Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия thumbnail

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

Цинк – элемент IIБ подгруппы четвертого периода. Цинк относится к семейству d-элементов, поскольку электронное строение цинка отражается конфигурацией (см.рис. справа).

Конфигурация $d^{10}$ является устойчивой, и в образовании химической связи участвуют лишь внешние электроны $4s$-подуровня, поэтому характерная степень окисления цинка- (+2).

Нахождение в природе

В природе встречается только в виде соединений, важнейшим из которых является цинковая обманка.  Основной компонент цинковой обманки — сульфид цинка ZnS, а разнообразные примеси придают этому веществу всевозможные цвета. Видимо, за это минерал и называют обманкой. Цинковую обманку считают первичным минералом, из которого образовались другие минералы цинка:

  • смитсонит (цинковый шпат) $ZnCO3$;

  • цинкит $ZnO$;

  • каламин $2ZnO cdot SiO_2 cdot Н_2O$.

Получение цинка

Выделение цинка начинается с концентрирования руды методами седиментации (осаждение) или флотации (прилипание к пузырькам воздуха и всплывание в виде пены), затем ее обжигают до образования оксидов:

$2ZnS + 3O_2 = 2ZnO + 2SO_2$

Оксид цинка перерабатывают электролитическим методом или восстанавливают коксом. В первом случае цинк выщелачивают из сырого оксида разбавленным раствором серной кислоты, примесь кадмия осаждают цинковой пылью и раствор сульфата цинка подвергают электролизу. Металл 99,95%-ной чистоты осаждается на алюминиевых катодах.

Физические свойства

В чистом виде — довольно пластичный серебристо-белый металл. При комнатной температуре хрупок, при сгибании пластинки слышен треск от трения кристаллитов (обычно сильнее, чем «крик олова»). При 100-150 °C цинк пластичен. Примеси, даже незначительные, резко увеличивают хрупкость цинка. Температура плавления — 692°C, температура кипения — 1180°C

Химические свойства

Цинк — химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства. Так же как и хром, используется для нанесения антикоррозионных покрытий («цинкование» кузова автомобиля).

1.Взаимодействие с неметаллами

При сильном нагревании на воздухе сгорает ярким голубоватым пламенем с образованием оксида цинка:

$2Zn + O_2 xrightarrow[]{t, ^circ C} 2ZnO$

При поджигании энергично реагирует с серой:

$Zn + S = ZnS$

С галогенами реагирует при обычных условиях в присутствии паров воды в качестве катализатора:

$Zn + Cl_2 xrightarrow[]{H_2O} ZnCl_2$

При действии паров фосфора на цинк образуются фосфиды:

$3Zn + 2P = Zn_3P_2$

С водородом, азотом, бором, кремнием, углеродом цинк не взаимодействует.

2. Взаимодействие с водой

Реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:

$Zn + H_2O xrightarrow[]{t, ^circ C} ZnO + H_2uparrow$

3. Взаимодействие с кислотами

В электрохимическом ряду напряжений металлов цинк находится до водорода и вытесняет его из неокисляющих кислот:

$Zn + 2HCl = ZnCl_2 + H_2uparrow$

$Zn + H_2SO_4 = ZnSO_4 + H_2uparrow$

Взаимодействует с разбавленной азотной кислотой, образуя нитрат цинка и нитрат аммония (или азот $N_2$ или веселящий газ$N_2O$ в зависимости от концентрации кислоты):

$4Zn + 10HNO_{3textrm{ (разб., гор.)}}= 4Zn(NO_3)_2 + N_2Ouparrow + 5H_2O$

$4Zn + 10HNO_{3textrm{ (оч.разб., гор.)}} = 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$

Реагирует с концентрированными серной и азотной кислотами с образованием соли цинка и продуктов восстановления кислот:

$Zn + 2H2SO_{4textrm{ (конц.)}} = ZnSO_4 + SO_2uparrow  + 2H_2O$

$Zn + 4HNO_{4textrm{ (конц.)}}  = Zn(NO_3)_2 + 2NO_2uparrow  + 2H_2O$

4. Взаимодействие со щелочами

Реагирует с растворами щелочей с образованием растворимых гидроксокомплексов:

$Zn + 2NaOH + 2H_2O = Na_2[Zn(OH)_4] + H_2$

при сплавлении образует цинкаты:

$Zn + 2KOH = K_2ZnO_2 + H_2$

5. Взаимодействие с оксидами и солями

Цинк вытесняет металлы, стоящие в ряду напряжения правее него, из растворов солей и оксидов:

$Zn + CuSO_4 = Cu + ZnSO_4$

$Zn + CuO = Cu + ZnO$

6. Взаимодействие с аммиаком

С газообразным аммиаком при высокой температуре образует нитрид цинка:

$3Zn + 2NH_{3 textrm{(г.)}}  xrightarrow[]{550-600 ^circ C}  Zn_3N_2 + 3H_2$

В водном растворе аммиака цинк растворяется с образованием гидроксида тетраамминцинка:

$Zn + 4NH_3 + 2H_2O = [Zn(NH_3)_4](OH)_2 + H_2$

Соединения цинка

Оксид цинка (II) 

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминияОксид цинка (II) ZnO – белые кристаллы, при нагревании приобретают желтую окраску. 

При температуре выше $1000^0C$ восстанавливается до металлического цинка типичными восстановителями (углеродом, угарным газом и водородом):

$ZnO + C = Zn + CO$

$ZnO + CO = Zn + CO_2$

$ZnO + H_2 = Zn + H_2O$

С водой не взаимодействует. Проявляет амфотерные свойства, реагирует с растворами кислот и щелочей:

$ZnO + 2HCl = ZnCl_2 + H2O$

$ZnO + 2NaOH + H_2O = Na_2[Zn(OH)_4]$

При сплавлении с щелочами (и основными окисдами) образует цинкаты:

$ZnO + 2NaOH xrightarrow[]{t, ^circ C} Na_2ZnO_2$

$ZnO + CaO = CaZnO_2$

При взаимодействии с оксидами неметаллов образует соли, где является катионом:

$2ZnO + SiO2 = Zn_2SiO_4$

$ZnO + B_2O_3 = Zn(BO_2)_2$

Гидроксид цинка (II) 

Гидроксид цинка $Zn(OH)_2$ — бесцветное кристаллическое или аморфное вещество, существует в пяти полиморфных модификациях, нерастворимо в воде. Получают взаимодействием солей цинка с растворами щелочей: при этом гидроксид цинка выпадает в виде желеообразного белого осадка.

При температуре выше $125^0C$ разлагается:

Читайте также:  Какое свойство воздуха использует птица в полете

$Zn(OH)_2 = ZnO + H_2O$

Гидроксид цинка проявляет амфотерные свойства, легко растворяется в кислотах и щелочах:

$Zn(OH)_2 + H_2SO_4 = ZnSO_4 + 2H_2O$

$Zn(OH)_2 + 2NaOH = Na_2[Zn(OH)_4]$

также легко растворяется в водном растворе аммиака с образованием гидроксида тетраамминцинка:

$Zn(OH)_2 + 4NH_3 = [Zn(NH_3)_4](OH)_2$

Источник

Конспект 12. Амфотерные соединения

Амфотерность (двойственность свойств) гидроксидов и оксидов многих элементов проявляется в образовании ими двух типов солей.

Эти соединения, образованные бериллием, цинком, хромом, мышьяком, алюминием, германием, свинцом, марганцем, железом, оловом.
Примеры амфотерных оксидов

Амфотерные оксиды

Формула

Названия

BeO

Оксид берия (II)

ZnO

Оксид цинка

Al_2O_3

Оксид алюминия

Cr_2O_3

Оксид  хрома III)

As_2O_3

Оксид мышьяка (III)

GeO

Оксид германия (II)

PbO_2

Оксид свинца (IV)

MnO_2

Оксид марганца (IV)

Fe_2O_3

Оксид железа (III)

SnO

Оксид олова (II)

Химические свойства амфотерных оксидов цинка и алюминия

Рассмотрим амфотерные свойства оксидов цинка и алюминия. На примере их взаимодействия с основными и кислотными оксидами, с кислотой и щелочью.
1. Взаимодействие с основными оксидами и основаниями:

ZnO + Na_2O {right} Na_2ZnO_2 (цинкат натрия). Оксид цинка ведет себя как кислотный.

ZnO + 2NaOH {right} Na_2ZnO_2+ H_2O
2. Взаимодействие с кислотными оксидами и кислотами. Проявляет свойства основного оксида.
3ZnO + P_2O_5 {right} Zn_3(PO_4)_2 (фосфат цинка)
ZnO + 2HCl  {right} ZnCl_2 + H_2O
Аналогично оксиду цинка ведет себя и оксид алюминия:
3. Взаимодействие с основными оксидами и основаниями:
Al_2O_3 + Na_2O  {right} 2NaAlO_2  (метаалюминат натрия). Оксид алюминия ведет себя как кислотный.
Al_2O_3 + 2NaOH  {right} 2NaAlO_2+ H_2O
4. Взаимодействие с кислотными оксидами и кислотами. Проявляет свойства основного оксида.
Al_2O_3 + P_2O_5 {right} 2AlPO_4 (фосфат алюминия)
Al_2O_3 + 6HCl {right} 2AlCl_3 + 3H_2O
Рассмотренные реакции происходят при нагревании, при сплавлении. Если взять растворы веществ, то реакции пойдут несколько иначе.

Химические свойства амфотерных оксидов цинка и алюминия в растворах

12-chem-1ZnO + 2NaOH + H_2O {right} 2Na_2[Zn(OH)_4]   (тетрагидроксоцинкат натрия)
Al_2O_3 + 2NaOH + 3H_2O {right} Na[Al(OH)_4] (тетрагидроксоалюминат натрия)
В результате этих реакций получаются соли, которые относятся к комплексным.

Оксид алюминия.
Оксид алюминия чрезвычайно распространенное на Земле вещество. Он составляет основу глины, бокситов, корунда и других минералов.
В результате взаимодействия этих веществ с серной кислотой, получается сульфат цинка или сульфат алюминия.
ZnO + H_2SO_4 {right} ZnSO_4 + H_2O
Al_2O_3 + 3H_2SO_4{right} Al_2 (SO_4)_3 + 3H_2O

Химические свойства амфотерных гидроксидов цинка и алюминия

Реакции гидроксидов цинка и алюминия с оксидом натрия происходят при сплавлении, потому что эти гидроксиды твердые и не входят в состав растворов.

 12-chem-2 Гидроксид алюминия.

12-chem-3 соль называется цинкат натрия.

 соль называется метаалюминат натрия.

Реакции амфотерных оснований со щелочами характеризует их кислотные свойства. Данные реакции можно проводить как при сплавлении твердых веществ, так и в растворах. Но при этом получатся разные вещества, т.е. продукты реакции зависят от условий проведения реакции: в расплаве или в растворе.

12-chem-4

тетрагидроксоалюминат натрия

гексагидроксоалюминат натрия.

Получается тетрагидроксоалюминат натрия или гексагидроксоалюминат натрия зависит от того, сколько щелочи мы взяли. В последней реакции щелочи взято много и образуется гексагидроксоалюминат натрия.

Химические свойства амфотерных цинка и алюминия

Элементы, которые образуют амфотерные соединения, могут сами проявлять амфотерные свойства.

12-chem-5

Разложение амфотерных оснований при нагревании

Напомним о том, что амфотерные гидроксиды являются нерастворимыми основаниями. И при нагревании разлагаются , образуя оксид и воду.

12-chem-6

Источник

Алюминий. Применение алюминия и его сплавов

Алюминий расположен в 3-й группе главной подгруппы, в 3 периоде. Порядковый номер 13. Атомная масса ~27. Р-элемент. Электронная конфигурация: 1s22s22p63s23p1.На внешнем уровне 3s23p1 находятся 3 валентных электрона. Степень окисления +3, валентность – III.

Физические свойства:алюминий – металл серебристо-белого цвета, мягкий, механически прочный, тепло– и электропроводный, легко вытягивается в проволоку, прокатывается в тонкую фольгу, легко образует сплавы.

Химические свойства:

1) при обычной температуре реагирует с кислородом, образую окисную пленку, препятствуя дальнейшему окислению металла: 4Аl + 3О2 = 2Аl2О3;

2) алюминий, лишенный защитной оксидной пленки, взаимодействует с водой: 2Аl + 6Н2О = 2Аl(ОН)3? + 3Н2?;

3) алюминий энергично взаимодействует с растворами щелочей:

4) при нагревании алюминий взаимодействует с галогенами, с азотом, с углеродом, с серой, а также с аммиаком:

Получение.В промышленности алюминий получают электролизом раствора Аl2О3 в расплавленном криолите Na3AlF6 с добавлением СаF2. Алюминий выделяется на катоде.

Нахождение в природе:алюминий – один из наиболее распространенных элементов в земной коре – до 250 руд, содержащих алюминий: боксит – Аl2О3?хH2O – содержит от 32–60 % Аl2О3 (глинозема); корунд – Аl2О3 – кристаллическая модификация глинозема; рубин и сапфир – драгоценные камни; нефелин – (К, Na)2О?Аl2О3?2SiО2 – одна из важнейших алюминиевых руд; каолин – Аl2О3?2SiО2?2H2O – составляет основу всех глин; алунит – К2SO4?Аl2(SO4)3?2Аl2О3?6H2O – относятся к важнейшим алюминиевым рудам; криолит Na3[AlF6]; шпинель Мg(АlО2)2 и метаалюминаты типа шпинели Zn(АlО2)2. Сплавы алюминия: дюралюминий – 94 % Аl, 4 % Сu, по 0,5 % Мg, Мn, Fe и Si; силумин – Аl + ~13 % Si; магналий – Аl с содержанием Мg – 0,5—11,5 %.

Применение алюминия и его соединений и сплавов:алюминий и его соединения применяется в быту и во всех отраслях народного хозяйства: в машиностроении, автостроении, в химической промышленности (для производства и транспортировки холодной концентрированной HNO3, т. к. алюминий в ней пассивируется). При помощи алюмотерапии производят сварку рельсов, проводят сварочные работы под водой. Чистым алюминием покрывают бензобаки, что способствует предохранению бензина от теплового излучения.

Читайте также:  Льняное семя какие лечебные свойства

Оксид алюминия – Al2O3. Физические свойства:оксид алюминия – белый аморфный порошок или очень твердые белые кристаллы. Молекулярная масса = 101,96, плотность – 3,97 г/см3, температура плавления – 2053 °C, температура кипения – 3000 °C.

Химические свойства:оксид алюминия проявляет амфотерные свойства – свойства кислотных оксидов и основных оксидов и реагирует и с кислотами, и с основаниями. Кристаллический Аl2О3 химически пассивен, аморфный – более активен. Взаимодействие с растворами кислот дает средние соли алюминия, а с растворами оснований – комплексные соли – гидроксоалюминаты металлов:

При сплавлении оксида алюминия с твердыми щелочами металлов образуются двойные соли – метаалюминаты(безводные алюминаты):

Оксид алюминия не взаимодействует с водой и не растворяется в ней.

Получение:оксид алюминия получают методом восстановления алюминием металлов из их оксидов: хрома, молибдена, вольфрама, ванадия и др. – металлотермия , открытый Бекетовым :

Применение:оксид алюминия применяется для производства алюминия, в виде порошка – для огнеупорных, химически стойких и аб-разивных материалов, в виде кристаллов – для изготовления лазеров и синтетических драгоценных камней (рубины, сапфиры и др.), окрашенных примесями оксидов других металлов – Сr2О3 (красный цвет), Тi2О3 и Fe2О3 (голубой цвет).

Гидроксид алюминия – А1(ОН)3 . Физические свойства:гидроксид алюминия – белый аморфный (гелеобразный) или кристаллический. Почти не растворим в воде; молекулярная масса – 78,00, плотность – 3,97 г/см3.

Химические свойства:типичный амфотерный гидроксид реагирует:

1) с кислотами, образуя средние соли: Al(ОН)3 + 3НNO3 = Al(NO3)3 + 3Н2О;

2) с растворами щелочей, образуя комплексные соли – гидроксоалюминаты: Al(ОН)3 + КОН + 2Н2О = К[Al(ОН)4(Н2О)2].

При сплавлении Al(ОН)3 с сухими щелочами образуются метаалюминаты: Al(ОН)3 + КОН = КAlO2 + 2Н2О.

Получение:

1) из солей алюминия под действием раствора щелочей: AlСl3 + 3NaOH = Al(ОН)3 + 3Н2О;

2) разложением нитрида алюминия водой: AlN + 3Н2О = Аl(ОН)3 + NН3?;

3) пропусканием СО2 через раствор гидроксокомплекса: [Аl(ОН)4]-+ СО2 = Аl(ОН)3 + НСО3-;

4) действием на соли Аl гидратом аммиака; при комнатной температуре образуется Аl(ОН)3.

Источник

Сегодня мы начинаем
знакомство с важнейшими классами неорганических соединений. Неорганические
вещества по составу делятся, как вы уже знаете, на  простые и сложные.

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

ОКСИД

КИСЛОТА

ОСНОВАНИЕ

СОЛЬ

ЭхОу

НnA

А
– кислотный остаток

Ме(ОН)b

ОН
– гидроксильная группа

MenAb

Сложные неорганические
вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли. Мы
начинаем с класса оксидов.

ОКСИДЫ

Оксиды
— это сложные вещества, состоящие из двух химических элементов, один из которых
кислород, с валентность равной 2. Лишь один химический элемент — фтор,
соединяясь с кислородом, образует не оксид, а фторид кислорода OF2.
Называются они просто — «оксид + название элемента» (см. таблицу). Если
валентность химического элемента переменная, то указывается римской цифрой,
заключённой в круглые скобки, после названия химического элемента.

Формула

Название

Формула

Название

CO

оксид
углерода ( II )

Fe2O3

оксид
железа (III )

NO

оксид
азота ( II )

CrO3

оксид
хрома (VI )

Al2O3

оксид
алюминия

ZnO

оксид
цинка

N2O5

оксид
азота (V )

Mn2O7

оксид
марганца (VII )

Классификация
оксидов

Все
оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные)
и несолеобразующие или безразличные.

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

Оксиды металлов МехОу

Оксиды
неметаллов

неМехОу

Основные

Кислотные

Амфотерные

Кислотные

Безразличные

I, II

Ме

V-VII

Me

ZnO,BeO,Al2O3,

Fe2O3, Cr2O3

>II

неМе

I, II

неМе

CO, NO, N2O

1). Основные оксиды – это оксиды, которым
соответствуют основания. К основным оксидам относятся оксиды металлов
1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II
(кроме ZnO

оксид цинка и  BeO – оксид берилия):

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

2). Кислотные оксиды – это оксиды, которым
соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме
несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп  с
валентностью от
V
до
VII (Например, CrO3-оксид
хрома (VI), Mn 2O7 — оксид марганца (VII)):

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

3). Амфотерные
оксиды
– это оксиды, которым соответствуют основания и кислоты. К ним
относятся оксиды металлов главных и побочных подгрупп с валентностью III, иногда IV,
а также цинк и бериллий (Например, BeO, ZnO, Al2O3, Cr2O3).

4). Несолеобразующие оксиды – это оксиды
безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II
(Например,N2O, NO, CO).

Читайте также:  Какая частица минимальной массы обладает основными химическими свойствами воды

Вывод:  характер свойств оксидов в первую очередь
зависит от валентности элемента.

Например,
оксиды хрома:

CrO
(
II
— основный);

Cr
2O3 (
III  — амфотерный);

CrO3
(
VII
— кислотный).

Классификация оксидов

(по растворимости в воде)

Кислотные оксиды

Основные оксиды

Амфотерные оксиды

Растворимы в воде.

Исключение –SiO2

 (не
растворим в воде)

В воде растворяются только оксиды щелочных и
щелочноземельных металлов

(это металлы 

I «А» и II «А» групп,

исключение Be ,Mg)

С водой не взаимодействуют.

В воде не растворимы

Выполните задания:

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl3, K2O, H2SO4, SO3, P2O5, HNO3, CaO, CO.

2. Даны вещества: CaO, NaOH, CO2, H2SO3, CaCl2, FeCl3, Zn(OH)2, N2O5, Al2O3, Ca(OH)2, N2O, FeO, SO3, Na2SO4, ZnO, CaCO3, Mn2O7, CuO, KOH, CO, Fe(OH)3

Выпишите оксиды и классифицируйте их.

Получение
оксидов
 

Тренажёр «Взаимодействие кислорода с простыми веществами»

1.
Горение веществ (Окисление кислородом)

а)
простых веществ

Тренажёр

«Взаимодействие
кислорода с простыми веществами»

2Mg
+O2=2MgO

б)
сложных веществ

2H2S+3O2=2H2O+2SO2

2.Разложение
сложных веществ

(используйте таблицу кислот, см. приложения)

а)
солей

СОЛЬt=
ОСНОВНЫЙ ОКСИД+КИСЛОТНЫЙ ОКСИД

СaCO3=CaO+CO2

б) Нерастворимых
оснований

Ме(ОН)bt= MexOy+ H2O

Cu (OH)2 t=CuO+H2O

в)
кислородсодержащих кислот

НnA = КИСЛОТНЫЙ
ОКСИД +
H2O

H2SO3=H2O+SO2

Физические
свойства оксидов

При комнатной температуре большинство оксидов —
твердые вещества (СаО, Fe2O3 и др.), некоторые — жидкости
(Н2О, Сl2О7 и др.) и газы (NO, SO2
и др.).

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

Химические
свойства оксидов

ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ 

1.
Основной оксид + Кислотный оксид =
Соль          (р. соединения)

CaO + SO2 = CaSO3

2.
Основной оксид + Кислота = Соль + Н2О              
(р. обмена)

3K2O + 2H3PO4 = 2K3PO4 + 3H2O

3. Основной оксид + Вода = Щёлочь                           
(р. соединения)

Na2O + H2O = 2NaOH

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ 

1.
Кислотный оксид + Вода =
Кислота                 
    (р. соединения)

СO2 + H2O = H2CO3,      SiO2 – не реагирует

2.
Кислотный оксид + Основание = Соль + Н2О     
(р. обмена)

P2O5 + 6KOH = 2K3PO4 + 3H2O

3.
Основной оксид + Кислотный оксид =
Соль          (р. соединения)

CaO + SO2 = CaSO3

4.
Менее летучие вытесняют более летучие из их солей

CaCO3 +
SiO2 =
CaSiO3 +CO2

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ 

Взаимодействуют
как с кислотами, так и со щелочами.

ZnO + 2 HCl = ZnCl2 + H2O

ZnO + 2 NaOH + H2O = Na2[Zn(OH)4]
( в растворе)

ZnO + 2 NaOH = Na2ZnO2 + H2O
(при сплавлении)

Применение
оксидов

Некоторые
оксиды не растворяются в воде, но многие вступают с водой в реакции соединения:

SO3 + H2O
= H2SO4

CaO + H2O = Ca(OH)2

В
результате часто получаются очень нужные и полезные соединения. Например, H2SO4
– серная кислота, Са(ОН)2 – гашеная известь и т.д.

Если
оксиды нерастворимы в воде, то люди умело используют и это их свойство.
Например, оксид цинка ZnO – вещество белого цвета, поэтому используется для
приготовления белой масляной краски (цинковые белила). Поскольку ZnO
практически не растворим в воде, то цинковыми белилами можно красить любые
поверхности, в том числе и те, которые подвергаются воздействию атмосферных
осадков. Нерастворимость и неядовитость позволяют использовать этот оксид при
изготовлении косметических кремов, пудры. Фармацевты делают из него вяжущий и
подсушивающий порошок для наружного применения.

Такими
же ценными свойствами обладает оксид титана (IV) – TiO2. Он тоже
имеет красивый белый цвет и применяется для изготовления титановых белил. TiO2
не растворяется не только в воде, но и в кислотах, поэтому покрытия из этого
оксида особенно устойчивы. Этот оксид добавляют в пластмассу для придания ей
белого цвета. Он входит в состав эмалей для металлической и керамической
посуды.

Оксид
хрома (III) – Cr2O3 – очень прочные кристаллы
темно-зеленого цвета, не растворимые в воде. Cr2O3
используют как пигмент (краску) при изготовлении декоративного зеленого стекла
и керамики. Известная многим паста ГОИ (сокращение от наименования
“Государственный оптический институт”) применяется для шлифовки и полировки
оптики, металлических

изделий, в ювелирном
деле.

Какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия

Благодаря
нерастворимости и прочности оксида хрома (III) его используют и в
полиграфических красках (например, для окраски денежных купюр). Вообще, оксиды
многих металлов применяются в качестве пигментов для самых разнообразных
красок, хотя это – далеко не единственное их применение.

Задания для закрепления

1. Закончите УХР, укажите тип реакции, назовите
продукты реакции

Na2O + H2O
=

N2O5
+ H2O =

CaO + HNO3
=

NaOH + P2O5
=

K2O + CO2
=

Cu(OH)2 = ?
+ ?

2. Осуществите превращения по схеме:

1) K→K2O→KOH→K2SO4

2) S→SO2→H2SO3→Na2SO3

3) P→P2O5→H3PO4→K3PO4

Источник