Какими свойствами должны обладать органические вещества
История развития органической химии
В истории развития органической химии выделяют два периода: эмпирический (с середины XVII до конца XVIII века), в который познание органических веществ, способов их выделения и переработки происходило опытным путем и аналитический (конец XVIII – середина XIX века), связанный с появлением методов установления состава органических веществ. В аналитический период было установлено, что все органические вещества содержат углерод. Среди, других элементов, входящих в состав органических соединений были обнаружены водород, азот, сера, кислород и фосфор.
Важное значение в истории органической химии имеет структурный период (вторая половина XIX – начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был А.М. Бутлеров.
Основные положения теории строения органических соединений:
- атомы в молекулах соединены между собой в определенном порядке химическими связями в соответствии с их валентностью. Углерод во всех органических соединениях четырехваленнтен;
- свойства веществ зависят не только от их качественного и количественного состава, но и от порядка соединения атомов;
- атомы в молекуле взаимно влияют друг на друга.
Порядок соединения атомов в молекуле описывается структурной формулой, в которой химические связи изображаются черточками.
Характерные свойства органических веществ
Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений:
- Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твердые вещества, в отличие неорганических соединений, которые в большинстве своём представляют собой твердые вещества с высокой температурой плавления.
- Органические соединения большей частью построены ковалентно , а неорганические соединения — ионно.
- Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
- Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу — гомологическую разницу CH2. Органические вещества горят.
Классификация органических веществ
В классификации принимают за основу два важных признака – строение углеродного скелета и наличие в молекуле функциональных групп.
В молекулах органических веществ атомы углерода соединяются друг с другом, образуя т.н. углеродный скелет или цепь. Цепи бывают открытыми и замкнутыми
(циклическими), открытые цепи могут быть неразветвленными (нормальными) и разветвленными:
По строению углеродного скелета различают:
— алициклические органические вещества, имеющие открытую углеродную цепь как разветвленную, так и неразветвленную. Например,
СН3-СН2-СН2-СН3 (бутан)
СН3-СН(СН3)-СН3 (изобутан)
— карбоциклические органические вещества, в которых углеродная цепь замкнута в цикл (кольцо). Например,
— гетероциклические органические соединения, содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода или серы:
Функциональная группа – атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к определенному классу. Признаком, по которому органическое вещество относят к тому или иному классу, является природа функциональной группы (табл. 1).
Таблица 1. Функциональные группы и классы.
Соединения могут содержать не одну, а несколько функциональных групп. Если эти группы одинаковые, то соединения называют полифункциональными, например хлороформ, глицерин. Соединения, содержащие различные функциональные группы, называют гетерофункциональными, их можно одновременно отнести к нескольким классам соединений, например молочную кислоту можно рассматривать, как карбоновую кислоту и как спирт, а коламин – как амин и спирт.
Примеры решения задач
Характерные свойства органических соединений
Органические вещества обладают рядом характерных особенностей, среди которых наиболее важные:
- атомы углерода в молекулах органических соединений способны соединяться друг с другом;
- атомы углерода в молекулах органических соединений образуют цепи и кольца, что является одной из причин многообразия органических соединений;
- связи между атомами в молекулах органических соединений ковалентные. В своем большинстве органические вещества являются неэлектролитами, т.е. не диссоциируют на ионы в растворах, а также сравнительно медленно взаимодействуют друг с другом.
- для органических соединений характерно явление изомерии, в связи с чем имеется множество соединений углерода, которые обладают одинаковым качественным и количественным составом, одинаковой молекулярной массой, но совершенно различными физическими и даже химическими свойствами;
- многие органические соединения являются непосредственными носителями, участниками или продуктами процессов, которые протекают в живых организмах, – ферменты, гормоны, витамины.
Физические свойства органических соединений
Чаще всего органические соединения представляют собой газы, жидкости или низкоплавкие твердые вещества. Большое число твердых органических веществ плавится в интервале сравнительно невысоких температур (от комнатной до 400 °С).
Взаимное влияние атомов в молекулах органических соединений
Взаимное влияние атомов в молекуле передается через систему ковалентных связей с помощью электронных эффектов. Электронным эффектом называют смещение электронной плотности в молекуле под влиянием заместителей.
Индуктивный эффект (I) – смещение электронной плотности по цепи σ-связей.
Мезомерный эффект (M) — смещение электронной плотности по цепи π-связей.
-I (отрицательный индуктивный эффект): -Cl, -Br, -OH, -NH2;
+ I (положительный индуктивный эффект):-CH3, -C2H5;
-M (отрицательный мезомерный эффект): -CH=O, -COOH, -NO2;
+M (положительный мезомерный эффект):-OH, -NH2;
Химические свойства органических соединений
Реакции органических веществ классифицируют по типу разрыва связей на:
— радикальные реакции, протекающие с гомолитическим разрывом ковалентной связи
А:В → А. + В.
— ионные реакции, протекающие с гетеролитическим разрывом ковалентной связи
А:В → А:— + В+
По типу реакции:
— присоединение
RCH=CH2 +XY → RCHX + CH2Y
— замещение
RCH2X + Y → RCHY + X
— отщепление (элеменирование)
RCHX-CH2Y → RCH=CH2 + XY
— полимеризация
N(CH2=CH2) → (-CH2-CH2-)n
Окисление и восстановление в органической химии связывают с потерей и приобретением водорода и кислорода. Вещество окисляется, если оно теряет атомы Н и приобретает атомы О. Окислитель в общем виде обозначают [O].
Вещество восстанавливается, если оно приобретает атом Н и (или) теряет атомы О. Восстановитель в общем виде обозначается [H].
Генетическая связь между классами органических соединений
Генетические ряды органических соединений выглядит следующим образом:
Рассмотрим на примере ряда этана:
CH3-CH3 +Cl2→ CH3-CH2Cl + HCl (получение из алканов галогеналканов)
CH3-CH3 → CH2=CH2 + H2↑ (получение из алканов алкенов)
CH2=CH2 → C2H2 + H2↑ (получение из алкенов алкинов)
CH2=CH2 + H2O → C2H5OH (получение из алкенов предельных одноатомных спиртов)
C2H5OH + [O] → CH3CHO + H2O (получение из предельных одноатомных спиртов альдегидов)
CH3CHO + [O] → CH3COOH (получение из альдегидов предельных одноосновных карбоновых кислот)
CH3COOH + Cl2 → CH2Cl-COOH (получение из предельных одноосновных карбоновых кислот хлорзамещенных карбоновых кислот)
CH2Cl-COOH + NH3→ NH2-CH2– COOH + HCl (получение хлорзамещенных карбоновых кислот аминокислот)
(получение из аминокислот пептидов)
Примеры решения задач
Алканы
Общая формула: R-H или СnН2n+2,
где R – предельный радикал.
Гомологический ряд.
Формула
название
СН4
метан
С2Н6
этан
С3Н8
пропан
С4Н10
бутан
С5Н12
пентан
С6Н14
гексан
С7Н16
гептан
С8Н18
октан
С9Н20
нонан
С10Н22
декан
Химические свойства:
Горение:
CH4 + 2O2 2H2O + CO2
Пиролиз:
СН4 С + 2Н2 (полный)
2СН4С2Н2 +3Н2(частичн.)
Хлорирование:
CH4 + Cl2 CH3Cl + HCl;
CH3Cl+Cl2 CH2Cl2 + HCl;
CH2Cl2 + Cl2CHCl3+ HCl;
CНCl3 + Cl2CCl4 + HCl.
Механизм реакции хлорирования:
Cl : Cl 2Cl.;
CH4 + Cl.CH3.+ HCl
CH3. + Cl:ClCH3Cl + Cl.и т.д.
(т.н. цепная реакция)
Получение:
Из нефти.
Крекинг высших алканов:
C8H18C4H8 + C4H10.
Реакция Вюрца:
R1-Cl+R2-Cl+2NaR1-R2+2NaCl
Реакция Кольбе:
2CH3COONa+2H2O
C2H6+Na2CO3+ 2H2
Прямой синтез:
С+2Н22СН4
Алкены
Общая формула: СnH2n или
R C=C-R
R R
Гомологический ряд:
Формула
название
С2Н4
этен (этилен)
С3Н6
пропен (пропилен)
С4Н8
бутен (бутилен)
С5Н10
пентен (амилен)
С6Н12
гексен
С7Н14
гептен
С8Н16
октен
С9Н18
нонен
Химические свойства:
Горение:
C2H4 + 3O22CO2+2H2O.
Гидратация:
С2Н4 + Н2О С2Н5ОН
Галогенирование:
С2Н4 + Br2 C2H4Br2
(качественная реакция)
Гидрогалогенирование:
C2H4 + HClC2H5Cl
Направление реакций гидратации и гидрогалогенирования определяется правилом Марковникова:При реакциях присоединения в алкенах ОН и Hal идут к тому атому С при котором меньше водорода:
СH2=CH-CH3+HCl
CH3-CHCl-CH3
CH2Cl-CH2-CH3
Окисление:
С2Н4HO-CH2-CH2-OH
Полимеризация:
CH2=CH2 + CH2=CH2
-CH2-CH2- + -CH2-CH2-
-CH2-CH2-CH2-CH2-.(полиэтилен)
Суммарно:
nCH2=CH2 (-CH2-CH2-)n
Получение:
C2H5OHH2O+C2H4
Из нефти
Алкины
Общая формула: CnH2n-2,
R-C=C-R
Гомологический ряд
2Н2
ацетилен (этин)
С3Н4
пропин
С4Н6
бутин
С5Н8
пентин
Химические свойства:
Горение:
2С2Н2 + 3О22СО2 +2Н2О
Окисление:
С2Н2HOОС-СООН
Тримеризация: 3С2Н2 С6Н6
Гидрирование:
С2Н2 С2Н4С2Н6
Гидрогалогенирование:
С2Н2 + HClC2H3Cl;
C2H3Cl + HClC2H4Cl2
Получение:
Из карбида кальция:
СаС2 + 2Н2О Са(ОН)2 + С2Н2
Из нефти.
Крекинг метана (см. алканы)
Ароматические углеводороды (арены)
Общая формула: CnH2n-6 Все арены содержат в своем составе бензольное ядро (см. рисунок).
Сущность бензольного кольца:
В молекуле бензола у каждого атома C есть p-электрон. В циклической молекуле е-облака перекрываются и возникает единое р-электронное облако.
Гомологический ряд аренов:
Замещенные:
6Н6
бензол
С6Н5СН3
метилбензол(толуол)
Конденсированные:
нафталин
Х
имические свойства:
Горение:
2С6Н6 +15О2 12СО2 +6Н2О
Бромирование:
С6Н6 + Br2C6H5Br + HBr
Н
итрование:
С6Н6 + HNO3
C6H5NO2 + H2O
Хлорирование:
C6H6 + 3Cl2 C6H6Cl6
О
дноатомные спирты
Общая формула: R-OH
Гомологический ряд:
Формула
название
СН3ОН
метанол (метиловый спирт)
С2Н5ОН
этанол (этиловый)
С3Н7ОН
пропанол (пропиловый)
С4Н9ОН
бутанол (бутиловый)
Химические свойства:
Горение:
С2Н5ОН + 5О2 2СО2 + 6Н2О
Реакция со щелочными Me:
2C2H5OH + 2Na2C2H5ONa + H2
Дегидратация:
C2H5OHH2O+C2H4
Образование простых эфиров:
R1-OH + R2-OH R1-O-R2 + H2O
2R-OH R-O-R + H2O
Многоатомные спирты
О
бщая формула: СН2-(СН)n-СН2
ОН ОН ОН
Гомологический ряд:
Этиленгликоль НО-СН2-СН2-ОН
Г
лицерин СН2-СН-СН2 ОН ОН ОН
Химические свойства:
1 2 и 4 аналогично одноатомным.
Реакции с гидроксидами Ме:
НО-СН2-СН2-ОН + Cu(OH)2
CH2-CH2 + 2H2O
О О (качественная реакция).
Cu
Альдегиды
Общая формула:
или R-COH ( -СОН = карбонильная группа — на рисунке)
Гомологический ряд:
Формула
название
НСОН
метаналь (муравьиный альдегид)
СН3СОН
этаналь (уксусный альдегид)
С2Н5СОН
пропаналь
Химические свойства:
Реакция с Ag2O:
+ Ag2O
+2Ag
или более кратко:
RCOH + Ag2ORCOOH + 2Ag
(“Реакция серебряного зеркала ” -качественная реакция альдегидов.)
Реакция с Cu(OH)2:
RCOH + 2Cu(OH)2
RCOOH + Cu2O + 2H2O
Восстановление:
СН3СОН + Н2С2Н5ОН
Реакция с фенолом
+ Н2О (реакция полимеризации)
Карбоновые кислоты
Общая формула:
или R-COОH ( -СООН = карбоксильная группа — на рисунке)
Гомологический ряд:
Формула
название
НСООН
Муравьиная
СН3СООН
С2Н5СООН
С3Н7СООН
Уксусная
Пропионовая
Масляная
С15Н31СООН
С17Н35СООН
Пальмитиновая
Стеариновая
С17Н33СООН
Олеиновая
Химические свойства:
Кислотные свойства:
Диссоциируют:
СН3СООН СН3СОО + Н+
Изменяют окраску индикаторов.
Взаимодействуют с Ме:
2RCOOH + ZnZn(RCOO)2 + H2
Реагируют с оксидами и гидроксидами металлов:
RCOOH+NaOHRCOONa+H2O
2RCOOH+MgO
Mg(RCOO)2 +H2O
Специфические свойства:
Реакция этерификации:
R1COOH+R2OHR1COOR2+H2O
R1COOR2 – сложный эфир
Восстановление:
RCOOHRCOH (альдегид)
RCH2OH (спирт).
Амины
Общая формула: R –NH2
Гомологический ряд:
Формула
название
CH3NH2
Метиламин
С2H5NH2
C6H5NH2
Этиламин
Фениламин (Анилин)
Химические свойства:
Проявляют свойства оснований:
CH3NH2+H2O= [CH3NH3]+OH-
[CH3NH3]+ — ион метиламмония.
CH3NH2+HCl= [CH3NH3]+Cl-
Получение:
R-Cl+2NH3RNH2+NH4Cl
RNO2RNH2
Органическая химия – это химия углерода и его соединений с другими элементами.
В молекулах органических веществ могут присутствовать также атомы: водорода Н, кислорода О, азота N, серы S, фосфора P, галогенов, металлов и других элементов.
Количество известных органических соединений в настоящее время превышает 20 миллионов.
Атомы углерода могут соединяться друг с другом с образованием цепей различного строения (разветвленные, неразветвленные, замкнутые) и длины (от двух до сотен тысяч атомов углерода).
В органических веществах углерод имеет валентность IV (образует 4 связи).
- Атом углерода может образовывать одинарные, двойные и тройные связи.
CH3-CH3 CH2=CH2 CH≡CH
В основе современной органической химии лежит теория строения органических соединений.
Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается структурной формулой (формулой строения).
- Свойства веществ зависят не только от вида и числа атомов в молекуле, но и от их взаимного расположения – т.е. от строения молекулы.
Это приводит к тому, что вещества одного и того же состава могут иметь разное строение, т. е. к появлению изомерии.
Изомеры – это вещества, имеющие одинаковый состав (число атомов каждого типа), но разное взаимное расположение атомов – разное строение.
Например, формуле C4H10 соответствуют два изомерных соединения н-бутан с линейным углеродным скелетом и изобутан (2-метилбутан) с разветвленным скелетом | |
н-Бутан CH3-CH2-CH2-CH3 | Изобутан CH3-CH(CH3)-CH3 |
При этом температура кипения н-бутана -0,5оС, а изобутана -11,4оС.
- По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы – определить свойства.
- Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга. Это отражается на химических и физических свойствах вещества.
Состав органического вещества можно описать химическими формулами.
Химические формулы органических веществ бывают следующих типов:
Простейшая формула – может быть получена опытным путем через определение соотношения количества атомов химических элементов в веществе.
Например, простейшая формула метана CH4, а вот бензола – СН.
Истинная формула (брутто-формула) – показывает истинный состав молекулы, но не показывает ее структуру. Истинная формула показывает точное количество атомов каждого элемента в одной молекуле.
Например, истинная формула бензола C6H6.
Полная (развернутая) структурная формула однозначно описывает порядок соединения атомов в молекуле.
Например, полная структурная формула бутана:
Сокращенная структурная формула – это структурная формула, в которой не указываются связи между углеродом и водородом.
Например, сокращенная структурная формула бутана:
CH3-CH2-CH2-CH3
Типы углеродных атомов в составе органических молекул
Атомы углерода | |||
Первичные | Вторичные | Третичные | Четвертичные |
Атомы углерода, которые в углеродной цепи соединены с одним атомом углерода | Атомы углерода, которые в углеродной цепи соединены с двумя атомами углерода | Атомы углерода, которые в углеродной цепи соединены с тремя атомами углерода | Атомы углерода, которые в углеродной цепи соединены с четырьмя атомами углерода |
Одна из характеристик химических связей — тип перекрывания орбиталей атомов в молекуле.
По характеру перекрывания различают σ-(сигма) и π‑(пи) связи.
σ-Связь — это связь, в которой перекрывание орбиталей происходит вдоль оси, соединяющей ядра атомов.
σ-Связь может быть образована любыми типами орбиталей (s, p, d, гибридизованными).
σ-Связь — это основная связь в молекуле, которая преимущественно образуется между атомами.
Между двумя атомами возможна только одна σ-связь.
Виды σ-связей
π-Связь — это связь, в которой перекрывание орбиталей происходит в плоскости, перпендикулярной оси, соединяющей ядра атомов, сверху и снизу от оси связи.
π-Связь образуется при перекрывании только р- (или d) орбиталей, перпендикулярных линии связи и параллельных друг другу.
π-Связь является дополнительной к σ-связи, она менее прочная и легче разрывается при химических реакциях.
Одинарная связь С–С, С–Н, С–О | Двойная связь С=С, С=О | Тройная связь С≡С, С≡N |
σ-связь | σ-связь + π-связь | σ-связь + две π-связи |
Электронная формула атома углерода в основном состоянии:
+6С 1s22s22p2
+6С 1s 2s 2p
В возбужденном состоянии: один электрон переходит с 2s-подуровня на 2р-подуровень.
+6С* 1s22s12p3
+6С* 1s2 2s1 2p3
Таким образом, в возбужденном состоянии углерод содержит четыре неспаренных электрона, может образовать четыре химические связи и проявляет валентность IV в соединениях.
При образовании четырех химических связей атомом углерода происходит гибридизация атомных орбиталей.
Гибридизация атомных орбиталей — это выравнивание электронной плотности атомных орбиталей разного типа с образованием новых, молекулярных орбиталей, форма и энергия которых одинаковы.
В гибридизацию вступают атомные орбитали с небольшой разницей в энергии (как правило, орбитали одного энергетического уровня). В зависимости от числа и типа орбиталей, участвующих в гибридизации, для атома углерода возможны sp3, sp2 и sp-гибридизация.
sp3-Гибридизация
В sp3-гибридизацию вступают одна s-орбиталь и три p-орбитали. При этом образуются четыре sp3-гибридные орбитали:
Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.
Поэтому четыре гибридные орбитали углерода в состоянии sp3-гибридизации направлены в пространстве под углом 109о 28’ друг к другу, что соответствует тетраэдрическому строению.
Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода. Валентный угол Н–С–Н в метане равен 109о 28’
Молекулам линейных алканов с большим числом атомов углерода соответствует зигзагообразное расположение атомов углерода.
Например, пространственное строение н-бутана
sp2-Гибридизация
В sp2-гибридизацию вступают одна s-орбиталь и две p-орбитали. Одна p-орбиталь не гибридизуется:
Три sp2-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.
Поэтому три sp2-гибридные орбитали атома углерода направлены в пространстве под углом 120одруг к другу, что соответствует плоскому строению (треугольник).
При этом негибридная р-орбиталь располагается перпендикулярно плоскости, в которой расположены три гибридные sp2— орбитали.
Например, молекула этилена C2H4 имеет плоское строение. Сигма-связь между атомами углерода образуется за счет перекрывания sp2-гибридных орбиталей. Пи-связь между атомами углерода образуется за счет перекрывания негибридных р-орбиталей.
Модель молекулы этилена:
sp-Гибридизация
В sp-гибридизацию вступают одна s-орбиталь и одна p-орбиталь. Две p-орбитали не вступают в гибридизацию:
Две sp-гибридные орбитали атома углерода направлены в пространстве под углом 180одруг к другу, что соответствует линейному строению.
Изображение с портала orgchem.ru
При этом две р-орбитали располагаются перпендикулярно друг другу и перпендикулярно линии, на которой расположены гибридные орбитали.
Например, молекула ацетилена имеет линейное строение.
Изомеры – это вещества, имеющие одинаковый состав (число атомов каждого типа), но разное взаимное расположение атомов – разное строение.
Изомерия – это явление существования веществ с одинаковым составом, но различным строением.
Например, формуле C4H10 соответствуют два изомерных соединения н-бутан с линейным углеродным скелетом и изобутан (2-метилбутан) с разветвленным скелетом:
При этом температура кипения н-бутана –0,5оС, а изобутана –11,4оС.
Виды изомерии
Различают два основных вида изомерии: структурную и пространственную (стереоизомерию).
Структурные изомеры отличаются друг от друга взаимным расположением атомов в молекуле; стереоизомеры — расположением атомов в пространстве.
Структурная изомерия
Структурные изомеры – соединения с одинаковым составом, но различным порядком связывания атомов, т.е. с различным химическим строением. Молекулярная формула у структурных изомеров одинаковая, а структурная различается.
1. Изомерия углеродного скелета: вещества различаются строением углеродной цепи, которая может быть линейная или разветвленная.
Например, молекулярной формуле С5Н12 соответствуют три изомера:
2. Изомерия положения обусловлена различным положением кратной связи, функциональной группы или заместителя при одинаковом углеродном скелете молекул.
2.1. Изомерия положения функциональной группы. Например, существует два изомерных предельных спирта с общей формулой С3Н8О: пропанол-1 (н-пропиловый спирт) пропанол-2 (изопропиловый спирт):
2.2. Изомерия положения кратной связи может быть вызвана различным положением кратной (двойной или тройной) связи в непредельных соединениях. Например, в бутене-1 и бутене-2:
2.3. Межклассовая изомерия – ещё один вид структурной изомерии, когда вещества из разных классов веществ имеют одинаковую общую формулу.
Например, формуле С2Н6О соответствуют: спирт (этанол) и простой эфир (диметиловый эфир):
Пространственная изомерия
Пространственные изомеры – это вещества с одинаковым составом и химическим строением, но с разным пространственным расположением атомов в молекуле. Виды пространственной изомерии – геометрическая (цис—транс) и оптическая изомерия.
1. Геометрическая изомерия (или цис-транс-изомерия)
Геометрическая изомерия характерна для соединений, в которых различается положение заместителей относительно плоскости двойной связи или цикла.
Например, для алкенов и циклоалканов.
Двойная связь не имеет свободного вращения вокруг своей оси.
Поэтому заместители у атомов углерода при двойной связи могут быть расположены либо по одну сторону от плоскости двойной связи (цис-изомер), либо по разные стороны от плоскости двойной связи (транс-изомер). При этом никаким вращением нельзя получить из цис-изомера транс-изомер, и наоборот.
Например, бутен-2 существует в виде цис— и транс-изомеров
1,2-Диметилпропан также образует цис-транс-изомеры:
Геометрические изомеры различаются по физическим свойствам (температура кипения и плавления, растворимость, дипольный момент и др.). Например, температура кипения цис-бутена-2 составляет 3,73 оС, а транс-бутена-2 0,88оС.
При этом цис—транс-изомерия характерна для соединений, в которых каждый атом углерода при двойной связи С=С (или в цикле) имеет два различных заместителя.
Например, в молекуле бутена-1 CH2=CH-CH2-CH3 заместители у первого атома углерода при двойной связи (два атома водорода) одинаковые, и цис—транс-изомеры бутен-1 не образует. А вот в молекуле бутена-2 CH3—CH=CH-CH3 заместители у каждого атома углерода при двойной связи разные (атом водорода и метильная группа CH3), поэтому бутен-2 образует цис— и транс-изомеры.
Таким образом, для соединений вида СH2=СHR и СR2=СHR’ цис—транс-изомерия не характерна.
2. Оптическая изомерия
Оптические изомеры – это пространственные изомеры, молекулы которых соотносятся между собой как предмет и несовместимое с ним зеркальное изображение.
Оптическая изомерия свойственна молекулам веществ, имеющих асимметрический атом углерода.
Асимметрический атом углерода — это атом углерода, связанный с четырьмя различными заместителями.
Такие молекулы обладают оптической активностью — способностью к вращению плоскости поляризации света при прохождении поляризованного луча через раствор вещества.
Например, оптические изомеры образует 3-метилгексан:
Классификацию органических веществ определяют строение углеродной цепи (углеродного скелета) и наличие и особенности строения функциональных групп.
Углеродный скелет – это последовательность соединенных между собой атомов углерода в органической молекуле.
Функциональная группа – это атом или группа атомов, которая определяет принадлежность молекулы к определенному классу органических веществ и химические свойства, соответствующие данному классу веществ.
Классификация органических веществ по составу | ||
Углеводор? |