Какими свойствами обладает биссектриса треугольника

Какими свойствами обладает биссектриса треугольника thumbnail

Определения

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Теорема

В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).

Какими свойствами обладает биссектриса треугольника

Теорема

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

Какими свойствами обладает биссектриса треугольника

Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

[{Large{text{Медиана}}}]

Теорема

В любом треугольнике медианы точкой пересечения делятся в отношении (2:1), считая от вершины.

Доказательство

Пусть (AD) и (BE) – медианы в треугольнике (ABC), (O) – точка пересечения (AD) и (BE).

Какими свойствами обладает биссектриса треугольника

(DE) – средняя линия в треугольнике (ABC), тогда (DEparallel AB), значит (angle ADE = angle BAD), (angle BED = angle ABE), следовательно, треугольники (ABO) и (DOE) подобны (по двум углам).

Из подобия треугольников (ABO) и (DOE): (dfrac{BO}{OE} =
dfrac{AB}{DE} = dfrac{2}{1}).

Для других медиан треугольника (ABC) требуемое свойство доказывается аналогично.

Теорема

Медиана треугольника делит его на два равновеликих треугольника (равновеликие треугольники – это треугольники, у которых площади равны).

Доказательство

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию: (S_{ABC} = 0,5cdot ACcdot
h).

Какими свойствами обладает биссектриса треугольника

Пусть (BD) – медиана в треугольнике (ABC), тогда (AD = DC).

(S_{ABD} = 0,5cdot ADcdot h),

(S_{BCD} = 0,5cdot DCcdot h).

Так как (AD = DC), то (S_{ABD} = S_{BCD}), что и требовалось доказать.

Теорема

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Верно и обратное: если медиана равна половине стороны, к которой она проведена, то она проведена из вершины прямого угла.

Доказательство

1) Докажем, что если (triangle ABC) – прямоугольный, то (BM=frac12AC), где (M) – середина гипотенузы (AC).

Какими свойствами обладает биссектриса треугольника

Достроим треугольник (ABC) до прямоугольника (ABCD) и проведем диагональ (BD). Т.к. в прямоугольнике диагонали делятся точкой пересечения пополам и равны, то (ACcap BD=M), причем (AM=MC=BM=MD), чтд.

2) Докажем, что если в треугольнике (ABC) медиана (BM=AM=MC), то (angle B=90^circ).

Какими свойствами обладает биссектриса треугольника

Треугольники (AMB) и (CMB) – равнобедренные, следовательно, (angle
BAM=angle ABM=alpha, quad angle MBC=angle MCB=beta).

Т.к. сумма углов в треугольнике равна (180^circ), то для (triangle
ABC):

(alpha+(alpha+beta)+beta=180^circ Rightarrow
alpha+beta=90^circ Rightarrow angle B=90^circ), чтд.

[{Large{text{Биссектриса}}}]

Теорема

Биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам:

Какими свойствами обладает биссектриса треугольника

Верно и обратное: если отрезок, проведенный из вершины треугольника к стороне, делит эту сторону на отрезки, пропорциональные прилежащим сторонам, то это биссектриса.

Доказательство

Площади треугольников, у которых есть равные углы, относятся как произведения сторон, образующих эти углы, то есть [dfrac{S_{ACD}}{S_{BCD}} = dfrac{ACcdot CD}{CBcdot CD} =
dfrac{AC}{CB}]

С другой стороны, (dfrac{S_{ACD}}{S_{BCD}} = dfrac{0,5cdot
ADcdot h}{0,5cdot DBcdot h}), где (h) – высота, проведённая из точки (C), тогда (dfrac{S_{ACD}}{S_{BCD}} = dfrac{AD}{DB}).

В итоге (dfrac{AD}{DB} = dfrac{S_{ACD}}{S_{BCD}} =
dfrac{AC}{CB}), откуда (dfrac{AD}{AC} = dfrac{DB}{BC}), что и требовалось доказать.

Теорема

Если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Верно и обратное: если точка лежит на биссектрисе угла, то она равноудалена от его сторон.

Какими свойствами обладает биссектриса треугольника

Доказательство

1) Докажем, что если (KA=KB), то (OK) – биссектриса.
Рассмотрим треугольники (AOK) и (BOK): они равны по катету и гипотенузе, следовательно, (angle AOK=angle BOK), чтд.

2) Докажем, что если (OK) – биссектриса, то (KA=KB).
Аналогично треугольники (AOK) и (BOK) равны по гипотенузе и острому углу, следовательно, (KA=KB), чтд.

Источник

Треугольникомназывается фигура,
которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков,
попарно соединяющих эти точки. Точки называются вершинамитреугольника,
а отрезки — его сторонами.

Виды треугольников

Треугольник называется равнобедренным,
если у него две сторны равны. Эти равные стороны называются боковыми
сторонами,
а третья сторона называется основанием треугольника.

Треугольник, у которого все сторны равны, называется равносторонним
или правильным.

Треугольник
называется прямоугольным, если у него есть прямой угол, то есть
угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому
углу, называется гипотенузой, две другие стороны называются катетами.

Треугольник называется остроугольным,
если все три его угла — острые, то есть меньше 90°.

Треугольник называется тупоугольным, если один из его углов —
тупой, то есть больше 90°.

Основные линии треугольника

Медиана

Медиана треугольника — это отрезок, соединяющий верщину треугольника
с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

  1. Медиана разбивает треугольник на два треугольника одинаковой площади.
  2. Медианы треугольника пересекаются в одной точке, которая делит каждую
    из них в отношении 2:1, считая от вершины. Эта точка называется центром
    тяжести
    треугольника.
  3. Весь треугольник разделяется своими медианами на шесть равновеликих
    треугольников.

Биссектриса

Биссектриса
угла
— это луч, который исходит из его вершины, проходит между его
сторонами и делит данный угол пополам. Биссектрисой треугольника называется
отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на
противолежащей стороне этого треугольника.

Читайте также:  Какое свойство у гранита

Свойства биссектрис треугольника

  1. Биссектриса угла — это геометрическое место точек, равноудаленных от
    сторон этого угла.
  2. Биссектриса внутреннего угла треугольника делит противолежащую сторону
    на отрезки, пропорциональные прилегажащим сторонам: .
  3. Точка пересечения биссектрис треугольника является центром
    окружности, вписанной в этот треугольник.

Высота

Высотой
треугольника называется перпендикуляр, проведенный из вершины треугольника
к прямой, содержащей противоположную сторону этого треугольника.

Свойства высот треугольника

  1. В прямоугольном треугольнике высота, проведенная
    из вершины прямого угла, разбивает его на два треугольника, подобные
    исходному.
  2. В остроугольном треугольнике две его
    высоты отсекают от него подобные треугольники.

Срединный перпендикуляр

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют
серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника

  1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов
    этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная
    от концов отрезка, лежит на серединном перпендикуляре к нему.
  2. Точка пересечения серединных перпендикуляров, проведенных к сторонам
    треугольника, является центром окружности,
    описанной около этого треугольника.

Средняя линия

Средней
линией треугольника
называется отрезок, соединяющий середины двух его
сторон.

Свойство средней линии треугольника

    Средняя линия треугольника параллельна одной из его сторон и равна половине
    этой стороны.

Формулы и соотношения

Признаки равенства треугольников

Два треугольника равны, если у них соответственно равны:

  • две стороны и угол между ними;
  • два угла и прилежащая к ним сторона;
  • три стороны.

Признаки равенства прямоугольных треугольников

Два прямоугольных треугольника равны, если
у них соответственно равны:

  • гипотенуза и острый угол;
  • катет и противолежащий угол;
  • катет и прилежащий угол;
  • два катета;
  • гипотенуза и катет.

Подобие треугольников

Два треугольника подобны, если выполняется
одно из следующих условий, называемых признаками подобия:

  • два угла одного треугольника равны двум углам другого треугольника;
  • две стороны одного треугольника пропорциональны двум сторонам другого
    треугольника, а углы, образованные этими сторонами, равны;
  • три стороны одного треугольника соответственно пропорциональны трем
    сторонам другого треугольника.

В подобных треугольниках соответствующие линии (высоты,
медианы, биссектрисы и
т. п.) пропорциональны.

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов, причем
коэффициент пропорциональности равен диаметру
описанной около треугольника окружности:

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон
минус удвоенное произведение этих сторон на косинус угла между ними:

a2= b2+ c2
2bc cos

Формулы площади треугольника

  1. Произвольный треугольник
  2. a, b, c — стороны;  —
    угол между сторонами a и b;—
    полупериметр; R — радиус описанной окружности; r — радиус
    вписанной окружности; S — площадь; ha
    высота, проведенная к стороне a.

    S
    = aha

    S = ab
    sin

    S = pr

  3. Прямоугольный треугольник
  4. a, b — катеты; c — гипотенуза; hc — высота,
    проведенная к стороне c.

    S = ab

    S = chc

  5. Равносторонний треугольник

Источник

Биссектриса треугольника – это уникальный отрезок; он один из самых сложных по восприятию и пониманию. Легко понять и осознать, что такое высота, можно разобраться с определением и назначением медианы, но биссектрисы – это сложно. Просто потому, что основой для понимания биссектрисы служит понимание угла, а это не так легко усвоить, как величину отрезка.

Какими свойствами обладает биссектриса треугольника

Определения

Какие определения нам понадобятся в процессе работы? Во-первых, это определение биссектрисы.

Биссектриса – это луч, имеющий начало в вершине угла и делящий угол пополам.

Биссектриса треугольника – это отрезок биссектрисы, которой начинается в вершине треугольника и заканчивается на стороне, противолежащей этой вершине.

Вписанная окружность – это окружность, которая касается всех сторон треугольника. Треугольник в этом случае называется описанным.

Теперь обозначим основные свойства биссектрисы и приведем для них доказательства.

Первое, что нужно обозначить, это различие понятий биссектрисы и биссектрисы треугольника. Это похожие вещи, но свойства биссектрис углов треугольников не будут действовать на все биссектрисы. Это нужно запомнить.

Свойства биссектрисы треугольника

  • Биссектриса в треугольнике делит сторону на отрезки, пропорциональные прилежащим сторонам.

Проведем в треугольнике АВС биссектрису ВК. После этого проведем прямую СМ, параллельную этой биссектрисе так, что точка М будет являться точкой пересечения продолжения стороны АВ.

Тогда два параллельных отрезка ВК и МС отсекут от сторон угла ВАС пропорциональные отрезки. То есть: АВ:АК=ВМ:КС. Докажем, что ВМ=ВС. Для этого посмотрим на треугольник ВМС. Угол АВК равен углу ВМС, как соответственные углы параллельных прямых при секущей АМ. С другой стороны угол КВС равен углу ВСМ, как накрест лежащие при параллельных прямых и секущей ВС. Но при этом угол АВК равен углу КВС, так как ВК – это биссектриса. Запишем все в виде равенств для большего понимания.

$$АВК = ВМС$$

$$КВС = ВСМ$$

$АВК = КВС$, значит углы ВМС и МСВ равны, а треугольник МВС – равнобедренный. Тогда $ВМ=ВС$ и $АВ:АК=ВС:СК$. Что и требовалось доказать.

Какими свойствами обладает биссектриса треугольника

Рис. 1. Первое свойство

  • Биссектриса равноудалена от сторон угла, в котором она проведена.

Это свойство не биссектрисы треугольника, а любой биссектрисы, поэтому ее доказательство проще рассматривать на рисунке угла.

Нарисуем угол АВС и проведем в нем биссектрису ВМ. Расстояние от биссектрисы до стороны в любой точке это перпендикуляр. Поэтому выберем произвольную точку на биссектрисе. Назовем ее D и опустим перпендикуляр на сторону АВ в точку Р и на сторону ВС в точку N. Тогда мы получим два прямоугольных треугольника: DРВ и DNB, равные между собой по гипотенузе ВD, которая будет общей стороной треугольников, и острому углу, так как угол PBD равен углу DBN, так как ВМ – биссектриса. Значит, и стороны PD=DN – как соответственные элементы. Доказательство простое, но изящное. Знание этого свойство поможет в доказательстве следующей теоремы.

Читайте также:  Что такое природные объекты и какими свойствами они обладают

Какими свойствами обладает биссектриса треугольника

Рис. 2. Второе свойство

  • Биссектрисы треугольника пересекаются в одной точке, и эта точка служит центром вписанной окружности. Это доказывается очень просто, необходимо из точки пересечения опустить перпендикуляры к каждой стороне.

Какими свойствами обладает биссектриса треугольника

Рис. 3. Третье свойство

Что мы узнали?

Мы узнали, что такое биссектриса треугольника и чем она отличается от обычной биссектрисы. Выделили три свойства биссектрисы треугольника, которые пригодятся при решении задач и доказательстве теорем.

Тест по теме

Оценка статьи

Средняя оценка: 3.9. Всего получено оценок: 181.

Источник

Высоты, медианы и биссектрисы треугольника постоянно встречаются нам в задачах по геометрии. Мы начнем с таблицы, в которой показано, что такое высоты, медианы и биссектрисы, и какими свойствами они обладают. Затем — подробные объяснения и решение задач.

Высоты, медианы, биссектрисы треугольника

Напомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

Высота в треугольнике

Три высоты треугольника всегда пересекаются в одной точке. Вот как это выглядит в случае остроугольного треугольника.

Высоты в остроугольном треугольнике

Попробуйте провести три высоты в тупоугольном треугольнике. Получилось? Да, редкий выпускник справляется с этим заданием. Действительно, мы не можем опустить перпендикуляр из точки  на отрезок , зато можем опустить его на прямую  — то есть на продолжение стороны .

Высота в тупоугольном треугольнике

В этом случае в одной точке пересекаются не сами высоты, а их продолжения.

Высоты в тупоугольном треугольнике

А как выглядят три высоты в прямоугольном треугольнике? В какой точке они пересекаются?

Медиана треугольника — отрезок, соединяющий его вершину с серединой противоположной стороны.

Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении , считая от вершины.

Свойство медианы

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

У биссектрисы угла есть замечательное свойство — точки, принадлежащие ей, равноудалены от сторон угла. Поэтому три биссектрисы треугольника пересекаются в одной точке, равноудаленной от всех сторон треугольника. Эта точка является центром окружности, вписанной в треугольник.

Еще одно свойство биссектрисы пригодится тем, кто собирается решать задачу . Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.

Свойство биссектрисы

Разберем несколько задач, в которых речь идет о высотах, медианах и биссектрисах треугольника. Все задачи взяты из Банка заданий ФИПИ.

1. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.

Рисунок к задаче 1

Пусть биссектрисы треугольника (в котором угол  равен ) пересекаются в точке .

Рассмотрим треугольник .

,

, тогда

Острый угол между биссектрисами на рисунке обозначен .

Угол  смежный с углом , следовательно, .

Поскольку треугольник  — прямоугольный, то .

Тогда .

Ответ: .

2. Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Рисунок к задаче 2

Пусть  — высота, проведенная из вершины прямого угла ,  — биссектриса угла .

Тогда

.

Угол между высотой и биссектрисой — это угол .

Ответ: .

3. Два угла треугольника равны и . Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.

Рисунок к задаче 3

Из треугольника (угол  — прямой) найдем угол . Он равен .

Из треугольника ( — прямой) найдем угол . Он равен .

В треугольнике известны два угла. Найдем третий, то есть угол , который и является тупым углом между высотами треугольника :

.

Ответ: .

4. В треугольнике угол  равен ,  и  — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Рисунок к задаче 4

Пусть в треугольнике угол равен , угол равен .

Рассмотрим треугольник .

, тогда .

Из треугольника получим, что .

Тогда .

Ответ: .

5. В треугольнике угол  равен , угол  равен . , и  — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Рисунок к задаче 5

Найдем угол . Он равен .

Тогда .

Из треугольника найдем угол . Он равен .

Рассмотрим треугольник .

, . Значит

Ответ: .

6. В треугольнике ,  — медиана, угол равен , угол  равен . Найдите угол . Ответ дайте в градусах.

Как решать эту задачу? У медианы прямоугольного треугольника, проведенной из вершины прямого угла, есть особое свойство. Мы докажем его в теме «Прямоугольник и его свойства».

Подсказка: Сделайте чертеж, найдите на нем равнобедренные треугольники и докажите, что они равнобедренные.

Правильный ответ: .

Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.

Источник

2 июня 2018

Сегодня будет очень лёгкий урок. Мы рассмотрим всего один объект — биссектрису угла — и докажем важнейшее её свойство, которое очень пригодится нам в будущем.

Только не надо расслабляться: иногда ученики, желающие получить высокий балл на том же ОГЭ или ЕГЭ, на первом занятии даже не могут точно сформулировать определение биссектрисы.

И вместо того, чтобы заниматься действительно интересными задачами, мы тратим время на такие простые вещи. Поэтому читайте, смотрите — и берите на вооружение.:)

Для начала немного странный вопрос: что такое угол? Правильно: угол — это просто два луча, выходящих из одной точки. Например:

Какими свойствами обладает биссектриса треугольникаПримеры углов: острый, тупой и прямой

Как видно из картинки, углы могут быть острыми, тупыми, прямыми — это сейчас неважно. Часто для удобства на каждом луче отмечают дополнительную точку и говорят, мол, перед нами угол $AOB$ (записывается как $angle AOB$).

Читайте также:  Какие свойства у пустырника

Капитан очевидность как бы намекает, что помимо лучей $OA$ и $OB$ из точки $O$ всегда можно провести ещё кучу лучей. Но среди них будет один особенный — его-то и называют биссектрисой.

Определение. Биссектриса угла — это луч, который выходит из вершины этого угла и делит угол пополам.

Для приведённых выше углов биссектрисы будут выглядеть так:

Какими свойствами обладает биссектриса треугольникаПримеры биссектрис для острого, тупого и прямого угла

Поскольку на реальных чертежах далеко не всегда очевидно, что некий луч (в нашем случае это луч $OM$) разбивает исходный угол на два равных, в геометрии принято помечать равные углы одинаковым количеством дуг (у нас на чертеже это 1 дуга для острого угла, две — для тупого, три — для прямого).

Хорошо, с определением разобрались. Теперь нужно понять, какие свойства есть у биссектрисы.

Основное свойство биссектрисы угла

На самом деле у биссектрисы куча свойств. И мы обязательно рассмотрим их в следующем уроке. Но есть одна фишка, которую нужно понять прямо сейчас:

Теорема. Биссектриса угла — это геометрическое место точек, равноудалённых от сторон данного угла.

В переводе с математического на русский это означает сразу два факта:

  1. Всякая точка, лежащая на биссектрисе некого угла, находится на одинаковом расстоянии от сторон этого угла.
  2. И наоборот: если точка лежит на одинаковом расстоянии от сторон данного угла, то она гарантированно лежит на биссектрисе этого угла.

Прежде чем доказывать эти утверждения, давайте уточним один момент: а что, собственно, называется расстоянием от точки до стороны угла? Здесь нам поможет старое-доброе определение расстояния от точки до прямой:

Определение. Расстояние от точки до прямой — это длина перпендикуляра, проведённого из данной точки к этой прямой.

Например, рассмотрим прямую $l$ и точку $A$, не лежащую на этой прямой. Проведём перпендикуляр $AH$, где $Hin l$. Тогда длина этого перпендикуляра и будет расстоянием от точки $A$ до прямой $l$.

Какими свойствами обладает биссектриса треугольникаГрафическое представление расстояния от точки до прямой

Поскольку угол — это просто два луча, а каждый луч — это кусок прямой, легко определить расстояние от точки до сторон угла. Это просто два перпендикуляра:

Какими свойствами обладает биссектриса треугольникаОпределяем расстояние от точки до сторон угла

Вот и всё! Теперь мы знаем, что такое расстояние и что такое биссектриса. Поэтому можно доказывать основное свойство.

Как и обещал, разобьём доказательство на две части:

1. Расстояния от точки на биссектрисе до сторон угла одинаковы

Рассмотрим произвольный угол с вершиной $O$ и биссектрисой $OM$:

Какими свойствами обладает биссектриса треугольника

Докажем, что эта самая точка $M$ находится на одинаковом расстоянии от сторон угла.

Доказательство. Проведём из точки $M$ перпендикуляры к сторонам угла. Назовём их $M{{H}_{1}}$ и $M{{H}_{2}}$:

Какими свойствами обладает биссектриса треугольникаПровели перпендикуляры к сторонам угла

Получили два прямоугольных треугольника: $vartriangle OM{{H}_{1}}$ и $vartriangle OM{{H}_{2}}$. У них общая гипотенуза $OM$ и равные углы:

  1. $angle MO{{H}_{1}}=angle MO{{H}_{2}}$ по условию (поскольку $OM$ — биссектриса);
  2. $angle M{{H}_{1}}O=angle M{{H}_{2}}O=90{}^circ $ по построению;
  3. $angle OM{{H}_{1}}=angle OM{{H}_{2}}=90{}^circ -angle MO{{H}_{1}}$, поскольку сумма острых углов прямоугольного треугольника всегда равна 90 градусов.

Следовательно, треугольники равны по стороне и двум прилежащим углам (см. признаки равенства треугольников). Поэтому, в частности, $M{{H}_{2}}=M{{H}_{1}}$, т.е. расстояния от точки $O$ до сторон угла действительно равны. Что и требовалось доказать.:)

2. Если расстояния равны, то точка лежит на биссектрисе

Теперь обратная ситуация. Пусть дан угол $O$ и точка $M$, равноудалённая от сторон этого угла:

Какими свойствами обладает биссектриса треугольника

Докажем, что луч $OM$ — биссектриса, т.е. $angle MO{{H}_{1}}=angle MO{{H}_{2}}$.

Доказательство. Для начала проведём этот самый луч $OM$, иначе доказывать будет нечего:

Какими свойствами обладает биссектриса треугольникаПровели луч $OM$ внутри угла

Снова получили два прямоугольных треугольника: $vartriangle OM{{H}_{1}}$ и $vartriangle OM{{H}_{2}}$. Очевидно, что они равны, поскольку:

  1. Гипотенуза $OM$ — общая;
  2. Катеты $M{{H}_{1}}=M{{H}_{2}}$ по условию (ведь точка $M$ равноудалена от сторон угла);
  3. Оставшиеся катеты тоже равны, т.к. по теореме Пифагора $OH_{1}^{2}=OH_{2}^{2}=O{{M}^{2}}-MH_{1}^{2}$.

Следовательно, треугольники $vartriangle OM{{H}_{1}}$ и $vartriangle OM{{H}_{2}}$ по трём сторонам. В частности, равны их углы: $angle MO{{H}_{1}}=angle MO{{H}_{2}}$. А это как раз и означает, что $OM$ — биссектриса.

В заключение доказательства отметим красными дугами образовавшиеся равные углы:

Какими свойствами обладает биссектриса треугольникаБиссектриса разбила угол $angle {{H}_{1}}O{{H}_{2}}$ на два равных

Как видите, ничего сложного. Мы доказали, что биссектриса угла — это геометрическое место точек, равноудалённых до сторон этого угла.:)

Теперь, когда мы более-менее определились с терминологией, пора переходить на новый уровень. В следующем уроке мы разберём более сложные свойства биссектрисы и научимся применять их для решения настоящих задач.

Смотрите также:

  1. Высота в треугольнике Какими свойствами обладает биссектриса треугольника
  2. Основное свойство биссектрисы угла в треугольнике и его применение для решения задач Какими свойствами обладает биссектриса треугольника
  3. Тест к уроку «Площади многоугольников на координатной сетке» (легкий) Какими свойствами обладает биссектриса треугольника
  4. Правила вычисления производных Какими свойствами обладает биссектриса треугольника
  5. Сводный тест по задачам B15 (2 вариант) Какими свойствами обладает биссектриса треугольника
  6. Симметрия корней и оптимизация ответов в тригонометрии Какими свойствами обладает биссектриса треугольника

Источник