,
ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl,
Zn(NO3)2 + 2NaOH → Zn(OH)2 + 2NaNO3,
ZnI2 + 2NaOH → Zn(OH)2 + 2NaI.
При этом гидроксид цинка выпадает в виде осадка.
- 2. взаимодействия цинка, воды и кислорода:
2Zn + 2H2O + O2 → 2Zn(OH)2.
Реакция протекает медленно при комнатной температуре.
Химические свойства гидроксида цинка. Химические реакции гидроксида цинка:
Гидроксид цинка является амфотерным основанием, т. е. обладает как основными, так и кислотными свойствами.
Гидроксид цинка – слабое нерастворимое основание.
Химические свойства гидроксида цинка аналогичны свойствам гидроксидов других амфотерных металлов. Поэтому для него характерны следующие химические реакции:
1. реакция гидроксида цинка и гидроксида натрия:
Zn(OH)2 + 2NaOH → Na2[Zn(OH)4].
В результате реакции образуется тетрагидроксоцинкат натрия. В ходе реакции используется концентрированный раствор гидроксида натрия.
2. реакция гидроксида цинка и гидроксида калия:
Zn(OH)2 + 2KOH → K2[Zn(OH)4].
В результате реакции образуется тетрагидроксоцинкат натрия.
3. реакция гидроксида цинка и ортофосфорной кислоты:
3Zn(OH)2 + 2H3PO4 → Zn3(PO4)2 + 6H2O.
В результате реакции образуются ортофосфат цинка и вода.
4. реакция гидроксида цинка и азотной кислоты:
Zn(OH)2 + 2HNO3 → Zn(NO3)2 + 2H2O.
В результате реакции образуются нитрат цинка и вода.
Аналогично проходят реакции гидроксида цинка и с другими кислотами.
5. реакция гидроксида цинка и йодоводорода:
Zn(OH)2 + 2HI → ZnI2 + 2H2O.
В результате реакции образуются йодид цинка и вода.
6. реакция гидроксида цинка и оксида углерода:
2Zn(OH)2 + CO2 → Zn2(OH)2CO3 + H2O.
В результате реакции образуется дигидроксид-карбонат цинка и вода. В ходе реакции гидроксид цинка используется в виде суспензии.
7. реакция термического разложения гидроксида цинка:
Zn(OH)2 → ZnO + H2O (t = 100-250 °C).
В результате реакции образуются оксид цинка и вода.
Применение и использование гидроксида цинка:
Гидроксид цинка используется для синтеза различных соединений цинка, в основном, солей.
Примечание: © Фото //www.pexels.com, //pixabay.com
карта сайта
гидроксид цинка реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения реакции масса взаимодействие гидроксида цинка
Коэффициент востребованности 3
comments powered by HyperComments
Ссылка на источник
Ни для кого не секрет, что цинк и гидроксид цинка широко применяются современными учеными. А спектр их использования напрямую зависит от физических и химических свойств.
Интересно, что сплав цинка с медью использовался еще древними египтянами, а после и в Римской империи. Но вот цинк в чистом виде выделить не получалось в течении многих лет. Лишь в 1746 году А. Маргграфф впервые получил этот металл в чистом виде. В семнадцатом веке выплавка цинка уже осуществлялась в промышленных масштабах.
Цинк: химические свойства и краткое описание
Цинк представляет собой металл средней твердости. Интересно, что при низких температурах он довольно хрупок. А вот при температуре от 100 до 150 градусов по Цельсию металл становиться пластичным — из него изготовляют листы или даже фольгу с толщиной гораздо меньше миллиметра.
С химической точки зрения цинк представляет собой атом со степенью окисления +2. Это достаточно активный металл, который участвует в реакциях в качестве восстановителя. Интересно, что на воздухе, при температуре до 100 градусов, цинк быстро тускнеет, его поверхность покрывается тонкой пленкой карбонатов. Если же воздух влажный и содержит в себе большое количество углекислого газа, то металл быстро разрушается.
Цинк сгорает голубым пламенем при наличии кислорода или во время нагревания — в таких случаях процесс горения сопровождается образованием белого дыма (это оксид металла).
Цинк вступает в реакции как с простыми элементами, так и кислотами и некоторыми основаниями, образовывая соли и гидроксид цинка соответственно.
На сегодняшний день известно примерно 66 минералов, которые содержат в себе цинк — именно они и являются основным источником промышленного получения металла. В качестве примера можно привести каламиты, цинкиты, виллемит, франк-линит и смитсонит.
Гидроскид цинка: физические и химические свойства
Цинк (II) гидроксид также имеет большое значение, так как используется в разных отраслях химической промышленности. При нормальных условиях это вещество представляет собой бесцветные небольшие кристаллы, которые практически не растворяются в воде. Формула гидроксида следующая:
Zn (OH)2
Стоит отметить и то, что это вещество обладает сравнительно сильными амфотерными свойствами. Гидроксид цинка активнее реагирует с кислотами, вступая в реакцию нейтрализации и образовывая при этом соли и воду. Например:
Zn (OH)2 + H2SO4 = ZnSO4 +2 H2O
Тем не менее, гидроксид цинка реагирует и с щелочами, образовывая комплексные соли и воду. К примеру:
Zn(OH)2 + 2NaOH = Na2ZnO2 + 2H2O
Стоит отметить, что при нагревании вещество распадается с образованием оксида и воды:
Zn(OH)2 = ZnO + H2O
Что же касается области применения, то гидроксид используется в химической промышленности для получения различных соединений цинка, в частности, его солей.
Цинк и его применение
Ни для кого не секрет, что цинк широко используется в качестве антикоррозийного вещества, которым покрывают сталь и железо. Кроме того, огромное количество добытого металла используется дл производства латуней и бронзы.
Интересно, что в сухих батареях цинк используется в качестве анода, а также выполняет роль контейнера. Кроме того, это металл используется во время отделения благородных металлов (например, золота) от свинца. Некоторые соединения цинка считаются распространенными полупроводниковыми материалами.
Цинк в живом организме
На самом деле трудно переоценить роль цинка в жизнедеятельности любого живого организма, включая и человека. Несмотря на довольно низкое содержание, он входит в состав важных ферментов, участвует в процессе белкового синтеза, клеточного дыхания и т.д. Цинк также отвечает за развитие скелета плода. Доказано, что при недостаточном количестве этого минерала возможна задержка полового развития и появление карликовости.
Цинк – элемент IIБ подгруппы четвертого периода. Цинк относится к семейству d-элементов, поскольку электронное строение цинка отражается конфигурацией (см.рис. справа).
Конфигурация $d^{10}$ является устойчивой, и в образовании химической связи участвуют лишь внешние электроны $4s$-подуровня, поэтому характерная степень окисления цинка- (+2).
Нахождение в природе
В природе встречается только в виде соединений, важнейшим из которых является цинковая обманка. Основной компонент цинковой обманки — сульфид цинка ZnS, а разнообразные примеси придают этому веществу всевозможные цвета. Видимо, за это минерал и называют обманкой. Цинковую обманку считают первичным минералом, из которого образовались другие минералы цинка:
смитсонит (цинковый шпат) $ZnCO3$;
цинкит $ZnO$;
каламин $2ZnO cdot SiO_2 cdot Н_2O$.
Получение цинка
Выделение цинка начинается с концентрирования руды методами седиментации (осаждение) или флотации (прилипание к пузырькам воздуха и всплывание в виде пены), затем ее обжигают до образования оксидов:
$2ZnS + 3O_2 = 2ZnO + 2SO_2$
Оксид цинка перерабатывают электролитическим методом или восстанавливают коксом. В первом случае цинк выщелачивают из сырого оксида разбавленным раствором серной кислоты, примесь кадмия осаждают цинковой пылью и раствор сульфата цинка подвергают электролизу. Металл 99,95%-ной чистоты осаждается на алюминиевых катодах.
Физические свойства
В чистом виде — довольно пластичный серебристо-белый металл. При комнатной температуре хрупок, при сгибании пластинки слышен треск от трения кристаллитов (обычно сильнее, чем «крик олова»). При 100-150 °C цинк пластичен. Примеси, даже незначительные, резко увеличивают хрупкость цинка. Температура плавления — 692°C, температура кипения — 1180°C
Химические свойства
Цинк — химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства. Так же как и хром, используется для нанесения антикоррозионных покрытий («цинкование» кузова автомобиля).
1.Взаимодействие с неметаллами
При сильном нагревании на воздухе сгорает ярким голубоватым пламенем с образованием оксида цинка:
$2Zn + O_2 xrightarrow[]{t, ^circ C} 2ZnO$
При поджигании энергично реагирует с серой:
$Zn + S = ZnS$
С галогенами реагирует при обычных условиях в присутствии паров воды в качестве катализатора:
$Zn + Cl_2 xrightarrow[]{H_2O} ZnCl_2$
При действии паров фосфора на цинк образуются фосфиды:
$3Zn + 2P = Zn_3P_2$
С водородом, азотом, бором, кремнием, углеродом цинк не взаимодействует.
2. Взаимодействие с водой
Реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:
$Zn + H_2O xrightarrow[]{t, ^circ C} ZnO + H_2uparrow$
3. Взаимодействие с кислотами
В электрохимическом ряду напряжений металлов цинк находится до водорода и вытесняет его из неокисляющих кислот:
$Zn + 2HCl = ZnCl_2 + H_2uparrow$
$Zn + H_2SO_4 = ZnSO_4 + H_2uparrow$
Взаимодействует с разбавленной азотной кислотой, образуя нитрат цинка и нитрат аммония (или азот $N_2$ или веселящий газ$N_2O$ в зависимости от концентрации кислоты):
$4Zn + 10HNO_{3textrm{ (разб., гор.)}}= 4Zn(NO_3)_2 + N_2Ouparrow + 5H_2O$
$4Zn + 10HNO_{3textrm{ (оч.разб., гор.)}} = 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$
Реагирует с концентрированными серной и азотной кислотами с образованием соли цинка и продуктов восстановления кислот:
$Zn + 2H2SO_{4textrm{ (конц.)}} = ZnSO_4 + SO_2uparrow + 2H_2O$
$Zn + 4HNO_{4textrm{ (конц.)}} = Zn(NO_3)_2 + 2NO_2uparrow + 2H_2O$
4. Взаимодействие со щелочами
Реагирует с растворами щелочей с образованием растворимых гидроксокомплексов:
$Zn + 2NaOH + 2H_2O = Na_2[Zn(OH)_4] + H_2$
при сплавлении образует цинкаты:
$Zn + 2KOH = K_2ZnO_2 + H_2$
5. Взаимодействие с оксидами и солями
Цинк вытесняет металлы, стоящие в ряду напряжения правее него, из растворов солей и оксидов:
$Zn + CuSO_4 = Cu + ZnSO_4$
$Zn + CuO = Cu + ZnO$
6. Взаимодействие с аммиаком
С газообразным аммиаком при высокой температуре образует нитрид цинка:
$3Zn + 2NH_{3 textrm{(г.)}} xrightarrow[]{550-600 ^circ C} Zn_3N_2 + 3H_2$
В водном растворе аммиака цинк растворяется с образованием гидроксида тетраамминцинка:
$Zn + 4NH_3 + 2H_2O = [Zn(NH_3)_4](OH)_2 + H_2$
Соединения цинка
Оксид цинка (II)
Оксид цинка (II) ZnO – белые кристаллы, при нагревании приобретают желтую окраску.
При температуре выше $1000^0C$ восстанавливается до металлического цинка типичными восстановителями (углеродом, угарным газом и водородом):
$ZnO + C = Zn + CO$
$ZnO + CO = Zn + CO_2$
$ZnO + H_2 = Zn + H_2O$
С водой не взаимодействует. Проявляет амфотерные свойства, реагирует с растворами кислот и щелочей:
$ZnO + 2HCl = ZnCl_2 + H2O$
$ZnO + 2NaOH + H_2O = Na_2[Zn(OH)_4]$
При сплавлении с щелочами (и основными окисдами) образует цинкаты:
$ZnO + 2NaOH xrightarrow[]{t, ^circ C} Na_2ZnO_2$
$ZnO + CaO = CaZnO_2$
При взаимодействии с оксидами неметаллов образует соли, где является катионом:
$2ZnO + SiO2 = Zn_2SiO_4$
$ZnO + B_2O_3 = Zn(BO_2)_2$
Гидроксид цинка (II)
Гидроксид цинка $Zn(OH)_2$ — бесцветное кристаллическое или аморфное вещество, существует в пяти полиморфных модификациях, нерастворимо в воде. Получают взаимодействием солей цинка с растворами щелочей: при этом гидроксид цинка выпадает в виде желеообразного белого осадка.
При температуре выше $125^0C$ разлагается:
$Zn(OH)_2 = ZnO + H_2O$
Гидроксид цинка проявляет амфотерные свойства, легко растворяется в кислотах и щелочах:
$Zn(OH)_2 + H_2SO_4 = ZnSO_4 + 2H_2O$
$Zn(OH)_2 + 2NaOH = Na_2[Zn(OH)_4]$
также легко растворяется в водном растворе аммиака с образованием гидроксида тетраамминцинка:
$Zn(OH)_2 + 4NH_3 = [Zn(NH_3)_4](OH)_2$
Побочная подгруппа — цинк, кадмий, ртуть, так же как и подгруппа меди, — редко отличается по своей комплексообразующей способности от главной подгруппы. В принципе комплексообразующая способность у этих элементов возрастает от цинка к ртути, но вследствие значительного различия в их химических свойствах цинк образует более прочные комплексные соединения. Гидроксид цинка обладает амфотерными свойствами, и поэтому он дает устойчивые гидроксосоли, например [c.393]
Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]
Амфотерные свойства проявляют гидроксиды таких металлов, как цинк, хром, свинец и олово, а также упоминавшийся выше алюминий. Можно считать, что амфотерное поведение оксида или гидроксида элемента обусловливается таким значением ионного потенциала центрального атома X в системе X — О — Н, которое допускает приблизительно одинаково легкий разрыв связей X —О и О —Н. Поэтому амфотерными оказываются гидроксиды элементов, имеющих ионный потенциал в пределах от 3,5 до 9,5. Отклонения от этого правила возникают в тех случаях, когда элементы имеют более сложные электронные конфигурации внешних оболочек. Так, например, было бы опрометчиво сравнивать, амфотерные свойства гидроксида алюминия со свойствами гидроксида цинка, поскольку АР имеет 8-элек-тронный остов, тогда как цинк обладает 18-элек-тронным остовом. [c.253]
Гидроксиды щелочных металлов проявляют все характерные свойства оснований они взаимодействуют С кислотными и амфотерными оксидами, амфотерными гидроксидами, кислотами, солями. В водных растворах щелочей растворяются некоторые металлы, образующие амфотерные гидроксиды (бериллий, алюминий, цинк, олово и др.), например [c.247]
Из приведенных примеров видно, что цинк (как и алюминий) обладает двойственной природой, а его оксид и гидроксид — амфотерными свойствами. [c.108]
Цинк, алюминий и некоторые другие металлы, обладающие амфотерными свойствами, могут содержаться в виде анионов в щелочных сточных водах. Для их удаления используют растворы кислот. При этом образуются осадки гидроксидов этих металлов согласно следующим уравнениям [c.130]
Взаимодействие растворов щелочных силикатов с растворимыми солями других поливалентных металлов, таких как цинк, кадмий, медь, никель, железо, марганец, свинец и другие, во многом протекает аналогично взаимодействию с солями щелочноземельных металлов. Образование студенистых осадков малорастворимых гидроксидов металлов происходит еще более легко и также способствует созданию мембран на границах смешиваемых фаз. Образование кристаллических продуктов тоже маловероятно ввиду полимерности не только анионов, но и катионов. Редкое исключение составляет относительно легко кристаллизующийся силикат меди, образующийся при взаимодействии щелочных силикатов с растворами сульфата или хлорида меди. В местах контакта фаз pH резко изменяется, так как ионы гидроксила поглощаются катионами поливалентного металла, что способствует полимеризации кремнезема. Поверхность студенистых осадков более развита и склонность к адсорбции и соосаждению различных ионов больше. Продукты взаимодействия представляют собой смесь гидроксидов, силикатов и основных солей в аморфном состоянии, причем соотношение между ними определяется теми же условиями проведения реакции. Оксиды цинка и свинца, в том числе сурик РЬз04, осаждают кремнезем из растворов жидких стекол, причем их активность зависит от температурной обработки, которой они подвергались. Хорошо сформированные состарившиеся окислы большинства тяжелых металлов практически инертны в щелочных силикатных системах. С высшими окислами молибдена и вольфрама, находя-, щимися в ионной форме молибдатов и вольфраматов, в кислых средах мономерный кремнезем образует гетерополикислоты. Полимерные и коллоидные формы кремнезема взаимодействуют с молибденовой кислотой медленней по мере образования мономерных форм, на этом основано условное деление общего содержания кремнезема в жидких силикатных системах на растворимый (а-5102) и коллоидный. Хроматы и бихроматы осаждают кремнезем из растворов щелочных силикатов, при этом отмечается появление полезных технических свойств осажденных форм. [c.62]
Цинк и кадмий и их соединения по свойствам сходны. В соответствии с ростом радиуса иона гидроксид d(OH)j-более сильное основание, чем Zfl(OH)2. [c.563]
Цинк и кадмий близки друг другу, в то же время ртуть заметно отличается от них как по своему агрегатному состоянию, так и но химическому поведению. Например, она образует ион Ндз, где формально ее степень окисления +1 имеет аномально высокий потенциал ионизации и отличается от цинка и кадмия положительным значением нормального окислительно-восстановительного потенциала, Цинк и кадмий вытесняют водород из разбавленных кислот, а ртуть нет. Радиусы атомов в подгруппе незначительно возрастают от цинка к ртути, а радиусы ионов увеличиваются довольно резко. Соответствеино этому увеличивается доля ковалентной составляющей в связи с электроотрицательными элементами и падает растворимость оксидов и сульфидов. Гидроксид цинка 2п(ОН)2 амфотерен, Сс1(0Н) проявляет более основные свойства, а Н (0Н)2 — соединение неустойчивое и представляет собой слабое основание. Аномалии в свойствах ртути объясняются так называемым эффектом инертной пары . Известно, что Л5 -электроны способны проникать к ядру сквозь экран из предшествующих электронов. Поэтому б5-электронная пара, несмотря на то, что расположена после полностью занятых 4/ — и 5й °-подуровней, очень З стойчи-ва к воздействиям. Этот эффект сказывается далее по периоду на свойствах таллия, свинца, висмута. Вероятно поэтому ртуть относится к благородным металлам, не вытесняющим водород из кислот. [c.300]
Разделение смеси катионов на ионитных колонках может быть осуществлено при наличии в растворе соединений, обладающих амфотерными свойствами, и не обладающих ими. Раствор, содержащий такую смесь, пропускают через катионит в Н-форме, затем промывают колонку раствором щелочи. При этом катионы неамфотерных соединений образуют со щелочью гидроксиды, осаждающиеся на зернах смолы, а катионы амфотерных соединений образуют в избытке щелочи анионы и проходят в фильтрат. Так можно отделить алюминий, цинк, молибден, сурьму, вольфрам от железа, меди и др. [c.144]
Усиление комплексообразующих свойств соединений за счет включения в орто-положение к хелатообразующему центру карбоксильной группы расширило область существования устойчивых комплексов в сторону высоких значений pH и обеспечило высокую маскирующую способность комплексонов 2 3 19—23 21 Выпадение гидроксидов ряда металлов в присутствии этих комплексонов наблюдается лишь прн высоких значениях pH [73] Например, гидроксиды кобальта(П) и меди(П) в присутствии комплексонов 2.3.19— 23 21 выпадают при рН>11. гидроксид магния — при рН>14 Отмечена селективность маскирования некоторых катионов, так. в присутствии комплексонов 2 3 19 и 2 3 20 медь и кобальт маскируются в отличие от никеля, выпадающего при pH=6—8 в виде малорастворимого комплексоната, кадмий и цинк маскируются при рН=6 в отличие от свинца, также выпадающего в этих условиях в виде малорастворимого комплексоната [73] [c.248]
Серебро идентифицировать (определить) легко оно располагается в ряду напряжений правее водорода, так что не реагирует с соляной кислотой и тем более с гидроксидом натрия в растворе. Цинк и алюминий различить сложнее, так как оба они проявляют амфотерные свойства и химически растворяются и в растворе гидроксида натрия, и в соляной кислоте. Однако концентрированная азотная кислота пассивирует поверхность алюминия, и на холоду этот металл с нею не реагирует. Образец под номером 1 — серебро, под номером 2 — алюминий, под номером 3 — цинк. [c.28]
В нейтральных растворах и под тонкой пленкой влаги (атмосферная коррозия) цинк и кадмий корродируют с кислородной деполяризацией. При этом на поверхности металлов образуются защитные пленки гидроксида цинка и кадмия. Следует иметь в виду, что гидроксид цинка обладает амфотерными свойствами и растворяется в. кислых и щелочных растворах, а для гидроксида кадмия характерны только основные свойства. Поэтому при повышении pH скорость коррозии цинка сначала понижается, а затем повышается. В щелочных растворах цинк корродирует с водородной деполяризацией [c.143]
Соли трехвалентного железа получаются растворением гидроксида железа (П1) в соответствующих кислотах. Все они обладают в большей или меньшей степени окислительными свойствами. Магний, цинк, двуххлористое олоно и другие восстанавливают Ре -ионы без нагревания [c.356]
Карбонат цинка 2пСОз, основный карбонат цинка 22пСОз 32п(ОН)г, оксид цинка ZnO, гидроксид цинка Zn (ОН) 2. Все эти реагенты представляют собой белые порошки. Карбонат цинка содержится в минерале смитсонит оксид цинка — в цинките. Эти основные соединения цинка лишь слабо растворимы в воде, поэтому они не влияют на свойства бурового раствора, но сульфид цинка обладает еще меньшей растворимостью благодаря этому они применяются для удаления из буровых растворов сероводорода. Концентрации от 1 до 15 кг/м . Потребление в 1978 г. составило около 1000 т. [c.497]
Проанализировать, какие из перечисленных свойств цинка, кадмия и ртути обусловливают возможность отнесения их к числу — и какие к числу 5-элемен-тов атомы элементов имеют электронную конфигурацию (п—l) ° гs атомы элементов образуют химические связи за счет орбиталей впешпего слоя для элементов характерна постоянная валеитпость (только ртуть проявляет иеремеииую степень окисления) в пределах группы понижается склонность к образованию ионных связей от кадмия к ртути увеличивается ионизационный потенциал для элементов характерна склонность к комплексообра-зоваиию химическая активность от циика к ртути понижается гидроксид цинка (в меньшей мере кадмия) ам-фотерен гидриды малоустойчивы по химическим свойствам ближе между собой цинк и кадмий металлы сравнительно мягкие и легкоплавкие. [c.236]
Свойства (см. также табл. 35). Голубовато-белый металл. Хорошо подвергается прокатке, ковке, пайке и литью. На воздухе всегда покрыт слоем гидроксида-карбоната цинка ( белая ржавчина ), который довольно хорошо предохраняет остальной металл от окисления. При нагревании на воздухе, в частности при отливгнмн изделий из латуни, цинк горит зеленым пламенем, образуя белый дым — оксид цника ZnO. [c.400]
Смотреть страницы где упоминается термин Цинка гидроксид, свойства:
[c.164]
[c.97]
[c.97]
Лекционные опыты и демонстрации по общей и неорганической химии (1976) — [
c.197
]