Какими свойствами обладает бинарное отношение на множестве x y

Какими свойствами обладает бинарное отношение на множестве x y thumbnail

Пусть R — некоторое бинарное отношение на множестве X, а х, у, z любые его элементы. Если элемент х находится в отношении R с элементом у, то пишут xRy.

1. Отношение R на множестве X называется рефлексивным, если каждый элемент множества находится в этом отношении с самим собой.

R —рефлексивно на X <=> xRx для любого x€ X

Если отношение R рефлексивно, то в каждой вершине графа имеется петля. Например, отношения равенства и параллельности для отрезков являются рефлексивными, а отношение перпендику­лярности и «длиннее» не являются рефлексивными. Это отражают графы на рисунке 42.

2. Отношение R на множестве X называется симметричным, если из того, что элемент х находится в данном отношении с элементом у, следует, что элемент у находится в этом же отношении с элементом х.

R — симметрично на (хЯу =>у Rx)

Граф симметричного отношения содержит парные стрелки, идущие в противоположных направлениях. Отношения параллельнос­ти, перпендикулярности и равенства для отрезков обладают симмет­ричностью, а отношение «длиннее» — не является симметричным (рис. 42).

3. Отношение R на множестве X называется антисимметричным, если для различных элементов х и у из множества X из того, что элемент х находится в данном отношении с элементом у, следует, что элемент у в этом отношении с элементом х не находится.

R — антисимметрично на Х« (xRy и xy ≠ yRx)

Замечание: черта сверху обозначает отрицание высказывания.

На графе антисимметричного отношения две точки может сое­динять только одна стрелка. Примером такого отношения является отношение «длиннее» для отрезков (рис. 42). Отношения параллель­ности, перпендикулярности и равенства не являются антисиммет­ричными. Существуют отношения, не являющиеся ни симметрич­ными, ни антисимметричными, например отношение «быть братом» (рис. 40).

4. Отношение R на множестве X называется транзитивным, если из того, что элемент х находится в данном отношении с элементом у и элемент у находится в этом лее отношении с элементом z, следует, что элемент х находится в данном отношении с элементом Z

R — транзитивно на A≠ (xRy и yRz=> xRz)

На графах отношений «длиннее», параллельности и равенства на рисунке 42 можно заметить, что если стрелка идет от первого элемента ко второму и от второго к третьему, то обязательно есть стрелка, идущая от первого элемента к третьему. Эти отношения яв­ляются транзитивными. Перпендикулярность отрезков не обладает свойством транзитивности.

Существуют и другие свойства отношений между элементами одного множества, которые мы не рассматриваем.

Одно и то же отношение может обладать несколькими свойст­вами. Так, например, на множестве отрезков отношение «равно» — рефлексивно, симметрично, транзитивно; отношение «больше» — антисимметрично и транзитивно.

Если отношение на множестве X рефлексивно, симметрично и транзитивно, то оно является отношением эквивалентности на этом множестве. Такие отношения разбивают множество X на классы.

Данные отношения проявляются, например, при выполнении заданий: «Подбери полоски равные по длине и разложи по груп­пам», «Разложи мячи так, чтобы в каждой коробке были мячи одно­го цвета». Отношения эквивалентности («быть равным по длине», «быть одного цвета») определяют в данном случае разбиение мно­жеств полосок и мячей на классы.

Если отношение на множестве 1 транзитивно и антисимметрич­но, то оно называется отношением порядка на этом множестве.

Множество с заданным на нем отношением порядка называется упорядоченным множеством.

Например, выполняя задания: «Сравни полоски по ширине и разложи их от самой узкой до самой широкой», «Сравни числа и разложи числовые карточки по порядку», дети упорядочивают эле­менты множеств полосок и числовых карточек при помощи отно­шений порядка; «быть шире», «следовать за».

Вообще отношения эквивалентности и порядка играют боль­шую роль в формировании у детей правильных представлений о классификации и упорядочении множеств. Кроме того, встречается много других отношений, которые не являются ни отношениями эквивалентности, ни отношениями порядка.

6. Что такое характеристическое свойство множества?

7. В каких отношениях могут находиться множества? Дайте пояснения каждому случаю и изобразите их при помощи кругов Эйлера.

8. Дайте определение подмножества. Приведите пример множеств, одно из которых является подмножеством другого. Запишите их от­ношение при помощи символов.

9. Дайте определение равных множеств. Приведите примеры двух равных множеств. Запишите их отношение при помощи символов.

10. Дайте определение пересечения двух множеств и изобразите его при помощи кругов Эйлера для каждого частного случая.

11. Дайте определение объединения двух множеств и изобразите его при помощи кругов Эйлера для каждого частного случая.

12. Дайте определение разности двух множеств и изобразите ее при помощи кругов Эйлера для каждого частного случая.

13. Дайте определение дополнения и изобразите его при помощи кругов Эйлера.

14. Что называется разбиением множества на классы? Назовите усло­вия правильной классификации.

15. Что называется соответствием между двумя множествами? Назо­вите способы задания соответствий.

16. Какое соответствие называется взаимно однозначным?

17. Какие множества называют равномощными?

18. Какие множества называют равночисленными?

19. Назовите способы задания отношений на множестве.

20. Какое отношение на множестве называют рефлексивным?

21. Какое отношение на множестве называют симметричным?

22. Какое отношение на множестве называют антисимметричным?

23. Какое отношение на множестве называют транзитивным?

24. Дайте определение отношения эквивалентности.

25. Дайте определение отношения порядка.

26. Какое множество называют упорядоченным?

Источник

Способы задания бинарного отношения

Определение бинарного отношения

Бинарные отношения

Пусть среди трех людей: Андрей (А), Василий (В) и Сергей (С) двое знакомы друг с другом (Андрей и Василий) и знают третьего – Сергея, но Сергей их не знает. Как описать отношения между этими людьми?

Имеем исходное множество Х = {А, В, С}. Далее из элементов множества Х составим упорядоченные пары:
(А, В), (В, А), (А, С), (В, С). Это множество пар и описывает связи между элементами множества X. Кроме того, множество этих пар есть подмножество декартова произведения X ´ X.

Определение. На множестве X задано бинарное отношение R, если задано подмножество декартова произведения X ´ X (т. е. R Ì X ´ X).

Пример 1. Пусть X = {1, 2, 3, 4}. Зададим на X следующие отношения:

Т = {(х, у) | х, у Î Х; х = у} – отношение равенства;

Р = {(х, у) | х, у Î Х; х = у — 1} – отношение

предшествования;

Q = {(х, у) | х, у Î Х; х делится на у} – отношение

делимости.

Все эти отношения заданы с помощью характеристического свойства. Перечислим элементы этих отношений для заданного множества X = {1,2,3,4}:

Т = {(1,1), (2,2), (3,3), (4,4)};

P = {(1,2), (2,3), (3,4) };

Q = {(4,4), (4,2), (4,1), (3,3), (3,1), (2,2), (2,1), (1,1)}.

Тот факт, что пара (х, у) принадлежит данному отношению R, будем за­писывать: (х, у) Î R или xRy. Например, для отношения Q запись 4Q2 озна­чает, что 4 делится на 2 нацело, т. е. (4,2) Î Q.

Областью определения Dr бинарного отношения R называется мно­жество DR = {x | (х, у) Î R}.

Областью значений ЕR бинарного отношения R называется множество ЕR = {у| (х, у) Î R}.

Читайте также:  Какими свойствами обладают раковины моллюсков

В примере для отношения Р областью определения является мно­жество DR = {1,2,3}, а областью значений является мно­жество ЕR = {2,3,4}.

Бинарное отношение можно задать, указав характеристическое свойство или перечислив все его элементы. Существуют и более наглядные способы задания бинарного отношения: график отношения, схема отношения, граф отношения, матрица отношения.

График отношения изображается в декартовой системе координат: на горизонтальной оси отмечается область определения, на вертикальной — об­ласть значений отношения. Элементу отношения (х, у) соответствует точка плоскости с этими координатами.

a б

Рис. 1.8. График отношения Q (а) и схема отношения Q (б)

Схема отношения изображается с помощью двух вертикальных прямых, левая из которых соответствует области определения отношения, а правая – множеству значений отношения. Если элемент (х, у) принадлежит отношению R, то соответствующие точки из DR и ЕR соединяются прямой.

Граф отношения R Ì X ´ X строится следующим образом. На плоско­сти в произвольном порядке изображаются точки — элементы множества X. Пара точек х и у соединяется дугой (линией со стрелкой) тогда и только тогда, когда пара (х, у) принадлежит отношению R.

Матрица отношения R Ì X ´ X – это квадратная таблица, каждая строка и столбец которой соответствует некоторому элементу множества X. На пересечении строки х и столбца у ставится 1, если пара (х, у) Î R; все остальные элементы матрицы заполняются нулями. Элементы матрицы нуме­руются двумя индексами, первый равен номеру строки, второй – номеру столбца.

Пусть X = {х1, х2, …, хn} . Тогда матрица отношения
R Ì X ´ X имеет n строк и n столбцов, а ее элемент rij определяется по правилу:

1, если (xi, yj) Î R, где i = l, 2, …, n; j = l, 2, …, n.

0, если (xi, yj) Ï R.

 
 

Рис. 1.9. Граф отношения Q (а) и матрица отношения Q (б)

1. Отношение R на множестве X называется рефлексивным, если для всех х Î X выполняется условие (х, х) Î R. Отношение R на множестве Х называется нерефлексивным, если ус­ловие (х, х) Î R не выполняется хотя бы при одном х Î X .

2. Отношение R на множестве X называется симметричным, если из усло­вия (х, у) Î R следует
(у, х) Î R. Отношение R на множестве X называется несимметричным, если для любых х, у Î X из условия (х, y) Î R следует (у, х) Ï R.

3. Отношение R на множестве X называется транзитивным, если для лю­бых х, у, z Î R из одновременного выполнения условий (x, y) Î R и (у, z) Î R следует (х, z) Î R .

Пример. Рассмотрим следующие отношения на множестве X = {1,2,3,4,5,6,7}:

G = {(x, y) | х, у Î Х; х > у};

L = {(х, у) | х, у Î Х; х £ у};

M = {(x, y) | х, у Î X; (х — у) делится на 3};

К = {(х, y) | х, у Î Х; х2 + у2 £ 20}.

Исследуем, какими свойствами они обладают.

Среди приведенных в примере отношений рефлексивнымиявляются отношение L (т. к. х £ х справедливо при всех х Î X) и отношение М (т. к. х — х = 0 делится на 3, поэтому пара (х, х) принадлежит отношению М при всех х Î X).

Симметричными являются отношения М (если х — у делится на 3, то и у — х делится на 3) и К (если х2 + у2 £20, то и у2 + х2 £ 20).

Транзитивными являются отношения G, L, М.

Источник

Рассмотрим отношение «уважать», определенное на множестве всех людей %%M%%. Для полной информации о том, кто кого уважает, составим следующее множество %%R%%. Переберем все пары %%(a, b)%%, где %%a, b%% пробегают множество всех людей. Если %%a%% уважает %%b%%, то пару %%(a,b)%% отнесем к множеству %%R%%, иначе — нет.

Этот список полностью отражает отношение «уважать». Если нужно узнать, уважает ли человек %%a%% человека %%b%%, то просмотрим множество %%R%%. Если пара %%(a, b) in R%%, то заключаем, что %%a%% уважает %%b%%. В случае %%(a,b) notin R%% — %%a%% не уважает %%b%%.

Определение

Бинарным отношением, определенным на множестве %%M%%, называется произвольное подмножество %%R%% из декартового произведения %%M^2%%.

Пример

Рассмотрим отношение больше на множестве %%M = {1, 2}%%. Тогда

$$
M^2 = big{(1, 1), (1,2), (2,1), (2,2)big}
$$
Из него выбирем все пары %%(a,b)%%, где %%a > b%%. Получим
$$
R = big{(2,1)big}
$$

Виды бинарных отношений

Рефлексивное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется рефлексивным,
если для любого элемента %%a%% из %%M%%, выполняется условие %%a~R~a%%.
$$
begin{array}{l}
forall ain M~~a~R~a text{ или}\
forall ain M~~(a,a) in R.
end{array}
$$

Примеры

  1. Рассмотрим отношение больше на множестве действительных чисел. Является ли отношение больше рефлексивным? Если да, то каждое число является больше самого себя, что неверно. Поэтому отношение больше не рефлексивно.
  2. Рассмотрим отношение равно на множестве действительных чисел. Оно является рефлексивным, так как каждое действительное число равно самому себе.

Симметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется симметричным,
если для любых двух элементов %%a, b%% из %%M%%, из условия %%a~R~b%% следует условие %%b~R~a%%.

$$
begin{array}{l}
forall a,bin M~~a~R~b rightarrow b~R~a text{ или}\
forall a,bin M~~(a,b) in R rightarrow (b,a) in R.
end{array}
$$

Примеры

  1. Рассмотрим отношение больше на множестве действительных чисел. Является ли отношение больше симметричным? Оно не является симметричным, так как если %%a > b%%, то условие %%b > a%% не выполняется. Поэтому отношение больше не симметрично.
  2. Пусть %%R%% — отношение, определенное на множестве %%M = {a,b,c}%%. При этом %%R = big{ (a,b), (b,c), (a,a), (b,a), (c,b)big}%%. Для этого отношения имеем %%forall x,y in M ~~ (x,y) in R rightarrow (y,x) in R%%. По определению %%R%% симметрично.

Транзитивное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется транзитивным,
если для любых элементов %%a, b, c%% из %%M%%, из условий %%a~R~b%% и %%b~R~c%% следует условие %%a~R~c%%.

$$
begin{array}{l}
forall a,b,cin M~~a~R~b land b~R~c rightarrow a~R~c text{ или}\
forall a,b,cin M~~(a,b) in R land (b,c) in R rightarrow (a,c) in R.
end{array}
$$

Пример

Рассмотрим отношение больше на множестве дейтсвительных чисел. Оно является транзитивным, так как для любых элементов выполняется условние %%forall a,b,cin M~~a > b land b > c rightarrow a > c%%. Так, например, подставив вместо %%a, b%% и %%c%% числа %%2, 1%% и %%0%% соответственно, получим: если %%2 > 1%% и %%1 > 0%%, то %%2 > 0%% — верное утверждение (вспомните импликацию, из истины следует истина).

Антисимметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется антисимметричным,
если для любых элементов %%a, b%% из %%M%%, из условий %%a~R~b%% и %%b~R~a%% следует условие %%a = b%%.

$$
begin{array}{l}
forall a,b,cin M~~a~R~b land b~R~a rightarrow a = b text{ или}\
forall a,bin M~~(a,b) in R land (b,a) in R rightarrow a = b.
end{array}
$$

Читайте также:  Какими лечебными свойствами обладает жимолость

Пример

Отношение больше или равно на множестве действительных чисел антисимметрично. Действительно, если %%a geq b%% и %%b geq a%%, %%a = b%%.

Эквивалентное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется отношением эквивалентности,
если оно рефлексивно, симметрично и транзитивно.

Нетрудно проверить, что отношение параллельности на множестве прямых плоскости является отношением эквивалентности.

Отношение частичного порядка

Бинарное отношение %%R%% на множестве %%M%% называется отношением частичного порядка,
если оно рефлексивно, антисимметрично и транзитивно.

Отношение больше или равно на множестве действительных чисел является отношением частичного порядка.

Построение отрицаний

Пусть %%R%% — бинарное отношение на множестве %%M%%, и %%P%% — одно из следующих условий:

  • отношение %%R%% рефлексивно,
  • отношение %%R%% симметрично,
  • отношение %%R%% транзитивно,
  • отношение %%R%% антисимметрично.

Построим для каждого из них отрицание выполнения условия %%P%%.

Отрицание рефлексивности

По определению %%R%% рефлексивно, если каждый элемент множества %%M%% находится в отношении %%R%% к самому себе, то есть %%forall a in M~~a~R~a%%. Тогда рассмотрим отрицание рефлексивности как истинное высказывание %%overline{forall a in M~~a~R~a}%%. Используем равносильность %%overline{forall x P(x)} equiv exists x overline {P(x)}%%. В нашем случае получаем %%forall a in M~~a~R~a equiv exists ain M~~a~nottext{R }~a%%, что и нужно.

Аналогично получаем и остальные отрицания. В итоге получаем следующие утверждения:

  • %%R%% не рефлексивно тогда и только тогда, когда

    $$
    exists a in M~~a~not R~a
    $$

  • %%R%% не симметрично тогда и только тогда, когда

    $$
    exists a, b in M~~ a~R~b land b~not R~a
    $$

  • %%R%% не транзитивно тогда и только тогда, когда

    $$
    exists a, b, c in M a~R~b land b~R~c land a~not R~c
    $$

  • %%R%% не антисимметрично тогда и только тогда, когда

    $$
    exists a, b in M~~ a~R~b land b~R~a land a neq b.
    $$

Источник

План

1. Свойство рефлексивености

2. Свойство симметричности

3. Свойство транзитивности

Свойства отношений

Какими свойствами обладает бинарное отношение на множестве x y Мы установили, что бинарное отношение на множестве X пред­ставляет собой множество упорядоченных пар элементов, принад­лежащих декартову произведению X х Х. Это математическая сущ­ность всякого отношения. Но, как и любые другие понятия, отноше­ния обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые.

Рассмотрим на множестве отрезков, представ­ленных на рис. 98, отношения перпендикулярно­сти, равенства и «длиннее». Построим графы этих отношений (рис. 99) и будем их сравнивать. Ви­дим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли — результат того, что отно­шение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлек­сивности или просто, что оно рефлексивно.

Какими свойствами обладает бинарное отношение на множестве x y

Определение. Отношение R на множестве X называется рефлексив­ным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.

Используя символы, это отношение можно записать в таком виде:

R рефлексивно на Х ↔ х R х для любого х € X.

опр.

Если отношение R рефлексивно на множестве X, то в каждой вер­шине графа данного отношения имеется петля. Справедливо и обрат­ное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.

Примеры рефлексивных отношений:

— отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);

— отношение подобия треугольников (каждый треугольник подо­бен самому себе).

Существуют отношения, которые свойством рефлексивности не обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно ска­зать, что он перпендикулярен самому себе. Поэтому на графе отноше­ния перпендикулярности (рис. 99) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.

Обратим теперь внимание на графы отношений перпендикулярно­сти и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направ­лении. Эта особенность графа отражает те свойства, которыми обла­дают отношения параллельности и равенства отрезков:

— если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;

— если один отрезок равен другому отрезку, то этот «другой» равен первому.

Про отношения перпендикулярности и равенства отрезков гово­рят, что они обладают свойством симметричности или просто сим­метричны.

Определение. Отношение R на множестве X называется симмет­ричным, если выполняется условие: из того, что элемент х находит­ся в отношении R с элементом у, следует, что и элементу находит­ся в отношении R с элементом х.

Используя символы, это отношение можно записать в таком виде:

R симметрично на Х ↔ (х R y →yRx).

опр.

Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к x. Справедливо и обратноеутверждение. Граф, содержащий вместе с каждой стрелкой, идущей от x к у, и стрелку, идущую от у к x, является графом симметричного отношения.

В дополнение к рассмотренным двум примерам симметричных от­ношений присоединим еще такие:

-отношениепараллельности на множестве прямых (если прямая x параллельна прямой у, то и прямая у параллельна прямой х)

-отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).

Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на мно­жестве отрезков. Действительно, если отрезок x длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметрично­сти или просто антисимметрично.

Определение. Отношение R на множестве X называется анти­симметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится.

Используя символы, это определение можно записать в таком виде:

R симметрично на Х ↔ (х R y ^ x≠y →yRx).

опр.

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого со­единены только одной стрелкой, есть граф антисимметричного отношения.

Кроме отношения «длиннее» на множестве отрезков свойством ан­тисимметричности, например, обладают:

— отношение «больше» для чисел (если х больше у, то у не может
быть больше х);

— отношение «больше на 2» для чисел (если х боль­ше у на 2, то у не может быть больше на 2 числа х),

Существуют отношения, не обладающие ни свой­ством симметричности, ни свойством антисиммет­ричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 100. Он показывает, что данное отношение не обладает ни свой­ством симметричности, ни свойством антисимметричности.

Какими свойствами обладает бинарное отношение на множестве x y

Рис.100

Обратим внимание еще раз на одну особенность графа отноше­ния «длиннее» (рис. 99). На нем можно заметить: если стрелки про­ведены от е к а и от а к с, то есть стрелка от е к с; если стрелки приведены от е к b и от b к с, то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй — длиннее третьего, то первый — длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.

Читайте также:  Какое основное свойство системы

Определение. Отношение R на множестве X называется транзи­тивным, если выполняется условие; из того, что элемент х нахо­дится в отношении R с элементом у и элемент у находится в от­ношении R с элементом z, следует, что элемент х находится в от­ношении К с элементом z .

Используя символы, это определение можно записать в таком виде:

R транзитивно на X ↔ (х R y ^ yRz → xRz).

опр.

Граф транзитивного отношения с каждой парой стрелок, идущих от x к у и у к z, содержит стрелку, идущую от х к z. Справедливо и обратное утверждение.

Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z, то отрезок х равен отрезку z, Это свойство отражено и на графе отношения равенства (рис. 99)

Существуют отношения, которые свойством транзитивности не об­ладают. Таким отношением является, например, отношение перпенди­кулярности: если отрезок а перпендикулярен отрезку d, а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!

Рассмотрим еще одно свойство отношений, которое называют свой­ством связанности, а отношение, обладающее им, называют связанным.

Определение. Отношение R на множестве X называется связан­ным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находит­ся в отношении R с элементом у, либо элемент у находится в от­ношении R с элементом х.

Используя символы, это определение можно записать в таком виде:

R связано на множестве X ↔ (х ≠ у => хRу v уRх).

опр.

Например, свойством связанности обладают отношения «больше» длянатуральных чисел: для любых различных чисел х и у можно ут­верждать, что либо х > у, либо у > х.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые свойством связанности не обла­дают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и у, что ни число х не является делителем числа у, ни число у не является делителем числа х.

Выделенные свойства позволяют анализировать различные отно­шения с общих позиций — наличия (или отсутствия) у них тех или иных свойств.

Так, если суммировать все сказанное об отношении равенства, за­данном на множестве отрезков (рис. 99), то получается, что оно реф­лексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности — симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве отрезков связанными не являются.

Задача 1. Сформулировать свойства отноше­ния R, заданного при помощи графа (рис. 101).

Какими свойствами обладает бинарное отношение на множестве x y

Рис.101

Решение. Отношение R-антисимметрично, так как вершины графа соединяются только одной стрелкой.

Отношение R — транзитивно, так как с парой стрелок, идущих от b к а и от а к с, на графе есть стрелка, идущая от b к с.

Отношение R — связанно, так как любые две вер­шины соединены стрелкой.

Отношение R свойством рефлексивности не обла­дает, так как на графе есть вершины, в которых петли нет.

Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.

Решение. «Больше в 2 раза» — это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число y не больше числа x 2 раза.

Данное отношение не обладает свойством рефлексивности, пото­му что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.

Заданное отношение не транзитивно, так как из того, что число x больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.

Какими свойствами обладает бинарное отношение на множестве x y Это отношение на множестве натуральных чисел свойством связан­ности не обладает, так как существуют пары таких чисел х и у, что ни число х не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3, 5 и 8 и др.

Упражнения

1.Докажите, что отношение R, заданное при помощи графа (рис.102), рефлексивно, анти­симметрично и транзитивно.

2.Докажите, что отношение Т, заданное при помощи графа (рис.103), симметрично и тран­зитивно.

3.Сформулируйте условия, при которых от­ношение свойством рефлексивности не облада­ет, и докажите, что отношение Т (см. упр. 2) не рефлексивно.

4. Какими свойствами обладает бинарное отношение на множестве x y Сформулируйте условия, при которых от­ношение не обладает свойством: а) симметричности; б) антисимметричности; в)транзитивно­сти; г) связанности.

5. Какими свойствами обладает бинарное отношение на множестве x y Докажите, что отношение Р, граф которого изображен на рисунке 104, не обладает ни свойством симметричности, ни свойством антисимметричности, ни свойством транзитив­ности.

6.Какими свойствами обладает отношение, граф которого изображен на рисунке 105? Яв­ляется ли оно рефлексивным? Транзитивным?

7.Какие из следующих утверждений истинны:

Какими свойствами обладает бинарное отношение на множестве x y а) Отношение «x больше у на 3» антисимметрично на множестве N, так как из того, что х больше у на 3, не следует, что у больше х на 3.

б) Отношение «x больше у на 3» антисимметрично, так как из того, что х больше у на 3, следует, что у не больше х на 3.

в) Отношение «х больше у на 3» антисим­метрично, так как из того, что х больше у на 3, следует, что у меньше х на 3.

8. На множестве отрезков задано отношение «короче». Верно ли, что оно антисимметрично
и транзитивно? Рефлексивно ли оно?

9. Какими свойствами обладают следующие отношения, заданные на множестве натуральных чисел:

а) «меньше»; б) «меньше на 2»; в) «меньше в 2 раза»?

10. На множестве X ={а, b, с}задано отношение R = {(а, b), (а, а), (b,b), (с, с), (b, а), (b, с), (с, b)}.Какими свойствами оно обладает?

11. На множестве Х= {2,4,6,8, 12} заданы отношения «больше» и «кратно». В чём их сходство и различие?

12.Установите, какое отношение рассматривается в задаче; какие приемы анализа задачи можно использовать:

а) Школьники сделали к карнавалу 15 шапочек для мальчиков, адля девочек в 2 раза больше. Сколько всего карнавальных шапочек они сделали?

б) Второклассники вырезали для елки 26 звездочек, это в 2 раза меньше, чем снежинок. Сколько всего звездочек и снежинок вырезали второклассники?

Источник