Какими свойствами обладает алюминий и его сплавы
Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.
Производство алюминия
Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.
Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.
Алюминиевые сплавы
Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.
Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.
Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.
Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.
Происходит это несколькими способами в зависимости от вида продукта:
- Прокаткой, если необходимо получить листы и фольгу.
- Прессованием, если нужно получить профили, трубы и прутки.
- Формовкой, чтобы получить сложные формы полуфабрикатов.
- Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.
Марки алюминиевых сплавов
Для маркировки алюминиевых сплавов согласно ГОСТ 4784-97 пользуются буквенно-цифровой системой, в которой:
- А — технический алюминий;
- Д — дюралюминий;
- АК — алюминиевый сплав, ковкий;
- АВ — авиаль;
- В — высокопрочный алюминиевый сплав;
- АЛ — литейный алюминиевый сплав;
- АМг — алюминиево-магниевый сплав;
- АМц — алюминиево-марганцевый сплав;
- САП — спеченные алюминиевые порошки;
- САС — спеченные алюминиевые сплавы.
После первого набора символов указывается номер марки сплава, а следом за номером — буква, которая обозначает его состояние:
- М — сплав после отжига (мягкий);
- Т — после закалки и естественного старения;
- А — плакированный (нанесен чистый слой алюминия);
- Н — нагартованный;
- П — полунагартованный.
Виды и свойства алюминиевых сплавов
Алюминиево-магниевые сплавы
Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.
В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.
Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.
Алюминиево-марганцевые сплавы
Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.
Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.
Сплавы алюминий-медь-кремний
Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.
Алюминиево-медные сплавы
Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.
Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.
Алюминий-кремниевые сплавы
Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.
Сплавы алюминий-цинк-магний
Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.
Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.
Авиаль
Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».
Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.
Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.
Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.
Физические свойства
- Плотность — 2712 кг/м3.
- Температура плавления — от 658°C до 660°C.
- Удельная теплота плавления — 390 кДж/кг.
- Температура кипения — 2500 °C.
- Удельная теплота испарения — 10,53 МДж/кг.
- Удельная теплоемкость — 897 Дж/кг·K.
- Электропроводность — 37·106 См/м.
- Теплопроводность — 203,5 Вт/(м·К).
Химический состав алюминиевых сплавов
Алюминиевые сплавы | |||||||||||||
Марка | Массовая доля элементов, % | Плотность, кг/дм³ | |||||||||||
ГОСТ | ISO 209-1-89 | Кремний (Si) | Железо (Fe) | Медь (Cu) | Марганец (Mn) | Магний (Mg) | Хром (Cr) | Цинк (Zn) | Титан (Ti) | Другие | Алюминий не менее | ||
Каждый | Сумма | ||||||||||||
АД000 | A199,8 1080A | 0,15 | 0,15 | 0,03 | 0,02 | 0,02 | 0,06 | 0,02 | 0,02 | 99,8 | 2,7 | ||
АД00 1010 | A199,7 1070A | 0,2 | 0,25 | 0,03 | 0,03 | 0,03 | 0,07 | 0,03 | 0,03 | 99,7 | 2,7 | ||
АД00Е 1010Е | ЕА199,7 1370 | 0,1 | 0,25 | 0,02 | 0,01 | 0,02 | 0,01 | 0,04 | Бор:0,02 Ванадий+титан:0,02 | 0,1 | 99,7 | 2,7 |
Применение алюминия
Ювелирные изделия
В далеком прошлом из-за высокой стоимости алюминия его использовали для изготовления ювелирных изделий. Так, весы с алюминиевыми и золотыми чашами были подарены Д. И. Менделееву в 1889 г.
Когда себестоимость алюминия снизилась, мода на ювелирные изделия из этого металла прошла. Но и в наши дни его используют для изготовления бижутерии. В Японии, например, алюминием заменяют серебро при производстве национальных украшений.
Столовые приборы
По-прежнему пользуются популярностью столовые приборы и посуда из алюминия. В частности, в армии широко распространены алюминиевые фляжки, котелки и ложки.
Стекловарение
Алюминий широко применяют в стекловарении. Высокий коэффициент отражения и низкая стоимость вакуумного напыления — основные причины использования алюминия при изготовления зеркал.
Пищевая промышленность
Алюминий зарегистрирован как пищевая добавка Е173. Ее используют в качестве пищевого красителя, а также для сохранения продуктов от плесени. Е173 окрашивает кондитерские изделия в серебристый цвет.
Военная промышленность
Из-за небольшого веса и низкой стоимости алюминий широко применяют при изготовлении ручного стрелкового оружия — автоматов и пистолетов.
Ракетная техника
Алюминий и его соединения используют в качестве ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах.
Алюмоэнергетика
В алюмоэнергетике алюминий используют для производства водорода и тепловой энергии, а также выработки электроэнергии в воздушно-алюминиевых электрохимических генераторах.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 декабря 2019;
проверки требует 1 правка.
Протравленный слиток алюминиевого сплава.
Фазовая диаграмма системы Al-Si.
Алюми́ниевые спла́вы — сплавы, основной массовой частью которых является алюминий. Самыми распространенными легирующими элементами в составе алюминиевых сплавов являются: медь, магний, марганец, кремний и цинк. Реже — цирконий, литий, бериллий, титан. В основном алюминиевые сплавы можно разделить на две основные группы: литейные сплавы и деформируемые (конструкционные). В свою очередь, конструкционные сплавы подразделяются на термически обработанные и термически необработанные. Большая часть производимых сплавов относится к деформируемым, которые предназначены для последующей ковки и штамповки[1].
Классификация[править | править код]
Приведена согласно национальным стандартам США (стандарт H35.1 ANSI) и ГОСТ России. В России основные стандарты это ГОСТ 1583
«Сплавы алюминиевые литейные. Технические условия» и ГОСТ 4784 «Алюминий и сплавы алюминиевые деформируемые. Марки». Существует также UNS[en] маркировка и международный стандарт алюминиевых сплавов и их маркировки ISO R209 b.
Алюминиево-магниевые сплавы[править | править код]
- Алюминиево-магниевые Al-Mg (ANSI: серия 5ххх у деформируемых сплавов и 5xx.x у сплавов для изделий фасонного литья; ГОСТ: АМг).
Сплавы системы Al-Mg характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости[2]. Кроме того, эти сплавы отличаются высокой усталостной прочностью.
В сплавах этой системы, содержащих до 6 % Mg, образуется эвтектическая система с атомным составом Al3Mg2 c твердым раствором магния в алюминии. Наиболее широкое распространение в промышленности получили сплавы с содержанием магния от 1 до 5 %.
Рост содержания магния в сплаве существенно увеличивает его прочность. Увеличение концентрации магния на каждый процент содержания повышает предел прочности сплава на ~30 МПа [3], а предел текучести — на ~20 МПа. При этом относительное удлинение уменьшается незначительно и находится в пределах 30—35 %.
Сплавы с содержанием магния до 3 % (по массе) не изменяют кристаллическую структуру при комнатной и повышенной температуре, даже в существенно нагартованном состоянии. С ростом концентрации магния в сплаве, в нагартованном состоянии механическая структура сплава становится нестабильной. Кроме того, увеличение содержания магния свыше 6 % приводит к ухудшению коррозионной стойкости сплава.
Для улучшения прочностных характеристик сплавы системы Al—Mg легируют хромом, марганцем, титаном, кремнием или ванадием. Примеси в сплавы этой системы меди и железа нежелательны, поскольку они снижают их коррозионную стойкость и свариваемость.
Алюминиево-марганцевые сплавы[править | править код]
- Алюминиево-марганцевые Al—Mn (ANSI: серия 3ххх; ГОСТ: АМц).
Сплавы этой системы обладают хорошей прочностью, пластичностью и технологичностью, высокой коррозионной стойкостью и хорошей свариваемостью.
Основными примесями в сплавах системы Al—Mn являются железо и кремний. Оба этих элемента уменьшают растворимость марганца в алюминии. Для получения мелкозернистой структуры сплавы этой системы легируют титаном.
Легирование достаточным[каким?] количеством марганца обеспечивает стабильность структуры нагартованного металла при комнатной и повышенной температурах.
Алюминиево-медные сплавы[править | править код]
Поршневая группа (поршень и шатун), выполненная из алюминиевого сплава.
- Алюминиево-медные Al—Cu (Al—Cu—Mg) (ANSI: серия 2ххх, 2xx.x; ГОСТ: АМ).
Механические свойства сплавов этой системы в термоупрочнённом состоянии достигают, а иногда и превышают, механические свойства низкоуглеродистых сталей. Эти сплавы хорошо поддаются механической обработке. Их существенный недостаток — низкая коррозионная стойкость, поэтому необходимо использовать поверхностные защитные покрытия.
В качестве легирующих добавок используются марганец, кремний, железо и магний. Причем наиболее сильное влияние на свойства сплава оказывает магний: легирование магнием заметно повышает предел прочности и текучести. Добавка кремния в сплав повышает его способность к искусственному старению. Легирование железом и никелем повышает жаропрочность сплавов.
Нагартовка этих сплавов после закалки ускоряет искусственное старение, а также повышает прочность и сопротивление коррозии под напряжением.
Сплавы алюминий-медь-кремний[править | править код]
- Сплавы системы Al—Cu—Si (ГОСТ: АМК).
Алюминиевые антифрикционные сплавы, называемые также алькусинами (также: аэрон). Применяется во втулочных подшипниках[4], а также при изготовлении блоков цилиндров с формообразованием в т.ч. литьём[5]. Имеют высокую твёрдость поверхности, поэтому плохо прирабатываются.
Сплавы алюминий-цинк-магний[править | править код]
- Сплавы системы Al—Zn—Mg (Al—Zn—Mg—Cu) (ANSI: серия 7ххх, 7xx.x).
Сплавы этой системы имеют достаточно высокую прочность и хорошую обрабатываемость. Типичные сплавы этой системы — сплавы В95 (в США сплав 7075) относятся к высокопрочным алюминиевым сплавам. Эффект высокого упрочнения обусловлен высокой растворимостью цинка (до 70 %) и магния (до 17,4 %) при температуре плавления сплава, но растворимость резко уменьшается при охлаждении.
Существенным недостатком этих сплавов является крайне низкая коррозионная стойкость под воздействием механического напряжения. Повышение коррозионной стойкости сплавов под напряжением достигается легированием медью.
В 1960-е годы была обнаружена закономерность: легирование литием алюминиевых сплавов замедляет естественное и ускоряет искусственное старение. Помимо этого, присутствие лития уменьшает плотность сплава и существенно повышает его модуль упругости[6].
На основе этого открытия[какого?] были разработаны новые системы сплавов Al—Mg—Li, Al—Cu—Li и Al—Mg—Cu—Li.
Алюминий-кремниевые сплавы (силумины)[править | править код]
- Алюминиево-кремниевые сплавы (силумины) — группа литейных сплавов. Имеют малую усадку при кристаллизации расплава. Применяются для отливок корпусов разных механизмов, корпусов приборов, деталей бытовых приборов, декоративного литья.
Другие сплавы[править | править код]
- Комплексные сплавы на основе алюминия: авиаль.
Новые композитные сплавы алюминия[править | править код]
В 2019 году российские учёные из Национального исследовательского технологического университета МИСиС создали новый уникально прочный композит алюминий-никель-лантан. В расплав алюминия добавлялись легирующие элементы, образующие с алюминием химические соединения, которые в процессе затвердевания сплава дают прочный армирующий каркас. Наилучшие результаты по прочности в сочетании с лёгкостью и гибкостью показали Al-La-Ni сплавы с содержанием La до 8% масс и содержанием Ni до 5% масс[7]. Согласно микроисследованиям, сплав состоит из первичных кристаллов Al и сверхтонкой тройной эвтектики (толщина частиц около 30–70 нм), состоящей из бинарных соединений Al3Ni и Al4La. Испытание на одноосное растяжение перспективного сплава Al7La4Ni в литом состоянии показало предел прочности при растяжении около 250±10 МПа, предел текучести 200±10 МПа и пластичность 3,0±0,2%[7]. Благодаря естественной кристаллизации, частицы распределяются равномерно, создавая армирующий каркас, и композит получается более прочным и гибким, чем его «порошковые» аналоги. Новый сплав очень перспективен для использования в области авиа- и автомобилестроения, для проектирования современной робототехники, в том числе беспилотных летательных аппаратов, где снижение массы дрона имеет критическое значение. Показатели сплава превышают другие алюмоматричные композиты.[8]
Маркировка по ГОСТ[править | править код]
Принята буквенно-цифровая система маркировки. Буква, стоящая в начале, означает:
А — технический алюминий;
Д — дюралюминий;
АК — алюминиевый сплав, ковкий;
АВ — авиаль;
В — высокопрочный алюминиевый сплав;
АЛ — литейный алюминиевый сплав;
АМг — алюминиево-магниевый сплав;
АМц — алюминиево-марганцевый сплав;
САП — спечённые алюминиевые порошки;
САС — спечённые алюминиевые сплавы.
Вслед за буквами идёт номер марки сплава. За номером марки сплава ставится буква, обозначающая состояние сплава:
М — сплав после отжига (мягкий);
Т — после закалки и естественного старения;
А — плакированный (нанесён чистый слой алюминия);
Н — нагартованный;
П — полунагартованный.
Термическая обработка[править | править код]
Применяют: отжиг, закалку, старение.
Отжиг существует 3-х типов:
- диффузионный (гомогенизация);
- рекристаллизационный;
- отжиг термически упрочняемых сплавов.
Гомогенизация выравнивает химическую микронеоднородность зёрен путём диффузии (уменьшение дендритной ликвации).
Рекристаллизационный отжиг восстанавливает пластичность после обработки давлением.
Отжиг термически упрочняемых сплавов полностью снимает упрочнение.
Химический состав[править | править код]
В соответствии с ГОСТ[9] соотношение кремния и железа в алюминиевых сплавах должно быть менее единицы.
Алюминиевые сплавы | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Марка | Массовая доля элементов, % | Плотность, кг/дм³ | |||||||||||
ГОСТ | ISO 209-1-89 | Кремний (Si) | Железо (Fe) | Медь (Cu) | Марганец (Mn) | Магний (Mg) | Хром (Cr) | Цинк (Zn) | Титан (Ti) | Другие | Алюминий не менее | ||
Каждый | Сумма | ||||||||||||
АД000 | A199,8 1080A | 0,15 | 0,15 | 0,03 | 0,02 | 0,02 | 0,06 | 0,02 | 0,02 | 99,8 | 2,7 | ||
АД00 1010 | A199,7 1070A | 0,2 | 0,25 | 0,03 | 0,03 | 0,03 | 0,07 | 0,03 | 0,03 | 99,7 | 2,7 | ||
АД00Е 1010Е | ЕА199,7 1370 | 0,1 | 0,25 | 0,02 | 0,01 | 0,02 | 0,01 | 0,04 | Бор:0,02 Ванадий+титан:0,02 | 0,1 | 99,7 | 2,7 |
Знак обозначающий пригодность изделия из алюминия для вторичной переработки
Интересные факты[править | править код]
С 1997 по 2017 годы Министерство энергетики РФ запрещало использование алюминиевых сплавов в электропроводке зданий и сооружений.
См. также[править | править код]
- Альклед
- Алюминиевая пена
- Дюралюминий
- Алюминиевая броня