Какими химическими свойствами обладает гидроксид цинка

Гидроксид цинка, характеристика, свойства и получение, химические реакции.
Гидроксид цинка – неорганическое вещество, имеет химическую формулу Zn(OH)2.
Краткая характеристика гидроксида цинка
Физические свойства гидроксида цинка
Получение гидроксида цинка
Химические свойства гидроксида цинка
Химические реакции гидроксида цинка
Применение и использование гидроксида цинка
Краткая характеристика гидроксида цинка:
Гидроксид цинка – неорганическое вещество белого цвета.
Химическая формула гидроксида цинка Zn(OH)2.
Практически нерастворим в воде.
Является аморфным веществом.
В природе встречается в виде редких минералов, например, ашоверита и суитита.
Физические свойства гидроксида цинка:
Наименование параметра: | Значение: |
Химическая формула | Zn(OH)2 |
Синонимы и названия иностранном языке | zinc hydroxide (англ.) |
Тип вещества | неорганическое |
Внешний вид | бесцветные тригональные кристаллы |
Цвет | белый, бесцветный |
Вкус | —* |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 3053 |
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 | 3,053 |
Температура разложения, °C | 125 |
Молярная масса, г/моль | 99,38474 |
Растворимость в воде, г/100 мл | 0,000199 |
* Примечание:
— нет данных.
Получение гидроксида цинка:
Гидроксид цинка получают в результате следующих химических реакций:
- 1. взаимодействия растворимых солей цинка с щелочью:
ZnSO4 + 2NaOH → Zn(OH)2 + Na2SO4,
Zn(NO3)2 + 2KOH → Zn(OH)2 + 2KNO3,
ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl,
Zn(NO3)2 + 2NaOH → Zn(OH)2 + 2NaNO3,
ZnI2 + 2NaOH → Zn(OH)2 + 2NaI.
При этом гидроксид цинка выпадает в виде осадка.
- 2. взаимодействия цинка, воды и кислорода:
2Zn + 2H2O + O2 → 2Zn(OH)2.
Реакция протекает медленно при комнатной температуре.
Химические свойства гидроксида цинка. Химические реакции гидроксида цинка:
Гидроксид цинка является амфотерным основанием, т. е. обладает как основными, так и кислотными свойствами.
Гидроксид цинка – слабое нерастворимое основание.
Химические свойства гидроксида цинка аналогичны свойствам гидроксидов других амфотерных металлов. Поэтому для него характерны следующие химические реакции:
1. реакция гидроксида цинка и гидроксида натрия:
Zn(OH)2 + 2NaOH → Na2[Zn(OH)4].
В результате реакции образуется тетрагидроксоцинкат натрия. В ходе реакции используется концентрированный раствор гидроксида натрия.
2. реакция гидроксида цинка и гидроксида калия:
Zn(OH)2 + 2KOH → K2[Zn(OH)4].
В результате реакции образуется тетрагидроксоцинкат натрия.
3. реакция гидроксида цинка и ортофосфорной кислоты:
3Zn(OH)2 + 2H3PO4 → Zn3(PO4)2 + 6H2O.
В результате реакции образуются ортофосфат цинка и вода.
4. реакция гидроксида цинка и азотной кислоты:
Zn(OH)2 + 2HNO3 → Zn(NO3)2 + 2H2O.
В результате реакции образуются нитрат цинка и вода.
Аналогично проходят реакции гидроксида цинка и с другими кислотами.
5. реакция гидроксида цинка и йодоводорода:
Zn(OH)2 + 2HI → ZnI2 + 2H2O.
В результате реакции образуются йодид цинка и вода.
6. реакция гидроксида цинка и оксида углерода:
2Zn(OH)2 + CO2 → Zn2(OH)2CO3 + H2O.
В результате реакции образуется дигидроксид-карбонат цинка и вода. В ходе реакции гидроксид цинка используется в виде суспензии.
7. реакция термического разложения гидроксида цинка:
Zn(OH)2 → ZnO + H2O (t = 100-250 °C).
В результате реакции образуются оксид цинка и вода.
Применение и использование гидроксида цинка:
Гидроксид цинка используется для синтеза различных соединений цинка, в основном, солей.
Примечание: © Фото //www.pexels.com, //pixabay.com
карта сайта
гидроксид цинка реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения реакции масса взаимодействие гидроксида цинка
Коэффициент востребованности
3 711
Гидроксид цинка, характеристика, свойства и получение, химические реакции.
Гидроксид цинка – неорганическое вещество, имеет химическую формулу Zn(OH)2.
Краткая характеристика гидроксида цинка
Физические свойства гидроксида цинка
Получение гидроксида цинка
Химические свойства гидроксида цинка
Химические реакции гидроксида цинка
Применение и использование гидроксида цинка
Краткая характеристика гидроксида цинка:
Гидроксид цинка – неорганическое вещество белого цвета.
Химическая формула гидроксида цинка Zn(OH)2.
Практически нерастворим в воде.
Является аморфным веществом.
В природе встречается в виде редких минералов, например, ашоверита и суитита.
Физические свойства гидроксида цинка:
Наименование параметра: | Значение: |
Химическая формула | Zn(OH)2 |
Синонимы и названия иностранном языке | zinc hydroxide (англ.) |
Тип вещества | неорганическое |
Внешний вид | бесцветные тригональные кристаллы |
Цвет | белый, бесцветный |
Вкус | —* |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 3053 |
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 | 3,053 |
Температура разложения, °C | 125 |
Молярная масса, г/моль | 99,38474 |
Растворимость в воде, г/100 мл | 0,000199 |
* Примечание:
— нет данных.
Получение гидроксида цинка:
Гидроксид цинка получают в результате следующих химических реакций:
- 1. взаимодействия растворимых солей цинка с щелочью:
ZnSO4 + 2NaOH → Zn(OH)2 + Na2SO4,
Zn(NO3)2 + 2KOH → Zn(OH)2 + 2KNO3,
ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl,
Zn(NO3)2 + 2NaOH → Zn(OH)2 + 2NaNO3,
ZnI2 + 2NaOH → Zn(OH)2 + 2NaI.
При этом гидроксид цинка выпадает в виде осадка.
- 2. взаимодействия цинка, воды и кислорода:
2Zn + 2H2O + O2 → 2Zn(OH)2.
Реакция протекает медленно при комнатной температуре.
Химические свойства гидроксида цинка. Химические реакции гидроксида цинка:
Гидроксид цинка является амфотерным основанием, т. е. обладает как основными, так и кислотными свойствами.
Гидроксид цинка – слабое нерастворимое основание.
Химические свойства гидроксида цинка аналогичны свойствам гидроксидов других амфотерных металлов. Поэтому для него характерны следующие химические реакции:
1. реакция гидроксида цинка и гидроксида натрия:
Zn(OH)2 + 2NaOH → Na2[Zn(OH)4].
В результате реакции образуется тетрагидроксоцинкат натрия. В ходе реакции используется концентрированный раствор гидроксида натрия.
2. реакция гидроксида цинка и гидроксида калия:
Zn(OH)2 + 2KOH → K2[Zn(OH)4].
В результате реакции образуется тетрагидроксоцинкат натрия.
3. реакция гидроксида цинка и ортофосфорной кислоты:
3Zn(OH)2 + 2H3PO4 → Zn3(PO4)2 + 6H2O.
В результате реакции образуются ортофосфат цинка и вода.
4. реакция гидроксида цинка и азотной кислоты:
Zn(OH)2 + 2HNO3 → Zn(NO3)2 + 2H2O.
В результате реакции образуются нитрат цинка и вода.
Аналогично проходят реакции гидроксида цинка и с другими кислотами.
5. реакция гидроксида цинка и йодоводорода:
Zn(OH)2 + 2HI → ZnI2 + 2H2O.
В результате реакции образуются йодид цинка и вода.
6. реакция гидроксида цинка и оксида углерода:
2Zn(OH)2 + CO2 → Zn2(OH)2CO3 + H2O.
В результате реакции образуется дигидроксид-карбонат цинка и вода. В ходе реакции гидроксид цинка используется в виде суспензии.
7. реакция термического разложения гидроксида цинка:
Zn(OH)2 → ZnO + H2O (t = 100-250 °C).
В результате реакции образуются оксид цинка и вода.
Применение и использование гидроксида цинка:
Гидроксид цинка используется для синтеза различных соединений цинка, в основном, солей.
Примечание: © Фото //www.pexels.com, //pixabay.com
карта сайта
гидроксид цинка реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения реакции масса взаимодействие гидроксида цинка
Коэффициент востребованности 3
comments powered by HyperComments
Ссылка на источник
Ни для кого не секрет, что цинк и гидроксид цинка широко применяются современными учеными. А спектр их использования напрямую зависит от физических и химических свойств.
Интересно, что сплав цинка с медью использовался еще древними египтянами, а после и в Римской империи. Но вот цинк в чистом виде выделить не получалось в течении многих лет. Лишь в 1746 году А. Маргграфф впервые получил этот металл в чистом виде. В семнадцатом веке выплавка цинка уже осуществлялась в промышленных масштабах.
Цинк: химические свойства и краткое описание
Цинк представляет собой металл средней твердости. Интересно, что при низких температурах он довольно хрупок. А вот при температуре от 100 до 150 градусов по Цельсию металл становиться пластичным — из него изготовляют листы или даже фольгу с толщиной гораздо меньше миллиметра.
С химической точки зрения цинк представляет собой атом со степенью окисления +2. Это достаточно активный металл, который участвует в реакциях в качестве восстановителя. Интересно, что на воздухе, при температуре до 100 градусов, цинк быстро тускнеет, его поверхность покрывается тонкой пленкой карбонатов. Если же воздух влажный и содержит в себе большое количество углекислого газа, то металл быстро разрушается.
Цинк сгорает голубым пламенем при наличии кислорода или во время нагревания — в таких случаях процесс горения сопровождается образованием белого дыма (это оксид металла).
Цинк вступает в реакции как с простыми элементами, так и кислотами и некоторыми основаниями, образовывая соли и гидроксид цинка соответственно.
На сегодняшний день известно примерно 66 минералов, которые содержат в себе цинк — именно они и являются основным источником промышленного получения металла. В качестве примера можно привести каламиты, цинкиты, виллемит, франк-линит и смитсонит.
Гидроскид цинка: физические и химические свойства
Цинк (II) гидроксид также имеет большое значение, так как используется в разных отраслях химической промышленности. При нормальных условиях это вещество представляет собой бесцветные небольшие кристаллы, которые практически не растворяются в воде. Формула гидроксида следующая:
Zn (OH)2
Стоит отметить и то, что это вещество обладает сравнительно сильными амфотерными свойствами. Гидроксид цинка активнее реагирует с кислотами, вступая в реакцию нейтрализации и образовывая при этом соли и воду. Например:
Zn (OH)2 + H2SO4 = ZnSO4 +2 H2O
Тем не менее, гидроксид цинка реагирует и с щелочами, образовывая комплексные соли и воду. К примеру:
Zn(OH)2 + 2NaOH = Na2ZnO2 + 2H2O
Стоит отметить, что при нагревании вещество распадается с образованием оксида и воды:
Zn(OH)2 = ZnO + H2O
Что же касается области применения, то гидроксид используется в химической промышленности для получения различных соединений цинка, в частности, его солей.
Цинк и его применение
Ни для кого не секрет, что цинк широко используется в качестве антикоррозийного вещества, которым покрывают сталь и железо. Кроме того, огромное количество добытого металла используется дл производства латуней и бронзы.
Интересно, что в сухих батареях цинк используется в качестве анода, а также выполняет роль контейнера. Кроме того, это металл используется во время отделения благородных металлов (например, золота) от свинца. Некоторые соединения цинка считаются распространенными полупроводниковыми материалами.
Цинк в живом организме
На самом деле трудно переоценить роль цинка в жизнедеятельности любого живого организма, включая и человека. Несмотря на довольно низкое содержание, он входит в состав важных ферментов, участвует в процессе белкового синтеза, клеточного дыхания и т.д. Цинк также отвечает за развитие скелета плода. Доказано, что при недостаточном количестве этого минерала возможна задержка полового развития и появление карликовости.
1. Что такое классификация?
Классификация — это система группировки объектов наблюдения (например, химических элементов) или явлений (например, химических реакций) по наличию общих признаков.
В случае химических элементов, общими признаками могут являться:
— валентность
— способность вступать в химические реакции с теми или иными веществами
— способность образовывать основные, амфотерные или кислотные оксиды
и проч.
2. На основании каких признаков вещество можно отнести к металлам?
1. Твердое вещество (за исключением ртути).
2. Обладает металлическим блеском (за исключением йода).
3. Хорошая электро- и теплопроводность.
4. Ковкость.
3. Вспомните, какими химическими свойствами обладают оксиды и гидроксиды элементов цинка и алюминия. Напишите уравнения соответствующих химических реакций.
Напомню, этот вопрос рассматривался в § 43. Амфотерные оксиды и гидроксиды.
Оксиды и гидроксиды цинка и алюминия обладают амфотерными свойствами. Они могут вступать в реакции как с кислотами, кислотными оксидами, так и с основаниями, основными оксидами.
Химические реакции, подтверждающие амфотерность оксида цинка:
ZnO + SO3 = ZnSO4
ZnO + 2HCl = ZnCl2 + H2O
ZnO + Na2O (сплавление) = Na2ZnO2
ZnO + 2NaOH + H2O = Na2[Zn(OH)4]
Химические реакции, подтверждающие амфотерность гидроксида цинка:
Zn(OH)2 + SO3 = ZnSO4 + H2O
Zn(OH)2 + 2HCl = ZnCl2 + 2H2O
Zn(OH)2 + Na2O (сплавление) = Na2ZnO2 + H2O
Zn(OH)2 + 2NaOH = Na2[Zn(OH)4]
Химические реакции, подтверждающие амфотерность оксида алюминия:
Al2O3 + 3SO3 = Al2(SO4)3
Al2O3 + 6HCl = 2AlCl3 + 3H2O
Al2O3 + Na2O (сплавление) = 2NaAlO2
Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4]
Химические реакции, подтверждающие амфотерность гидроксида алюминия:
2Al(OH)3 + 3SO3 = Al2(SO4)3 + 3H2O
Al(OH)3 + 3HCl = AlCl3 + 3H2O
2Al(OH)3 + Na2O (сплавление) = 2NaAlO2 + 3H2O
Al(OH)3 + NaOH = Na[Al(OH)4]
4. Приведите примеры, подтверждающие, что химические элементы можно распределить по отдельным группам.
Пример 1: щелочные металлы.
Твердые вещества, обладают металлическим блеском, ковкостью, тепло- и электропроводны.
Химически активны, одновалентны. Бурно реагируют с водой с образованием щелочи и водорода:
2M + H2O = 2MOH + H2↑
например
2Na + H2O = 2NaOH + H2↑
С кислородом образуют основные оксиды вида M2O, которые при взаимодействии с водой образуют щелочи (основания) MOH.
4M + O2 = 2M2O
например
4K + O2 = 2K2O
M2O + H2O = 2MOH
например
K2O + H2O = 2KOH
Пример 2: галогены.
Агрегатное состояние: от газообразного (фтор, хлор) и жидкого (бром) до твердого (йод, астат). За исключением йода и астата не обладают металлическим блезком.
С водородом образуют кислоты (хотя, строго говоря, кислотами будут лишь их водные растворы):
Hal + H2 = 2HHal
например
Cl2 + H2 = 2HCl
С металлами образуют соли. Например:
2Na + Cl2 = 2NaCl
5. Химический элемент галлий Ga сходен с элементом алюминием Al, а селен Se — с серой S. Напишите формулы оксидов, гидроксидов и солей, в состав которых входят эти элементы. Составьте уравнения реакций, характеризующих химические свойства соответствующих соединений.
Примеры соединений:
Ga2O3, Ga(OH)3, Ga2(SO4)3, Na2[Ga(OH)4], Na2GaO2
SeO2, SeO3, H2SeO3, H2SeO4, Na2SeO3, Na2SeO4
Уравнения реакций для соединений галлия
Ga2O3 + 3SO3 = Ga2(SO4)3
Ga2O3 + 6HCl = 2GaCl3 + 3H2O
Ga2O3 + Na2O (сплавление) = 2NaGaO2
Ga2O3 + 2NaOH + 3H2O = 2Na[Ga(OH)4]
2Ga(OH)3 + 3SO3 = Ga2(SO4)3 + 3H2O
Ga(OH)3 + 3HCl = GaCl3 + 3H2O
2Ga(OH)3 + Na2O (сплавление) = 2NaGaO2 + 3H2O
Ga(OH)3 + NaOH = Na[Ga(OH)4]
GaCl3 + 3AgNO3 = Ga(NO3)3 + 3AgCl↓
Na[Ga(OH)4] + 4HCl = NaCl + GaCl3 + 4H2O
NaGaO2 + 4HCl = NaCl + GaCl3 + 4H2O
Уравнения реакций для соединений селена
SeO2 + H2O = H2SeO3 — селенистая кислота
SeO3 + H2O = H2SeO4 — селеновая кислота
H2SeO3 + 2NaOH = 2H2O + Na2SeO3 — селенит натрия
H2SeO4 + 2KOH = 2H2O + K2SeO4 — селенат калия
K2SeO4 + BaCl2 = BaSeO4↓ + 2KCl
6. В некоторых ядерных реакторах жидкий натрий используют в качестве теплоносителя — вещества, переносящего тепло, вырабатываемое реактором. В чем опасность для окружающей среды такого использования натрия? Для ответа на этот вопрос воспользуйтесь Интернетом или дополнительной литературой.
Натрий — химический активный металл, при О.У. (обычные условия — атмосферное давление, 20° C) реагирующий с водой и кислородом воздуха:
4Na + O2 = 2Na2O
2Na + H2O = 2NaOH + H2↑
Na2O + H2O = 2NaOH
Жидкий, расплавленный натрий, будет вступать в реакцию в разы интенсивнее, т.е. будет иметь место возгорание (а с учетом выделяющегося водорода — это будет больше похоже на фонтан огня). Потушить такое возгорание будет весьма непросто (вода, пенные огнетушители в таком случае неприемлемы — подумайте почему). Кроме того, образующаяся в результате реакции щелочь (гидроксид натрия) весьма едкая.
Тестовые задания
1. К металлическим свойствам не относят
1) твердость
2) ковкость
3) металлический блеск
4) газообразное состояние при нормальных условиях
Ответ: 4
2. Только щелочные металлы указаны в ряду
1) Li, Ba, Na, K
2) Li, Na, K, Rb
3) K, Ca, Ba, Rb
4) Li, Na, Sr, Ca
Ответ: 2
3. Установите соответствие между общей формулой высших оксидов и молекулярной формулой вещества.
1) R2O | А. SO3 |
2) RO | Б. K2O |
3) RO2 | В. CaO |
4) RO3 | Г. SiO2 |
Ответы: 1 — Б, 2 — В, 3 — Г, 4 — А
Побочная подгруппа — цинк, кадмий, ртуть, так же как и подгруппа меди, — редко отличается по своей комплексообразующей способности от главной подгруппы. В принципе комплексообразующая способность у этих элементов возрастает от цинка к ртути, но вследствие значительного различия в их химических свойствах цинк образует более прочные комплексные соединения. Гидроксид цинка обладает амфотерными свойствами, и поэтому он дает устойчивые гидроксосоли, например [c.393]
Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]
Амфотерные свойства проявляют гидроксиды таких металлов, как цинк, хром, свинец и олово, а также упоминавшийся выше алюминий. Можно считать, что амфотерное поведение оксида или гидроксида элемента обусловливается таким значением ионного потенциала центрального атома X в системе X — О — Н, которое допускает приблизительно одинаково легкий разрыв связей X —О и О —Н. Поэтому амфотерными оказываются гидроксиды элементов, имеющих ионный потенциал в пределах от 3,5 до 9,5. Отклонения от этого правила возникают в тех случаях, когда элементы имеют более сложные электронные конфигурации внешних оболочек. Так, например, было бы опрометчиво сравнивать, амфотерные свойства гидроксида алюминия со свойствами гидроксида цинка, поскольку АР имеет 8-элек-тронный остов, тогда как цинк обладает 18-элек-тронным остовом. [c.253]
Гидроксиды щелочных металлов проявляют все характерные свойства оснований они взаимодействуют С кислотными и амфотерными оксидами, амфотерными гидроксидами, кислотами, солями. В водных растворах щелочей растворяются некоторые металлы, образующие амфотерные гидроксиды (бериллий, алюминий, цинк, олово и др.), например [c.247]
Из приведенных примеров видно, что цинк (как и алюминий) обладает двойственной природой, а его оксид и гидроксид — амфотерными свойствами. [c.108]
Цинк, алюминий и некоторые другие металлы, обладающие амфотерными свойствами, могут содержаться в виде анионов в щелочных сточных водах. Для их удаления используют растворы кислот. При этом образуются осадки гидроксидов этих металлов согласно следующим уравнениям [c.130]
Взаимодействие растворов щелочных силикатов с растворимыми солями других поливалентных металлов, таких как цинк, кадмий, медь, никель, железо, марганец, свинец и другие, во многом протекает аналогично взаимодействию с солями щелочноземельных металлов. Образование студенистых осадков малорастворимых гидроксидов металлов происходит еще более легко и также способствует созданию мембран на границах смешиваемых фаз. Образование кристаллических продуктов тоже маловероятно ввиду полимерности не только анионов, но и катионов. Редкое исключение составляет относительно легко кристаллизующийся силикат меди, образующийся при взаимодействии щелочных силикатов с растворами сульфата или хлорида меди. В местах контакта фаз pH резко изменяется, так как ионы гидроксила поглощаются катионами поливалентного металла, что способствует полимеризации кремнезема. Поверхность студенистых осадков более развита и склонность к адсорбции и соосаждению различных ионов больше. Продукты взаимодействия представляют собой смесь гидроксидов, силикатов и основных солей в аморфном состоянии, причем соотношение между ними определяется теми же условиями проведения реакции. Оксиды цинка и свинца, в том числе сурик РЬз04, осаждают кремнезем из растворов жидких стекол, причем их активность зависит от температурной обработки, которой они подвергались. Хорошо сформированные состарившиеся окислы большинства тяжелых металлов практически инертны в щелочных силикатных системах. С высшими окислами молибдена и вольфрама, находя-, щимися в ионной форме молибдатов и вольфраматов, в кислых средах мономерный кремнезем образует гетерополикислоты. Полимерные и коллоидные формы кремнезема взаимодействуют с молибденовой кислотой медленней по мере образования мономерных форм, на этом основано условное деление общего содержания кремнезема в жидких силикатных системах на растворимый (а-5102) и коллоидный. Хроматы и бихроматы осаждают кремнезем из растворов щелочных силикатов, при этом отмечается появление полезных технических свойств осажденных форм. [c.62]
Цинк и кадмий и их соединения по свойствам сходны. В соответствии с ростом радиуса иона гидроксид d(OH)j-более сильное основание, чем Zfl(OH)2. [c.563]
Цинк и кадмий близки друг другу, в то же время ртуть заметно отличается от них как по своему агрегатному состоянию, так и но химическому поведению. Например, она образует ион Ндз, где формально ее степень окисления +1 имеет аномально высокий потенциал ионизации и отличается от цинка и кадмия положительным значением нормального окислительно-восстановительного потенциала, Цинк и кадмий вытесняют водород из разбавленных кислот, а ртуть нет. Радиусы атомов в подгруппе незначительно возрастают от цинка к ртути, а радиусы ионов увеличиваются довольно резко. Соответствеино этому увеличивается доля ковалентной составляющей в связи с электроотрицательными элементами и падает растворимость оксидов и сульфидов. Гидроксид цинка 2п(ОН)2 амфотерен, Сс1(0Н) проявляет более основные свойства, а Н (0Н)2 — соединение неустойчивое и представляет собой слабое основание. Аномалии в свойствах ртути объясняются так называемым эффектом инертной пары . Известно, что Л5 -электроны способны проникать к ядру сквозь экран из предшествующих электронов. Поэтому б5-электронная пара, несмотря на то, что расположена после полностью занятых 4/ — и 5й °-подуровней, очень З стойчи-ва к воздействиям. Этот эффект сказывается далее по периоду на свойствах таллия, свинца, висмута. Вероятно поэтому ртуть относится к благородным металлам, не вытесняющим водород из кислот. [c.300]
Разделение смеси катионов на ионитных колонках может быть осуществлено при наличии в растворе соединений, обладающих амфотерными свойствами, и не обладающих ими. Раствор, содержащий такую смесь, пропускают через катионит в Н-форме, затем промывают колонку раствором щелочи. При этом катионы неамфотерных соединений образуют со щелочью гидроксиды, осаждающиеся на зернах смолы, а катионы амфотерных соединений образуют в избытке щелочи анионы и проходят в фильтрат. Так можно отделить алюминий, цинк, молибден, сурьму, вольфрам от железа, меди и др. [c.144]
Усиление комплексообразующих свойств соединений за счет включения в орто-положение к хелатообразующему центру карбоксильной группы расширило область существования устойчивых комплексов в сторону высоких значений pH и обеспечило высокую маскирующую способность комплексонов 2 3 19—23 21 Выпадение гидроксидов ряда металлов в присутствии этих комплексонов наблюдается лишь прн высоких значениях pH [73] Например, гидроксиды кобальта(П) и меди(П) в присутствии комплексонов 2.3.19— 23 21 выпадают при рН>11. гидроксид магния — при рН>14 Отмечена селективность маскирования некоторых катионов, так. в присутствии комплексонов 2 3 19 и 2 3 20 медь и кобальт маскируются в отличие от никеля, выпадающего при pH=6—8 в виде малорастворимого комплексоната, кадмий и цинк маскируются при рН=6 в отличие от свинца, также выпадающего в этих условиях в виде малорастворимого комплексоната [73] [c.248]
Серебро идентифицировать (определить) легко оно располагается в ряду напряжений правее водорода, так что не реагирует с соляной кислотой и тем более с гидроксидом натрия в растворе. Цинк и алюминий различить сложнее, так как оба они проявляют амфотерные свойства и химически растворяются и в растворе гидроксида натрия, и в соляной кислоте. Однако концентрированная азотная кислота пассивирует поверхность алюминия, и на холоду этот металл с нею не реагирует. Образец под номером 1 — серебро, под номером 2 — алюминий, под номером 3 — цинк. [c.28]
В нейтральных растворах и под тонкой пленкой влаги (атмосферная коррозия) цинк и кадмий корродируют с кислородной деполяризацией. При этом на поверхности металлов образуются защитные пленки гидроксида цинка и кадмия. Следует иметь в виду, что гидроксид цинка обладает амфотерными свойствами и растворяется в. кислых и щелочных растворах, а для гидроксида кадмия характерны только основные свойства. Поэтому при повышении pH скорость коррозии цинка сначала понижается, а затем повышается. В щелочных растворах цинк корродирует с водородной деполяризацией [c.143]
Соли трехвалентного железа получаются растворением гидроксида железа (П1) в соответствующих кислотах. Все они обладают в большей или меньшей степени окислительными свойствами. Магний, цинк, двуххлористое олоно и другие восстанавливают Ре -ионы без нагревания [c.356]
Карбонат цинка 2пСОз, основный карбонат цинка 22пСОз 32п(ОН)г, оксид цинка ZnO, гидроксид цинка Zn (ОН) 2. Все эти реагенты представляют собой белые порошки. Карбонат цинка содержится в минерале смитсонит оксид цинка — в цинките. Эти основные соединения цинка лишь слабо растворимы в воде, поэтому они не влияют на свойства бурового раствора, но сульфид цинка обладает еще меньшей растворимостью благодаря этому они применяются для удаления из буровых растворов сероводорода. Концентрации от 1 до 15 кг/м . Потребление в 1978 г. составило около 1000 т. [c.497]
Проанализировать, какие из перечисленных свойств цинка, кадмия и ртути обусловливают возможность отнесения их к числу — и какие к числу 5-элемен-тов атомы элементов имеют электронную конфигурацию (п—l) ° гs атомы элементов образуют химические связи за счет орбиталей впешпего слоя для элементов характерна постоянная валеитпость (только ртуть проявляет иеремеииую степень окисления) в пределах группы понижается склонность к образованию ионных связей от кадмия к ртути увеличивается ионизационный потенциал для элементов характерна склонность к комплексообра-зоваиию химическая активность от циика к ртути понижается гидроксид цинка (в меньшей мере кадмия) ам-фотерен гидриды малоустойчивы по химическим свойствам ближе между собой цинк и кадмий металлы сравнительно мягкие и легкоплавкие. [c.236]
Свойства (см. также табл. 35). Голубовато-белый металл. Хорошо подвергается прокатке, ковке, пайке и литью. На воздухе всегда покрыт слоем гидроксида-карбоната цинка ( белая ржавчина ), который довольно хорошо предохраняет остальной металл от окисления. При нагревании на воздухе, в частности при отливгнмн изделий из латуни, цинк горит зеленым пламенем, образуя белый дым — оксид цника ZnO. [c.400]
Смотреть страницы где упоминается термин Цинка гидроксид, свойства:
[c.164]
[c.97]
[c.97]
Лекционные опыты и демонстрации по общей и неорганической химии (1976) — [
c.197
]