Какими химическими свойствами обладают основания

Какими химическими свойствами обладают основания thumbnail

Химические свойства гидроксида металла во многом зависят от того, к какой группе он принадлежит — к щелочам или к нерастворимым основаниям.

Общие химические свойства щелочей

1. Кристаллы щелочей при растворении в воде полностью диссоциируют, то есть распадаются на положительно заряженные ионы металла и отрицательно заряженные гидроксид-ионы.

A) Например, при диссоциации гидроксида натрия образуются положительно заряженные ионы натрия и отрицательно заряженные гидроксид-ионы:

NaOH→Na++OH−.

Б) Процесс диссоциации гидроксида кальция отображается следующим уравнением:

Ca(OH)2→Ca2++2OH−.

2. Растворы щелочей изменяют окраску индикаторов.

Фактически с индикатором взаимодействуют гидроксид-ионы, содержащиеся в растворе любой щёлочи. При этом протекает химическая реакция с образованием нового продукта, признаком протекания которой является изменение окраски вещества.

Изменение окраски индикаторов в растворах щелочей

Индикатор

Изменение окраски индикатора

Лакмус

Фиолетовый лакмус становится синим

Фенолфталеин

Беcцветный фенолфталеин становится

малиновым

Универсальный

индикатор

Универсальный индикатор становится

синим

Видеофрагмент:

Действие щелочей на индикаторы

3. Щёлочи взаимодействуют с кислотами, образуя соль и воду.

Реакции обмена между щелочами и кислотами называют реакциями нейтрализации.

А) Например, при взаимодействии гидроксида натрия с соляной кислотой образуются хлорид натрия и вода: NaOH+HCl→NaCl+H2O.

Видеофрагмент:

Взаимодействие гидроксида натрия с соляной кислотой

Б) Если нейтрализовать гидроксид кальция азотной кислотой, образуются нитрат кальция и вода:

Ca(OH)2+2HNO3→Ca(NO3)2+2H2O.

4. Щёлочи взаимодействуют с кислотными оксидами, образуя соль и воду.

А) Например, при взаимодействии гидроксида кальция с оксидом углерода((IV)) т. е. углекислым газом, образуются карбонат кальция и вода:

Ca(OH)2+CO2→CaCO3↓+H2O.

Обрати внимание!

При помощи этой химической реакции можно доказать присутствие оксида углерода((IV)): при пропускании углекислого газа через известковую воду (насыщенный раствор гидроксида кальция) раствор мутнеет, поскольку выпадает осадок белого цвета — образуется нерастворимый карбонат кальция.

Б) При взаимодействии гидроксида натрия с оксидом фосфора((V)) образуются фосфат натрия и вода:

6NaOH+P2O5→2Na3PO4+3H2O.

5. Щёлочи могут взаимодействовать с растворимыми в воде солями.

Обрати внимание!

Реакция обмена между основанием и солью возможна в том случае, если оба исходных вещества растворимы, а в результате образуется хотя бы одно нерастворимое вещество (выпадает осадок).

А) Например, при взаимодействии гидроксида натрия с сульфатом меди((II)) образуются сульфат натрия и гидроксид меди((II)):

2NaOH+CuSO4→Na2SO4+Cu(OH)2↓.

Б) При взаимодействии гидроксида кальция с карбонатом натрия образуются карбонат кальция и гидроксид натрия:

Ca(OH)2+Na2CO3→CaCO3↓+2NaOH.

6. Малорастворимые щёлочи при нагревании разлагаются на оксид металла и воду.

Например, если нагреть гидроксид кальция, образуются оксид кальция и водяной пар:

Ca(OH)2⟶t°CaO+H2O↑.

Общие химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с кислотами, образуя соль и воду.

А) Например, при взаимодействии гидроксида меди((II)) с серной кислотой образуются сульфат меди((II)) и вода:

Cu(OH)2+H2SO4→CuSO4+2H2O.

Б) При взаимодействии гидроксида железа((III)) с соляной (хлороводородной) кислотой образуются хлорид железа((III)) и вода:

Fe(OH)3+3HCl→FeCl3+3H2O.

Видеофрагмент:

Взаимодействие гидроксида железа((III)) с соляной кислотой

2. Некоторые нерастворимые основания могут взаимодействовать с некоторыми кислотными оксидами, образуя соль и воду.

Например, при взаимодействии гидроксида меди((II)) с оксидом серы((VI)) образуются сульфат меди((II)) и вода:

Cu(OH)2+SO3⟶t°CuSO4+H2O.

3. Нерастворимые основания при нагревании разлагаются на оксид металла и воду.

А) Например, при нагревании гидроксида меди((II)) образуются оксид меди((II)) и вода:

 Cu(OH)2⟶t°CuO+H2O.

Видеофрагмент:

Разложение гидроксида меди((II))

Б) Гидроксид железа((III)) при нагревании разлагается на оксид железа((III)) и воду:

2Fe(OH)3⟶t°Fe2O3+3H2O.

Источник

Немного теории

Кислоты

Кислоты ― это сложные
вещества, образованные атомами водорода, способными замещаться на атомы металла и кислотными остатками.

Кислоты — это электролиты, при диссоциации
которых образуются только катионы водорода и анионы кислотных остатков.

Классификация кислот

Классификация кислот по составу

Кислородсодержащие кислоты

Бескислородные кислоты

H2SO4 серная кислота

H2SO3 сернистая кислота

HNO3 азотная кислота

H3PO4 фосфорная кислота

H2CO3 угольная кислота

H2SiO3 кремниевая кислота

HF фтороводородная кислота

HCl хлороводородная кислота (соляная кислота)

HBr бромоводородная кислота

HI иодоводородная кислота

H2S сероводородная кислота

Классификация кислот по числу атомов водорода

 

К И С Л О Т Ы

 

Одноосновные

Двухосновные

Трехосновные

HNO3 азотная

HF фтороводородная

HCl хлороводородная

HBr бромоводородная

HI иодоводородная

H2SO4 серная

H2SO3 сернистая

H2S сероводородная

H2CO3 угольная

H2SiO3 кремниевая

H3PO4 фосфорная

Классификация кислот на сильные и слабые кислоты.

Сильные кислоты

Слабые кислоты

HI иодоводородная

HBr бромоводородная

HCl хлороводородная

H2SO4 серная

HNO3 азотная

HF фтороводородная

H3PO4 фосфорная

H2SO3 сернистая

H2S сероводородная

H2CO3 угольная

H2SiO3 кремниевая

Химические свойства кислот

  • Взаимодействие с основными оксидами с образованием соли и воды:
  • Взаимодействие с амфотерными оксидами с образованием соли и воды:
  • Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):
  • Взаимодействие с солями, если выпадает осадок или выделяется газ:
  • Сильные кислоты вытесняют более слабые из их солей:

(в данном случае образуется неустойчивая угольная кислота , которая сразу же распадается на воду и углекислый газ)

  • С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:
  • Кислоты диссоциируют с образованием катиона водорода, что приводит к изменению окраски индикаторов:

— лакмус становится красным

— метилоранж становится красным.

1. водород+неметалл
H2+ S → H2S
2. кислотный оксид+вода
 P2O5
+ 3H2O→2H3PO4
Исключение:
2NO2
+ H2O→HNO2 + HNO3  
SiO2 + H2O —не реагирует
3. кислота+соль
В продукте реакции должен
образовываться осадок, газ или вода. Обычно более сильные кислоты вытесняют
менее сильные кислоты из солей. Если соль нерастворима в воде, то она реагирует
с кислотой, если образуется газ.
Na2CO3
+ 2HCl→2NaCl + H2O + CO2↑
K2SiO3
+ H2SO4→K2SO4 + H2SiO3↓

Основания (осно́вные гидрокси́ды) — сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы      (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН−. Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.

1. По растворимости в воде. 
Растворимые основания
(щёлочи): гидроксид натрия NaOH, гидроксид калия KOH, гидроксид бария Ba(OH)2, гидроксид стронция Sr(OH)2, гидроксид цезия CsOH, гидроксид рубидия RbOH.
Практически нерастворимые основания
: Mg(OH)2, Ca(OH)2, Zn(OH)2, Cu(OH)2
Деление на растворимые и нерастворимые основания практически полностью совпадает с делением на сильные и слабые основания, или гидроксиды металлов и переходных элементов
2. По количеству гидроксильных групп в молекуле. 
Однокислотные (гидроксид натрия NaOH)
Двукислотные (гидроксид меди(II) Cu(OH)2)
Трехкислотные (гидроксид железа(III) In(OH)3)
3. По летучести. 
Летучие: NH3
Нелетучие: щёлочи, нерастворимые основания.
4. По стабильности. 
— Стабильные: гидроксид натрия NaOH, гидроксид бария Ba(OH)2
— Нестабильные: гидроксид аммония NH3·H2O (гидрат аммиака).
5. По степени электролитической диссоциации. 
— Сильные (α > 30 %): щёлочи.

— Слабые (α < 3 %): нерастворимые основания.

  • Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь.

Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.

  • Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.
  • Также основание можно получить при взаимодействия щелочного или щелочноземельного металла с водой.
  • Гидроксиды щелочных металлов в промышленности получают электролизом водных растворов солей:
  • Некоторые основания можно получить обменными реакциями:
  • В водных растворах основания диссоциируют, что изменяет ионное равновесие:

это изменение проявляется в цветах некоторых 
кислотно-основных индикаторов:
лакмус становится синим,
метилоранж — жёлтым,
фенолфталеин приобретает цвет фуксии.

  • При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:

Примечание: 
реакция не идёт, если и кислота и основание слабые.

  • При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:
  • Растворимые основания могут реагировать с амфотерными гидроксидами с образованием гидроксокомплексов:

  • Основания реагируют с кислотными или амфотерными оксидами с образованием солей:
  • Растворимые снования вступают в обменные реакции с растворимыми солями:

Нерастворимые основания при нагреве разлагаются:

Источник

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Основания – сложные вещества, которые состоят из катиона металла Ме+ (или металлоподобного катиона, например, иона аммония NH4+) и гидроксид-аниона ОН—.

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания. Также есть неустойчивые основания, которые самопроизвольно разлагаются.

Какими химическими свойствами обладают основания

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например, оксид натрия в воде образует гидроксид натрия (едкий натр):

Na2O + H2O → 2NaOH

При этом оксид меди (II)  с водой не реагирует:

CuO + H2O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий), кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например, калий реагирует с водой очень бурно:

2K0 + 2H2+O →  2K+OH + H20

Какими химическими свойствами обладают основания

Какими химическими свойствами обладают основания

3. Электролиз растворов некоторых солей щелочных металлов. Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2↑ + Cl2↑

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

щелочь + соль1 = соль2↓ + щелочь

либо

щелочь + соль1 = соль2↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):

CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl

Какими химическими свойствами обладают основания

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами  (и некоторыми средними кислотами). При этом образуются соль и вода.

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например, гидроксид меди (II) взаимодействует с сильной соляной кислотой:

 Cu(OH)2 + 2HCl = CuCl2 + 2H2O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH)2 + CO2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например, гидроксид железа (III) разлагается на оксид железа (III)  и воду при прокаливании:

2Fe(OH)3 = Fe2O3 + 3H2O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид  ≠

нерастворимое основание + амфотерный гидроксид  ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например, гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe+2(OH)2 + O20 + 2H2O → 4Fe+3(O-2H)3

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации. Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при  мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H3PO4  → NaH2PO4 + H2O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H3PO4 → Na2HPO4 + 2H2O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H3PO4 → Na3PO4 + 3H2O

Какими химическими свойствами обладают основания

Какими химическими свойствами обладают основания

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли, а в растворе – комплексные соли.

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например, при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH)3 = NaAlO2 + 2H2O

А в растворе образуется комплексная соль:

NaOH + Al(OH)3 = Na[Al(OH)4]

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

Какими химическими свойствами обладают основания

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь(избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид(избыток) = кислая соль

Например, при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO2 = Na2CO3 + H2O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO2 = NaHCO3 

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе, при условии, что в продуктах образуется газ или  осадок. Такие реакции протекают по механизму ионного обмена.

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например, гидроксид натрия взаимодействует с сульфатом меди в растворе:

Cu2+SO42- + 2Na+OH— = Cu2+(OH)2—↓ + Na2+SO42-

Также щёлочи взаимодействуют с растворами солей аммония.

Например, гидроксид калия взаимодействует с раствором нитрата аммония:

NH4+NO3— + K+OH— = K+NO3— + NH3↑ + H2O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид, взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла.

Например, избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO4 + 2KOH = Zn(OH)2↓ + K2SO4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей. Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO4 + 4KOH = K2[Zn(OH)4] + K2SO4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь(избыток) = комплексная соль + соль

Какими химическими свойствами обладают основания

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например, гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO3 + KOH = K2SO3 + H2O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например, железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H2+O = 2Na[Al+3(OH)4] + 3H20

Какими химическими свойствами обладают основания

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2 ≠

NaOH +N2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например, хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl20 = NaCl— + NaOCl+ + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl20 = 5NaCl— + NaCl+5O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например, в растворе:

2NaOH + Si0 + H2+O=  Na2Si+4O3 + 2H20

Фтор окисляет щёлочи:

2F20 + 4NaO-2H = O20 + 4NaF— + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

Какими химическими свойствами обладают основания

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li2O + H2O

Источник