Какими бывают свойства сложения
- Переместительное свойство умножения
- Сочетательное свойство умножения
- Распределительное свойство умножения
Переместительное свойство умножения
От перестановки сомножителей местами произведение не меняется.
Следовательно, для любых чисел a и b верно равенство:
a · b = b · a,
выражающее переместительное свойство умножения.
Примеры:
6 · 7 = 7 · 6 = 42;
4 · 2 · 3 = 3 · 2 · 4 = 24.
Обратите внимание, что данное свойство можно применять и к произведениям, в которых более двух множителей.
Сочетательное свойство умножения
Результат умножения трёх и более множителей не изменится, если какую-либо группу множителей заменить их произведением.
Следовательно, для любых чисел a, b и c верно равенство:
a · b · c = (a · b) · c = a · (b · c),
выражающее сочетательное свойство умножения.
Пример:
3 · 2 · 5 = 3 · (2 · 5) = 3 · 10 = 30
или
3 · 2 · 5 = (3 · 2) · 5 = 6 · 5 = 30.
Сочетательное свойство используется для удобства и упрощения вычислений при умножении. Например:
25 · 15 · 4 = (25 · 4) · 15 = 100 · 15 = 1500.
В данном случае можно было вычислить всё последовательно:
25 · 15 · 4 = (25 · 15) · 4 = 375 · 4 = 1500,
но проще и легче сначала умножить 25 на 4 и получить 100, а уже потом умножить 100 на 15.
Распределительное свойство умножения
Сначала рассмотрим распределительное свойство умножения относительно сложения:
Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
m · (a + b) = m · a + m · b,
выражающее распределительное свойство умножения.
Так как в данном случае число и сумма являются множителями, то, поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на это число и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
(a + b) · m = a · m + b · m.
Теперь рассмотрим распределительное свойство умножения относительно вычитания:
Чтобы число умножить на разность чисел, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство:
m · (a — b) = m · a — m · b.
Так как в данном случае число и разность являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы разность чисел умножить на число, можно уменьшаемое и вычитаемое отдельно умножить на это число и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство:
(a — b) · m = a · m — b · m.
Переход от умножения:
m · (a + b) и m · (a — b)
соответственно к сложению и вычитанию:
m · a + m · b и m · a — m · b
называется раскрытием скобок.
Переход от сложения и вычитания:
m · a + m · b и m · a — m · b
к умножению:
m · (a + b) и m · (a — b)
называется вынесением общего множителя за скобки.
Математика, 2 класс
Урок № 16. Свойства сложения. Применение переместительного и сочетательного свойств сложения
Перечень вопросов, рассматриваемых в теме:
— Что такое сочетательное свойство сложения?
-В каких случаях можно использовать свойства сложения?
Глоссарий по теме:
Переместительное свойство сложения: слагаемые можно переставлять местами, при этом значение суммы не изменится.
Сочетательное свойство сложения: результат сложения не изменится, если соседние слагаемые заменить их суммой.
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
1. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М.А.Бантова, Г.В.Бельтюкова и др. –8-е изд. – М.: Просвещение, 2017. – с.44-47
2. Математика. КИМы. 2 кл: учебное пособие для общеобразовательных организаций/ Глаголева Ю.И., Волкова А.Д.-М.: Просвещение, Учлит, 2017, с.18, 19
3. Математика. Проверочные работы. 2 кл: учебное пособие для общеобразовательных организаций/ Волкова С.И.-М.: Просвещение, 2017.- с.28, 29
Теоретический материал для самостоятельного изучения
Сравним выражения и их значения:
6+9 *9+6
45+5*5+45
Сумма чисел шесть и девять равна сумме чисел девять и шесть.
Сумма чисел сорок пять и пять равна сумме чисел пять и сорок пять.
6+9 =9+6
45+5=5+45
Что заметили?
Значения выражений равны, так как от перестановки слагаемых значение суммы не меняется. Вспомним, как в математике называется данное свойство сложения?
Правильно, оно называется переместительным свойством сложения.
Решим задачу.
В школьном спортзале 3 волейбольных мяча, 5 баскетбольных мячей и 4 футбольных мяча. Сколько всего мячей в спортзале?
Первый способ решения.
Сначала узнаем, сколько волейбольных и баскетбольных мячей, затем прибавим число футбольных мячей. Запишем: к сумме чисел три и пять прибавить четыре, получится двенадцать.
(3+5)+4=12 (м.)
Второй способ решения.
Прибавим к числу волейбольных мячей сумму баскетбольных и футбольных мячей. Запишем: к трем прибавить сумму чисел пять и четыре равно двенадцать.
3+(5+4)=12 (м.)
В обоих случаях получили одинаковый результат, значит, выражения равны между собой. Можем записать так: (3+5)+4=3+(5+4)
Теперь ты знаешь еще одно свойство сложения: результат сложения не изменится, если соседние слагаемые заменить их суммой. Это свойство называется сочетательным свойством сложения.
Знание этих двух свойств сложения позволит нам решать примеры на сложение удобным способом.
Решим выражение: 1+7+9+3=?
Мы знаем, что слагаемые можно менять местами и соседние слагаемые заменять их суммой. Воспользуемся свойствами сложения и найдем сумму.
1+7+9+3= (1+9)+(7+3)=10+10=20
В данном случае удобно сложить попарно 1 и 9, 7 и 3. А затем сложить полученные результаты. Получим 20.
Делаем вывод: используя переместительное и сочетательное свойства сложения можно складывать числа в любом порядке, как удобнее.
Тренировочные задания.
1. Вычислите суммы удобным способом
30 + 3 + 7 + 40 = _________ 4 + 10 + 6 + 70=_______________
Правильный ответ:
1. 30 + 3 + 7 + 40 = (3+7)+(30+40)=80 2. 4 + 10 + 6 + 70= (10+70)+(4+6)
2. Совместите название математического свойства с его значением и выражением
Результат сложения не изменится, если соседние слагаемые заменить их суммой.
Слагаемые можно переставлять местами, при этом значение суммы не изменится.
9+5+1+5 = (9+1) + (5+5)
9+6 = 6 + 9
Правильный ответ:
Результат сложения не изменится, если соседние слагаемые заменить их суммой.
Слагаемые можно переставлять местами, при этом значение суммы не изменится.
9+5+1+5 = (9+1) + (5+5)
9+6 = 6 + 9
Сочетай, перемещай, свойства действий
узнавай
Напомним известные уже из арифметики главнейшие свойства действий сложения, вычитания, умножения и деления, так
как этими свойствами придется часто пользоваться и в алгебре.
Свойства сложения
Переместительный закон сложения
Сумма не изменяется от перестановки слагаемых .
Пример:
3 + 8 = 8 + 3; 5 + 2 + 4 = 2 + 5 + 4 = 4 + 2 + 5.
В общем случае:
a+b=b+a
a+b+c=c+a+b
Стоит иметь ввиду, что число слагаемых может быть и более трёх.
Сочетательный закон сложения
Сумма нескольких слагаемых не изменится, если какие-нибудь из них заменить их суммой .
Пример:
3 + 5 + 7 = 3 + (5 + 7) = 3 + 12 = 15;
4 + 7+11+6 + 5 = 7 +(4+ 5)+ (11+6) = 7 + 9+17 = 33.
В общем случае:
а + b + с = а+(b + с) = b+(а + с) и т. п.
Иногда этот закон выражают так: слагаемые можно соединять в какие угодно группы.
Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим.
Пример:
5 + (7 + 3) = (5 + 7) + 3 = 12 + 3 = 15.
В общем случае:
a+(b+c+d+…+x)=a+b+c+d+…+x
Свойства вычитания
Свойство вычитания суммы из числа
Чтобы вычесть из какого-нибудь числа сумму нескольких чисел, можно вычесть отдельно каждое слагаемое одно за другим.
Например:
20 — (5+ 8) = (20 — 5) — 8 = 15 — 8 = 7.
В общем случае:
а — (b + с + d+ …) = а — Ь — с — d — …
Свойство сложения разности чисел
Чтобы прибавить разность двух чисел, можно прибавить уменьшаемое и затем вычесть вычитаемое.
Пример:
8 + (11-5) = 8+ 11 -5= 14.
В общем случае:
а + (b — с) = а + Ь — с.
Свойство вычитания разности из числа
Чтобы вычесть разность, можно сначала прибавить вычитаемое и затем вычесть уменьшаемое.
Например:
18-(9-5) = 18 + 5-9= 14.
Вообще:
а — (Ь — с) = а + с — b.
Свойства умножения
Переместительный закон умножения
Произведение не изменится от перестановки сомножителей .
Так:
4·5 = 5·4; 3·2·5 = 2·3·5 = 5·3·2.
Вообще:
a*b = b*a; abc… =b*а*с*… = c*b*a* …
Сочетательный закон умножения
Произведение нескольких сомножителей не изменится, если какие-нибудь из них заменить их произведением .
Так:
7*3*5 = 5*(3*7) = 5*21 = 105.
Вообще:
abc = а(bс) = b(ас) и т. п.
Умножение числа на произведение чисел
Чтобы умножить какое-либо число на произведение нескольких сомножителей, можно умножить это число на
первый сомножитель, полученный результат умножить на второй сомножитель и т. д.
Так:
3*(5*4) = (3*5)*4= 15*4 = 60.
Вообще:
a•(bcd…) = {[(a·b)•c]•d}…
Чтобы умножить произведение нескольких сомножителей на какое-либо число, можно умножить на это число один
из сомножителей, оставив другие без изменения.
Так:
3 • 2 • 5 • 3 = (3 • 3) • 2 • 5 = 3 • (2 • 3) • 5 = 3 • 2 • (5 • 3).
Вообще:
(abc.. )m = (аm)bс… = а(bm)с… и т. п.
Умножение числа на сумму чисел
Чтобы умножить сумму на какое-либо число, можно каждое слагаемое умножить на это число и полученные ре-
результаты сложить.
Так:
(5 + 3)·7 = 5·7 + 3·7.
Вообще:
(а + b + с + .. .)n = an + bn + cn + …
В силу переместительного закона умножения это же свойство можно выразить так: чтобы умножить какое-либо число на
сумму нескольких чисел, можно умножить это число на каждое слагаемое отдельно и полученные результаты сложить.
Так:
5·(4 + 6) = 5·4 + 5·6.
Вообще:
r·(а + Ь + с +…) = rа + rb + rс + …
Это свойство называется распределительным законом умножения, так как умножение, производимое над суммой, распределяется на каждое слагаемое в отдельности.
Распределительный закон умножения для разности чисел
Распределительный закон можно применять и к разности.
Так:
(8 — 5) • 4 = 8 • 4 — 5 • 4;
7 • (9 — 6) = 7 • 9 — 7 • 6.
Вообще:
(а — b)с = ас — bc,
а(b — с) = ab — ас,
т. е. чтобы умножить разность на какое-либо число, можно умножить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй; чтобы умножить какое-либо число на разность, можно это число умножить
отдельно на уменьшаемое и вычитаемое и из первого результата вычесть второй.
Свойства деления
Деление суммы на число
Чтобы разделить сумму на какое-либо число, можно разделить на это число каждое слагаемое отдельно и полученные результаты сложить:
Например:
(30+12+5)/3=30/3+12/3+5/3
Вообще:
(a+b+c+…+v)/m= (a/m)+(b/m)+(c/m)+…(v/m)
Деление разности на число
Чтобы разделить разность на какое-либо число, можно разделить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй:
(20-8)/5= 20/5 — 8/5
Вообще:
(a-b)/c = (a/c) -(b/c)
Деление произведения на число
Чтобы разделить произведение нескольких сомножителей на какое-либо число, можно разделить на это число один
из сомножителей, оставив другие без изменения:
(40 • 12 • 8) : 4 = (40:4) • 12 • 8 = 10 • 12 • 8 = 40 • 12 • 2.
Вообще:
(a·b·c…) : t = (а : t)bс… = а(b : t)с… и т. д.
Деление числа на произведение
Чтобы разделить какое-либо число на произведение нескольких сомножителей, можно разделить это число на
первый сомножитель, полученный результат разделить на второй сомножитель и т.д.:
120 : (12 • 5 • 3) = [(120 : 2) : 5] : 3 = (60 : 5) : 3 = 12 : 3 = 4.
Вообще:
а : (bcd …) = [(а : b) : с] : d… и т. п.
Укажем еще следующее свойство деления:
Если делимое и делитель умножим (или разделим) на одно и то же число, то частное не изменится.
Поясним это свойство на следующих двух примерах:
1)8:3 = 8/3|,
умножим делимое и делитель, положим, на 5; тогда получим
новое частное: (8*5)/(3*5)
которое по сокращении дроби на 5 даст прежнее частное — 8/3
Вообще, какие бы числа a, b и m ни были, всегда
(am) : (bm) = а : b, что можно написать и так:
am/bm= a/b
Если частное не изменяется от умножения делимого и делителя на одно и то же число, то оно не изменяется и от деления делимого и делителя на одно и то же число, так как деление на какое-нибудь число равносильно умножению на обратное число.
Комментирование и размещение ссылок запрещено.
Конспект урока по математике
Тема: Свойства сложения
Цель: повторить и закрепить переместительное свойство сложения, ознакомить с сочетательным свойством сложения.
Задачи:
- Учить использовать свойства сложения для упрощения вычислений.
- Тренировать вычислительные навыки.
- Повторить знания о прямом угле.
- Развивать интерес к математике.
Ход урока:
- Организационный момент.
- Устный счет.
Найти сумму 138 и 22 (160)
485 увеличить на 15 (500)
К 333 прибавить 67 (400)
Первое число равно 78. второе больше его на 22. Чему равно второе число? (100)
Один ученик зачитывает правильные ответы, остальные исправляют у себя ошибки.
- Постановка учебной задачи. Открытие нового знания.
Ребята, давайте решим такой пример:
30+18=48
А теперь решите такой пример:
18+30=48
Сколько получится?
Сравните два примера. Чем они похожи и чем отличаются? (похожи: одинаковые числа, одно и то же действие, одинаковый результат; отличаются: порядок следования слагаемых)
Что можно заметить? (30+18=18+30)
Решим еще одну пару примеров
78+8=86
8+78=86
Сколько получилось в первом примере?
Сколько во втором?
Сравните два примера. Чем они похожи и чем отличаются? (похожи: одинаковые числа, одно и то же действие, одинаковый результат; отличаются: порядок следования слагаемых)
Какой можем сделать вывод? (78+8=8+78)
Мы решили две пары примеров? Что заметили? (результат не изменился от порядка следования слагаемых)
А если будем складывать другие числа, то что-нибудь изменится?
Записать на доске равенство
(a+b)=(a+b)
Почему я записала здесь буквами А и В?
Как мы можем сформулировать это свойство? (От перестановки мест слагаемых сумма не меняется)
Это, ребята, переместительное свойство действия сложения.
Сейчас мы решим еще несколько примеров.
(18+19)+1=38
Какое действие первое? (в скобках)
Какое второе?
18+(19+1)=38
Какое действие первое?
Какое второе?
Сколько получилось?
Сравните два примера. Чем они похожи и чем отличаются? (похожи: одинаковые числа, одни и те же действия, одинаковый результат, порядок следования слагаемых; отличаются: порядок выполнения действий)
Какой пример было легче вычислять? Почему? (второй, потому что к круглому числу прибавлять проще)
23+(17+46)=86
Какое действие первое?
Какое второе?
(23+17)+46=86
Какое действие первое?
Какое второе?
Сколько получилось?
Сравните два примера. Чем они похожи и чем отличаются? (похожи: одинаковые числа, одни и те же действия, одинаковый результат, порядок следования слагаемых; отличаются: порядок выполнения действий)
Какой пример было легче вычислять? (второй, потому что к круглому числу прибавлять проще)
Нарушали ли мы порядок следования слагаемых? (нет)
Как вы думаете, всегда ли это так? Для любых ли чисел?
Как мы можем сформулировать это свойство? (от изменения порядка действий сложения сумма не меняется)
Что можно заметить? (23+(17+46)=(23+17)+46)
(a+b)+c=a+(b+c)
Это свойство называется сочетательным.
Откройте учебник на странице … и прочитайте, как наука математика формулирует только что изученные нами свойства сложения.
- Первичное закрепление.
Упражнение № 2. работа детей у доски.
(11+74)+18+(89+26) (34+166)+(18+72)=290 (П и С)
34+18+166+72 (97+3)+95=195 (С)
798+15+2 (11+89)+(74+26)+18=218 (П и С)
97+(3+95) (21+29)+(23+27)+25=125 (П и С)
21+23+25+27+29 (798+2)+15=815 ()
- Итог урока:
Что нового сегодня мы узнали?
О свойствах какого действия мы узнали?
В чем заключается переместительное свойство сложения?
В чем заключается сочетательное свойство сложения?
Для чего нужны эти свойства?
- Домашнее задание.
Упражнение № 4 (2, 3), упражнение № 5
Свойства сложения – это первый шаг к ускорению счета. Ученик, владеющий всеми приемами быстрого сложения, имеет больше времени для сложных задач и проверки своего решения. Поэтому имеет смысл рассмотреть свойства сложения еще раз, чтобы правильно применять их на практике
Что такое сложение?
Для начала вспомним, что такое вообще сложение? Сложение это одна из первых операций, которые изучают в школе, а иногда даже в детском саду. Как правило, сложение объясняют на примере фруктов.
Если взять 3 груши и 2 яблока, сложить их в корзину, то груши это первое слагаемое, яблоки второе, а общее количество фруктов в корзине – сумма. Это определение нельзя назвать неправильным, но ученики растут, как растут и используемые числа. Сложно представить себе сложение сотен тысяч фруктов.
Поэтому в математике используют другое определение, которое гласит, что сложение это перемещение точки на числовой прямой в право.
Многие знания усложняются со временем. Так, если в начальной школе ученикам говорят, что отрицательный результат сложения это ошибка, то в 5 классе все уже знают, что такой ответ возможен. Так и с определением свойств сложения. Обычных фруктов просто не хватит для того, чтобы представить себе большие числа. Поэтому в старших классах уходят к теоретическим определениям.
Свойства сложения
Выделяют переместительное и сочетательное свойство. Переместительное свойство говорит нам о том, что от перемены мест слагаемых сумма не поменяется.
Сочетательное свойство утверждает, что в примерах, где два и более множителя, сложение может производиться в любом порядке. Главное в этом случае правильно сгруппировать слагаемые, чтобы ускорить вычисления, а не затруднить его еще сильнее. Самый простой вариант это смотреть на количество единиц в числе. В первую очередь нужно складывать те числа, сумма единиц в которых равняется 10, например 29 и 31 в сумме дадут 60.
После этого складывают целые десятки и только потом все остальное. Это наиболее простой и быстрый путь решение примеров на сложение.
На самом деле даже не каждый профессор сможет отличить применение сочетательного свойства от переместительного. Они крайне похожи, некоторые математики считают даже, что сочетательное свойство является продолжением переместительного. По той же причине учителя редко просят отличить применение в задаче одного свойства от другого. Нужно просто уметь пользоваться обоими.
Пример
Примеры сочетательного свойства сложения найти не трудно. Практически в каждом примере используется это свойство.
15*3+5-13-17-2-16-2 – для начала выполним умножение.
45+5-13-17-2-16-2 – теперь сгруппируем члены так, чтобы вычислить результат как можно быстрее. Для этого нужно вспомнить, что разность можно представить, как сумму отрицательных чисел. В нашем случае просто вынесем минус за знак скобок.
45+5-13-17-2-16-2=(45+5)-(13+17)-(2+2+16) – теперь выполним вычисления в скобках и найдем окончательный результат
45+5-13-17-2-16-2=(45+5)-(13+17)-(2+2+16)=50-30-0=0
Вот такой ответ получился у достаточно большого примера. Не стоит пугаться простых ответов вроде 0 или 1. Иногда составители примеров таким образом путают учеников.
Что мы узнали?
Мы поговорили о сложении, выделили сочетательное и переместительное свойства сложения. Поговорили о различиях этих свойств, а также о правильном применении сочетательного свойства сложения. Решили небольшой пример, чтобы показать применение сочетательного свойства на практике.
Тест по теме
Оценка статьи
Средняя оценка: 4.6. Всего получено оценок: 146.