Каким замечательным свойством обладают медианы высоты и биссектрисы

Каким замечательным свойством обладают медианы высоты и биссектрисы thumbnail

Определения

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Теорема

В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).

Каким замечательным свойством обладают медианы высоты и биссектрисы

Теорема

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

Каким замечательным свойством обладают медианы высоты и биссектрисы

Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

[{Large{text{Медиана}}}]

Теорема

В любом треугольнике медианы точкой пересечения делятся в отношении (2:1), считая от вершины.

Доказательство

Пусть (AD) и (BE) – медианы в треугольнике (ABC), (O) – точка пересечения (AD) и (BE).

Каким замечательным свойством обладают медианы высоты и биссектрисы

(DE) – средняя линия в треугольнике (ABC), тогда (DEparallel AB), значит (angle ADE = angle BAD), (angle BED = angle ABE), следовательно, треугольники (ABO) и (DOE) подобны (по двум углам).

Из подобия треугольников (ABO) и (DOE): (dfrac{BO}{OE} =
dfrac{AB}{DE} = dfrac{2}{1}).

Для других медиан треугольника (ABC) требуемое свойство доказывается аналогично.

Теорема

Медиана треугольника делит его на два равновеликих треугольника (равновеликие треугольники – это треугольники, у которых площади равны).

Доказательство

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию: (S_{ABC} = 0,5cdot ACcdot
h).

Каким замечательным свойством обладают медианы высоты и биссектрисы

Пусть (BD) – медиана в треугольнике (ABC), тогда (AD = DC).

(S_{ABD} = 0,5cdot ADcdot h),

(S_{BCD} = 0,5cdot DCcdot h).

Так как (AD = DC), то (S_{ABD} = S_{BCD}), что и требовалось доказать.

Теорема

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Верно и обратное: если медиана равна половине стороны, к которой она проведена, то она проведена из вершины прямого угла.

Доказательство

1) Докажем, что если (triangle ABC) – прямоугольный, то (BM=frac12AC), где (M) – середина гипотенузы (AC).

Каким замечательным свойством обладают медианы высоты и биссектрисы

Достроим треугольник (ABC) до прямоугольника (ABCD) и проведем диагональ (BD). Т.к. в прямоугольнике диагонали делятся точкой пересечения пополам и равны, то (ACcap BD=M), причем (AM=MC=BM=MD), чтд.

2) Докажем, что если в треугольнике (ABC) медиана (BM=AM=MC), то (angle B=90^circ).

Каким замечательным свойством обладают медианы высоты и биссектрисы

Треугольники (AMB) и (CMB) – равнобедренные, следовательно, (angle
BAM=angle ABM=alpha, quad angle MBC=angle MCB=beta).

Т.к. сумма углов в треугольнике равна (180^circ), то для (triangle
ABC):

(alpha+(alpha+beta)+beta=180^circ Rightarrow
alpha+beta=90^circ Rightarrow angle B=90^circ), чтд.

[{Large{text{Биссектриса}}}]

Теорема

Биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам:

Каким замечательным свойством обладают медианы высоты и биссектрисы

Верно и обратное: если отрезок, проведенный из вершины треугольника к стороне, делит эту сторону на отрезки, пропорциональные прилежащим сторонам, то это биссектриса.

Доказательство

Площади треугольников, у которых есть равные углы, относятся как произведения сторон, образующих эти углы, то есть [dfrac{S_{ACD}}{S_{BCD}} = dfrac{ACcdot CD}{CBcdot CD} =
dfrac{AC}{CB}]

С другой стороны, (dfrac{S_{ACD}}{S_{BCD}} = dfrac{0,5cdot
ADcdot h}{0,5cdot DBcdot h}), где (h) – высота, проведённая из точки (C), тогда (dfrac{S_{ACD}}{S_{BCD}} = dfrac{AD}{DB}).

В итоге (dfrac{AD}{DB} = dfrac{S_{ACD}}{S_{BCD}} =
dfrac{AC}{CB}), откуда (dfrac{AD}{AC} = dfrac{DB}{BC}), что и требовалось доказать.

Теорема

Если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Верно и обратное: если точка лежит на биссектрисе угла, то она равноудалена от его сторон.

Каким замечательным свойством обладают медианы высоты и биссектрисы

Доказательство

1) Докажем, что если (KA=KB), то (OK) – биссектриса.
Рассмотрим треугольники (AOK) и (BOK): они равны по катету и гипотенузе, следовательно, (angle AOK=angle BOK), чтд.

2) Докажем, что если (OK) – биссектриса, то (KA=KB).
Аналогично треугольники (AOK) и (BOK) равны по гипотенузе и острому углу, следовательно, (KA=KB), чтд.

Источник

Высоты, медианы и биссектрисы треугольника постоянно встречаются нам в задачах по геометрии. Мы начнем с таблицы, в которой показано, что такое высоты, медианы и биссектрисы, и какими свойствами они обладают. Затем — подробные объяснения и решение задач.

Высоты, медианы, биссектрисы треугольника

Напомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

Высота в треугольнике

Три высоты треугольника всегда пересекаются в одной точке. Вот как это выглядит в случае остроугольного треугольника.

Высоты в остроугольном треугольнике

Попробуйте провести три высоты в тупоугольном треугольнике. Получилось? Да, редкий выпускник справляется с этим заданием. Действительно, мы не можем опустить перпендикуляр из точки  на отрезок , зато можем опустить его на прямую  — то есть на продолжение стороны .

Читайте также:  В ручьях можно рассмотреть дно какое свойство воды позволяет это сделать

Высота в тупоугольном треугольнике

В этом случае в одной точке пересекаются не сами высоты, а их продолжения.

Высоты в тупоугольном треугольнике

А как выглядят три высоты в прямоугольном треугольнике? В какой точке они пересекаются?

Медиана треугольника — отрезок, соединяющий его вершину с серединой противоположной стороны.

Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении , считая от вершины.

Свойство медианы

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

У биссектрисы угла есть замечательное свойство — точки, принадлежащие ей, равноудалены от сторон угла. Поэтому три биссектрисы треугольника пересекаются в одной точке, равноудаленной от всех сторон треугольника. Эта точка является центром окружности, вписанной в треугольник.

Еще одно свойство биссектрисы пригодится тем, кто собирается решать задачу . Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.

Свойство биссектрисы

Разберем несколько задач, в которых речь идет о высотах, медианах и биссектрисах треугольника. Все задачи взяты из Банка заданий ФИПИ.

1. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.

Рисунок к задаче 1

Пусть биссектрисы треугольника (в котором угол  равен ) пересекаются в точке .

Рассмотрим треугольник .

,

, тогда

Острый угол между биссектрисами на рисунке обозначен .

Угол  смежный с углом , следовательно, .

Поскольку треугольник  — прямоугольный, то .

Тогда .

Ответ: .

2. Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Рисунок к задаче 2

Пусть  — высота, проведенная из вершины прямого угла ,  — биссектриса угла .

Тогда

.

Угол между высотой и биссектрисой — это угол .

Ответ: .

3. Два угла треугольника равны и . Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.

Рисунок к задаче 3

Из треугольника (угол  — прямой) найдем угол . Он равен .

Из треугольника ( — прямой) найдем угол . Он равен .

В треугольнике известны два угла. Найдем третий, то есть угол , который и является тупым углом между высотами треугольника :

.

Ответ: .

4. В треугольнике угол  равен ,  и  — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Рисунок к задаче 4

Пусть в треугольнике угол равен , угол равен .

Рассмотрим треугольник .

, тогда .

Из треугольника получим, что .

Тогда .

Ответ: .

5. В треугольнике угол  равен , угол  равен . , и  — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Рисунок к задаче 5

Найдем угол . Он равен .

Тогда .

Из треугольника найдем угол . Он равен .

Рассмотрим треугольник .

, . Значит

Ответ: .

6. В треугольнике ,  — медиана, угол равен , угол  равен . Найдите угол . Ответ дайте в градусах.

Как решать эту задачу? У медианы прямоугольного треугольника, проведенной из вершины прямого угла, есть особое свойство. Мы докажем его в теме «Прямоугольник и его свойства».

Подсказка: Сделайте чертеж, найдите на нем равнобедренные треугольники и докажите, что они равнобедренные.

Правильный ответ: .

Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.

Источник

Pro raider

Ученик

(100),
закрыт

8 лет назад

Дополнен 9 лет назад

чётко и кратко

NO ONE

Мастер

(1669)

9 лет назад

Медиана:
Медианы треугольника пересекаются в одной точке, которая называется центроидом, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Треугольник делится тремя медианами на шесть равновеликих треугольников.
Большей стороне треугольника соответствует меньшая медиана.
Из векторов, образующих медианы, можно составить треугольник.
При аффинных преобразованиях медиана переходит в медиану.

Высота:
перпендикулярна к проведенной стороне
Высоты треугольника пересекаются в одной точке, называемой ортоцентром. — Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E, не обязательно даже лежащих в одной плоскости:
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Читайте также:  Какими целебными свойствами обладает чай

Бисектриса:
Теорема о биссектрисе: Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
Если 2 биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса) .
Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, [1] причём даже при наличии трисектора.

Источник: Википедия

Маринет Франк

Ученик

(212)

4 года назад

Медиана:
Медианы треугольника пересекаются в одной точке, которая называется центроидом, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Треугольник делится тремя медианами на шесть равновеликих треугольников.
Большей стороне треугольника соответствует меньшая медиана.
Из векторов, образующих медианы, можно составить треугольник.
При аффинных преобразованиях медиана переходит в медиану.

Высота:
перпендикулярна к проведенной стороне
Высоты треугольника пересекаются в одной точке, называемой ортоцентром. — Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E, не обязательно даже лежащих в одной плоскости:
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Бисектриса:
Теорема о биссектрисе: Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
Если 2 биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса) .
Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, [1] причём даже при наличии трисектора.

Степан Казанцев

Ученик

(145)

5 месяцев назад

Медиана- отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Биссектриса- луч, исходящий из вершин треугольника и делящий его по попал.
Высота треугольника- это перпендикуляр, опущенный из вершин треугольника на противоположную сторону.

Источник

Перпендикуляр от точки к прямой

Отрезок (AC) называется перпендикуляром, проведённым из точки (A) прямой (a), если прямые (AC) и (a) перпендикулярны.

Точка (C) называется основанием перпендикуляра.

От точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один. 

  

Докажем, что от точки (A), не лежащей на прямой (BC), можно провести перпендикуляр к этой прямой.

Допустим, что дан угол ∡ABC.

Отложим от луча (BC) угол, равный данному, и совместим эти углы накладыванием (представим, что сложим лист бумаги с равными углами по стороне (BC)).

Сторона (BA) совместится со стороной BA1.

Читайте также:  Каким свойствами обладает зеркало

При этом точка (A) наложится на некоторую точку A1.

Следовательно, совмещается угол ∡ACB с ∡A1CB.

Но углы ∡ACB и ∡A1CB — смежные, значит, каждый из них прямой.

Прямая AA1 перпендикулярна прямой (BC), а отрезок (AC) является перпендикуляром от точки (A) к прямой (BC).

Если допустить, что через точку (A) можно провести ещё один перпендикуляр к прямой (BC), то он бы находился на прямой, пересекающейся с AA1. Но две к одной и той же прямой перпендикулярные прямые должны быть параллельны и не могут пересекаться.

Это противоречие, что означает: через данную точку к прямой можно провести только один перпендикуляр.

Медианы, биссектрисы и высоты треугольника

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Поэтому для построения медианы необходимо выполнить следующие действия:
1. найти середину стороны;
2. соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.

У треугольника три стороны, следовательно, можно построить три медианы.

Все медианы пересекаются в одной точке.

Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.

Поэтому для построения биссектрисы необходимо выполнить следующие действия:
1. построить биссектрису какого-либо угла треугольника (биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части);
2. найти точку пересечения биссектрисы угла треугольника с противоположной стороной;
3. соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса треугольника.

У треугольника три угла и три биссектрисы.

Все биссектрисы пересекаются в одной точке.

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону.

Поэтому для построения высоты необходимо выполнить следующие действия:
1. провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);
2. из вершины, лежащей напротив проведённой прямой, опустить перпендикуляр к ней (перпендикуляр — это отрезок, проведённый из точки к прямой, составляющей с ней угол 90°) — это и будет высота.

Так же как медианы и биссектрисы, треугольник имеет три высоты.

Высоты треугольника пересекаются в одной точке.

Но, как выше упомянуто, для некоторых видов треугольников построение высот и точки их пересечения отличаются. 

Если треугольник с прямым углом, то стороны, образующие прямой угол, можно назвать высотами, так как они перпендикулярны одна к другой. Точкой пересечения высот является общая вершина перпендикулярных сторон.

Если треугольник с тупым углом, то высоты, опущенные с вершин острых углов, выходят вне треугольника к продолжениям сторон. Прямые, на которых расположены высоты, пересекаются вне треугольника.

Обрати внимание!

Если из одной и той же вершины провести медиану, биссектрису и высоту, то медиана окажется самым длинным отрезком, а высота — самым коротким отрезком.

Равнобедренный треугольник

Если у треугольника две стороны равны, то такой треугольник называют равнобедренным.

Равные стороны называют боковыми, а третью сторону — основанием.

(AB = BC) — боковые стороны , (AC) — основание.

Если у треугольника все три стороны равны, то такой треугольник является равносторонним.

Равнобедренный треугольник имеет некоторые свойства, которые не имеют треугольники с разными сторонами.

1. В равнобедренном треугольнике углы при основании равны.

2. В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

3. В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.

4. В равнобедренном треугольнике высота, проведённая к основанию, является биссектрисой и медианой.

Первое и второе свойство можно доказать, если докажем равенство двух треугольников, которые образуются, когда к углу напротив основания провести биссектрису (BD).

Рассмотрим равнобедренный треугольник (ABC) с основанием (AC) и докажем, что ΔABD=ΔCBD.

Пусть (BD) — биссектриса треугольника (ABC). ΔABD=ΔCBD по первому признаку равенства треугольников ((AB = BC) по условию, (BD) — общая сторона, ∡ABD=∡CBD, так как (BD) — биссектриса).

У равных треугольников равны все соответствующие элементы:

1. ∡A=∡C — доказано, что прилежащие основанию углы равны.

2. (AD = DC) — доказано, что биссектриса является медианой.

3. ∡ADB=∡CDB — так как смежные углы, сумма которых 180°, равны, то каждый из них равен 90°, то есть медиана является высотой.

Можно очень легко самостоятельно доказать и третье, и четвёртое свойства.

Источник