Каким свойством обладают все точки серединного перпендикуляра
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Окружность
- Свойства серединного перпендикуляра к отрезку
Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему.
— серединный перпендикуляр к отрезку АВ.
Теорема
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему.
Доказательство
1) Дано: m — серединный перпендикуляр отрезка АВ, О — середина АВ, Мm
Доказать: АМ = ВМ
Доказательство:
Если О = М, то АМ = ВМ, т.к. О — середина АВ.
Пусть О М. Рассмотрим ОАМ и ОВМ: так как m — серединный перпендикуляр отрезка АВ, то рассматриваемые треугольники прямоугольные. ОА = ОВ, т.к. О — середина отрезка АВ, ОМ — общий катет, следовательно, ОАМ = ОВМ, по двум катетам, а в равных треугольниках против соответственно равных углов лежат равные стороны, поэтому АМ = ВМ.
2) Дано: m — серединный перпендикуляр отрезка АВ, О — середина АВ, АN = ВN
Доказать:Nm
Доказательство:
Рассмотрим произвольную точку N.
Если NАВ, то N = О, а, значит, она лежит на прямой m.
Если N не лежит на АВ, то ANB — равнобедренный, так как АN = ВN. О — середина АВ, следовательно, NО — медиана ANB, а, значит, и высота по свойству равнобедренного треугольника. Поэтому NОАВ, следовательно, прямые NО и m совпадают, так как по устовию m — серединный перпендикуляр отрезка АВ, т.е. N — точка прямой m. Теорема доказана.
Следствие 1
Следствие2
Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Поделись с друзьями в социальных сетях:
Советуем посмотреть:
Взаимное расположение прямой и окружности
Касательная к окружности
Градусная мера дуги окружности
Теорема о вписанном угле
Свойство биссектрисы угла
Теорема о пересечении высот треугольника
Вписанная окружность
Описанная окружность
Окружность
Правило встречается в следующих упражнениях:
7 класс
Задание 679,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 706,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 25,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 727,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 18,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1085,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1155,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 12,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1172,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1173,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
На данном уроке мы подробно рассмотрим, какими свойствами обладают точки, лежащие на биссектрисе угла, и точки, которые лежат на серединном перпендикуляре к отрезку.
Тема: Окружность
Урок: Свойства биссектрисы угла и серединного перпендикуляра к отрезку
1. Свойство биссектрисы угла, прямая и обратная теорема
Рассмотрим свойства точки, лежащей на биссектрисе угла (см. Рис. 1).
Рис. 1
Задан угол , его биссектриса AL, точка М лежит на биссектрисе.
Теорема:
Если точка М лежит на биссектрисе угла, то она равноудалена от сторон угла, то есть расстояния от точки М до АС и до ВС сторон угла равны.
Доказательство:
Расстояние от точки до прямой есть длина перпендикуляра. Проведем из точки М перпендикуляры МК к стороне АВ и МР к стороне АС.
Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, а углы и равны, так как AL – биссектриса угла . Таким образом, прямоугольные треугольники равны по гипотенузе и острому углу, отсюда следует, что , что и требовалось доказать. Таким образом, точка на биссектрисе угла равноудалена от сторон этого угла.
Справедлива обратная теорема.
2. Теорема о пересечении биссектрис треугольника
Если точка равноудалена от сторон неразвернутого угла, то она лежит на его биссектрисе.
Рис. 2
Задан неразвернутый угол , точка М, такая, что расстояние от нее до сторон угла одинаковое (см. Рис. 2).
Доказать, что точка М лежит на биссектрисе угла.
Доказательство:
3. Свойство серединного перпендикуляра, прямая и обратная теоремы
Расстояние от точки до прямой есть длина перпендикуляра. Проведем из точки М перпендикуляры МК к стороне АВ и МР к стороне АС.
Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, катеты МК и МР равны по условию. Таким образом, прямоугольные треугольники равны по гипотенузе и катету. Из равенства треугольников следует равенство соответствующих элементов, против равных катетов лежат равные углы, таким образом, , следовательно, точка М лежит на биссектрисе данного угла.
Прямую и обратную теоремы можно объединить.
Теорема
Биссектриса неразвернутого угла есть геометрическое место точек, равноудаленных от сторон данного угла.
Теорема
Биссектрисы АА1, ВВ1, СС1 треугольника пересекаются в одной точке О (см. Рис. 3).
Рис. 3
Доказательство:
Рассмотрим сначала две биссектрисы ВВ1 и СС1. Они пересекаются, точка пересечения О существует. Чтобы доказать это, предположим противное – пусть данные биссектрисы не пересекаются, в таком случае они параллельны. Тогда прямая ВС является секущей, и сумма углов , это противоречит тому, что во всем треугольнике сумма углов .
Итак, точка О пересечения двух биссектрис существует. Рассмотрим ее свойства:
Точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон ВА и ВС. Если ОК – перпендикуляр к ВС, OL – перпендикуляр к ВА, то длины этих перпендикуляров равны – . Также точка О лежит на биссектрисе угла и равноудалена от его сторон CВ и СА, перпендикуляры ОМ и ОК равны.
Получили следующие равенства:
, то есть все три перпендикуляра, опущенные из точки О на стороны треугольника, равны между собой.
Нас интересует равенство перпендикуляров OL и ОМ. Это равенство говорит о том, что точка О равноудалена от сторон угла , отсюда следует, что она лежит на его биссектрисе АА1.
Таким образом, мы доказали, что все три биссектрисы треугольника пересекаются в одной точке.
Перейдем к рассмотрению отрезка, его серединного перпендикуляра и свойства точки, которая лежит на серединном перпендикуляре.
Задан отрезок АВ, р – серединный перпендикуляр. Это значит, что прямая р проходит через середину отрезка АВ и перпендикулярна ему.
Теорема
Рис. 4
Любая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка (см. Рис. 4).
Доказать, что
Доказательство:
Рассмотрим треугольники и . Они прямоугольные и равные, т.к. имеют общий катет ОМ, а катеты АО и ОВ равны по условию, таким образом, имеем два прямоугольных треугольника, равных по двум катетам. Отсюда следует, что гипотенузы треугольников тоже равны, то есть , что и требовалось доказать.
Заметим, что отрезок АВ является общей хордой для многих окружностей.
Например, первая окружность с центром в точке М и радиусом МА и МВ; вторая окружность с центром в точке N, радиусом NA и NB.
Таким образом, мы доказали, что если точка лежит на серединном перпендикуляре к отрезку, она равноудалена от концов отрезка (см. Рис. 5).
Рис. 5
Справедлива обратная теорема.
Теорема
Если некоторая точка М равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
Задан отрезок АВ, серединный перпендикуляр к нему р, точка М, равноудаленная от концов отрезка (см. Рис. 6).
Доказать, что точка М лежит на серединном перпендикуляре к отрезку.
Рис. 6
Доказательство:
Рассмотрим треугольник . Он равнобедренный, так как по условию. Рассмотрим медиану треугольника: точка О – середина основания АВ, ОМ – медиана. Согласно свойству равнобедренного треугольника, медиана, проведенная к его основанию, является одновременно высотой и биссектрисой. Отсюда следует, что . Но прямая р также перпендикулярна АВ. Мы знаем, что в точку О можно провести единственный перпендикуляр к отрезку АВ, значит, прямые ОМ и р совпадают, отсюда следует, что точка М принадлежит прямой р, что и требовалось доказать.
Прямую и обратную теоремы можно обобщить.
Теорема
Серединный перпендикуляр к отрезку есть геометрическое место точек, равноудаленных от его концов.
Треугольник, как известно, состоит из трех отрезков, значит, в нем можно провести три серединных перпендикуляра. Оказывается, что они пересекаются в одной точке.
4. Теорема о пересечении серединных перпендикуляров в треугольнике
Серединные перпендикуляры треугольника пересекаются в одной точке.
Задан треугольник . Перпендикуляры к его сторонам: Р1 к стороне ВС, Р2 к стороне АС, Р3 к стороне АВ (см. Рис. 7).
Доказать, что перпендикуляры Р1, Р2 и Р3 пересекаются в точке О.
Рис. 7
Доказательство:
Рассмотрим два серединных перпендикуляра Р2 и Р3, они пересекаются, точка пересечения О существует. Докажем этот факт от противного – пусть перпендикуляры Р2 и Р3 параллельны. Тогда угол развернутый, что противоречит тому факту, что сумма трех углов треугольника составляет . Итак, существует точка О пересечения двух из трех серединных перпендикуляров. Свойства точки О: она лежит на серединном перпендикуляре к стороне АВ, значит, она равноудалена от концов отрезка АВ: . Также она лежит на серединном перпендикуляре к стороне АС, значит, . Получили следующие равенства:
Из данного равенства нас интересует тот факт, что , это значит, что точка О равноудалена от концов отрезка ВС, значит, она принадлежит серединному перпендикуляру к стороне ВС. Таким образом, точка О – точка пересечения трех серединных перпендикуляров треугольника , что и требовалось доказать.
5. Выводы по уроку
Итак, мы рассмотрели свойства биссектрисы угла и серединного перпендикуляра к отрезку, доказали некоторые теоремы. Далее мы рассмотрим свойства пересечения высот треугольника.
Список литературы
- Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
- Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
- Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Bymath.net (Источник).
- Oldskola1.narod.ru (Источник).
Домашнее задание
- Задание 1: биссектрисы внешних углов при вершинах В и С треугольника пересекаются в точке О. Докажите, что луч АО – биссектриса угла
- Задание 2: биссектрисы АА1 и ВВ1 треугольника пересекаются в точке О. Найдите угол , если угол .
- Задание 3: биссектриса угла равнобедренного треугольника с основанием ВС пересекает серединный перпендикуляр к стороне АС в точке О. Найдите ВО, если
Общие сведения
Серединным перпендикуляром отрезка называют прямую, которая проходит под прямым углом через среднюю точку, т. е. середину отрезка. Для полного понимания материала следует остановиться на базовых элементах геометрии.
Точка — единица, при помощи которой строятся прямые, отрезки, лучи и фигуры. Прямая — простая фигура в форме бесконечной линии, состоящей из множества точек, лежащих в одной плоскости. Луч — базовая геометрическая фигура в виде бесконечной линии с одной стороны и точки-ограничителя — с другой. Иными словами, луч имеет начало, но не имеет конца. Отрезок — некоторая часть прямой (луча или другого отрезка), ограниченная двумя точками.
Кроме того, в геометрии серединный перпендикуляр встречается в треугольниках. Из определения можно сделать вывод, что им может быть прямая, отрезок и даже луч.
Аксиомы геометрии Евклида
Евклидовой геометрией называется наука о фигурах на плоскости, основанная на аксиомах и теоремах. Аксиома — базовое утверждение, не требующее доказательства. Оно используется для доказательства каких-либо теорем. Математики выделяют пять аксиом:
- Принадлежности.
- Порядка.
- Конгруэнтности.
- Параллельности прямых.
- Непрерывности.
Формулировка первой имеет такой вид: если существует в геометрическом пространстве плоскость, состоящая из множества точек, то через любые из них можно провести только одну прямую. Иными словами, можно взять произвольные две точки и провести через них одну прямую. Чтобы начертить еще одну прямую, следует взять две другие точки.
Следующее утверждение называется аксиомой порядка. Она гласит, что существует точка, которая лежит между двумя другими на прямой. Значение слова «конгруэнтность» не совсем понятно для новичка, однако нужно постепенно привыкать к терминологии. Оно обозначает «равенство». Третий геометрический факт формулируется таким образом: когда два отрезка или угла конгруэнтны третьему, тогда они равны между собой. Аксиома касается только отрезков и углов.
Чтобы убедиться в ее правильности, нужно разобрать следующий пример: длина первого отрезка составляет 10 см, второго — тоже, а третий равен первому. Необходимо доказать, что они равны между собой. Это делается очень просто:
- Вводятся обозначения: первый — MN, второй — OP и третий — RS.
- Устанавливаются значения по условию: MN = 10 см, ОР = 10 см, а RS = MN.
- Доказательство строится таким образом: MN = RS = 10 (см). Следовательно, отрезки равны, поскольку MN = ОР = RS = 10 (см).
Следует отметить, что данные действия оказались лишними — было потрачено время на понимание простой «истины». Параллельность прямых является также аксиомой и формулируется таким образом: если существует некоторая прямая на плоскости и точка, не лежащая на ней, то через последнюю можно провести только одну параллельную ей прямую.
И последняя аксиома называется Архимедовой. Ее формулировка имеет такой вид: для произвольных отрезков, лежащих на одной прямой, существует некоторая последовательность базовых элементов (точек), лежащих на одном и другом отрезках, таких, что заданные их части равны между собой. Иными словами, на одной прямой могут быть расположены равные между собой отрезки.
Информация о треугольниках
Треугольником является любая фигура, состоящая из трех вершин (точек) соединенных отрезками (сторонами), причем точки не лежат на одной прямой в одной плоскости. Они классифицируются по такому типу:
- Углам.
- Сторонам.
- Подобию.
В первом случае фигуры делятся на остроугольные, тупоугольные и прямоугольные. Остроугольным называется треугольник, у которого все углы острые (меньше 90 градусов). У тупоугольного — один угол тупой (> 90), а в прямоугольном — один из углов равен 90 градусам. Следует отметить, что сумма градусных мер углов любого треугольника эквивалентна 180.
Когда стороны у треугольника неравны между собой, тогда его называют разносторонним. При равенстве двух боковых сторон он считается равнобедренным, у которого третья сторона — основание. Если все стороны равны, то значит, фигура является равносторонней или правильной.
У треугольника есть еще и другие параметры. Их называют медианой, биссектрисой и высотой. Первый параметр является отрезком, который проводится из любой вершины на среднюю точку стороны. Высота — часть прямой, которая проводится из произвольной вершины и перпендикулярна противоположной стороне. Биссектрисой называется прямая, делящая угол на две равные части.
Медиана, высота и биссектриса, проведенные из вершины к основанию, совпадают и эквивалентны серединному перпендикуляру в треугольниках равнобедренного и равностороннего типов. Это очень важно при решении задач. Еще одним признаком, по которому выполняется классификация — подобность треугольников. У них могут быть равными только углы и некоторые стороны. Они отличаются между собой по определенному параметру, который называется коэффициентом подобия. Последний влияет только на размерность сторон. Говорят, что фигуры подобны по определенному признаку (их всего три).
Основные теоремы
Теорема — гипотеза (предположение), которую нужно доказать. Они применяются для оптимизации расчетов и вычисления отдельных параметров заданной фигуры. Кроме того, существуют следствия, полученные при доказательстве таких научных предположений. Эти аспекты упрощают и автоматизируют вычисления. Например, при вычислении площади треугольника нет необходимости выводить формулу, достаточно воспользоваться уже готовой.
Математики выделяют всего три теоремы о СП, которые могут значительно упростить расчеты. К ним можно отнести следующие:
- Прямая.
- Обратная.
- Пересечение в треугольнике.
Первая теорема называется прямой о СП. Она показывает, каким свойством обладают точки серединного перпендикуляра. Ее формулировка следующая: произвольная точка, которая взятая на перпендикуляре, удалена на равные расстояния от конечных точек отрезка, ограничивающих его на плоскости.
Для доказательства следует рассмотреть два прямоугольных треугольника с общей вершиной (искомая точка), общей стороной — катетом и равными катетами (по определению). Фигуры равны по одному из признаков равенства треугольников. Следовательно, их гипотенузы (стороны, равенство которых нужно доказать), равны между собой. Первая теорема доказана.
Следующая теорема — обратная: если точка удалена на равные расстояния от концов отрезка, то значит, она лежит на СП. В этом случае следует рассматривать равнобедренный треугольник, вершиной которого она является. Удалена точка на одинаковые расстояния от вершин основания по условию. Следовательно, этот факт доказывает, что полученный треугольник является равнобедренным, а в нем медиана, проведенная к основанию, является биссектрисой и высотой. Значит, она лежит на серединном перпендикуляре. Утверждение доказано.
Следующую теорему нет необходимости доказывать, поскольку известно, что в равнобедренном и равностороннем треугольниках высоты (медианы и биссектрисы) имеют общую точку пересечения. Они являются также и СП. Следовательно, это утверждение справедливо для них.
Важные свойства
Иногда трех теорем недостаточно для решения какой-либо сложной задачи. В этом случае необходимо знать еще и некоторые свойства СП:
- Центр описанной окружности вокруг треугольника соответствует точке их пересечения.
- Точка, взятая на СП, равноудалена от конечных точек отрезка и образует равнобедренный или равносторонний треугольник.
- В треугольниках равнобедренного и равностороннего типов им является высота, медиана и биссектриса.
В первом случае все зависит от типа треугольника. Если он является остроугольным, то центр лежит внутри него. Для тупоугольного — во внешнем пространстве, а в прямоугольном — на середине гипотенузы.
Следует отметить, что есть формулы для его расчета. Если предположить, что существует некоторый произвольный треугольник со сторонами а, b и с. Кроме того, для них выполняется условие a >= b >= c. Исходя из полученных данных, можно записать формулы перпендикуляров (Р), проведенных к определенной стороне:
- а: Pa = (2 * а * S) / (a^2 + b^2 — c^2).
- b: Pb = (2 * b * S) / (a^2 + b^2 — c^2).
- c: Pc = (2 * c * S) / (a^2 — b^2 + c^2).
Иными словами, Р является отношением удвоенного произведения стороны на площадь треугольника к сумме квадратов смежных сторон без квадрата противоположной. Кроме того, справедливы неравенства: Pa >= Pb и Pс >= Pb. Стороны — известные параметры, а вот площадь находится по некоторым соотношениям, которые выглядят следующим образом:
- Основание и высоту, проведенную к нему: S = (1/2) * a * Ha = (1/2) * b * Hb = (1/2) * c * Hc.
- Через радиус вписанной окружности: S = (1/2) * r * (a + b + c).
- Формулу Герона через полупериметр (р) и без него: S = [p * (p — a) * (p — b) * (p — c)]^(1/2) и S = 1/4 * [(a + b + c) * (b + c — a) * (а + c — b) * (a + b — c)]^(1/2).
В основном по таким соотношениям и нужно определить площадь. Полупериметр вычисляется таким образом: р = (а + b + с) / 2.
Бывают задачи, в которых необходимо просто подставить значения в формулу. Они называются простейшими. Однако встречаются и сложные. К ним относятся все виды без некоторых промежуточных параметров фигуры.
Пример решения задачи
В интернете попадаются примеры решения простых задач, а сложные приходится решать самостоятельно, просить помощи у кого-нибудь или покупать на сайтах готовое решение. Для примера нужно решить задание с такими данными:
- Прямоугольник, изображенный на рисунке 1 с диагональю равной d.
- Серединный перпендикуляр, проведенный к диагонали прямоугольника.
- Точка Е делит сторону на отрезки а и 2а.
Нужно найти: углы, указанные на рисунке, стороны и ОЕ. Кроме того, дополнительные данные можно узнать из чертежа, который используется для решения задачи (рис. 1). К любому заданию нужно делать графическое представление, поскольку оно позволяет избежать ошибок при вычислении
Рисунок 1. Чертеж для решения задачи.
Числовых значений нет, тогда необходимо решать в общем виде. Углы можно найти по такому алгоритму:
- Нужно рассмотреть треугольник ВДЕ. Он является равнобедренным, поскольку ОЕ — СП, а диагональ — отрезок. Следовательно, ВЕ = ДЕ = 2а.
- Необходимо найти угол ЕВО. Сделать это проблемно. Рекомендуется обратить внимание на треугольник АВЕ.
- При помощи тригонометрической функции синуса можно вычислить значение угла АBE: sin(АBE) = a/2а = 0,5. Следовательно, arcsin(0,5) = 30 (градусов).
- Угол СВЕ вычисляется следующим образом: 90 — 30 = 60 (градусов).
- Следовательно, искомый угол равен 30, поскольку 90 — 30 — 30 = 30.
- В равнобедренном треугольнике углы при основании равны между собой: ЕДО = ЕВО = 30 (градусов).
Для нахождения сторон нужно составить уравнение в общем виде, обозначив неизвестную величину АВ литерой «х». Рассмотрев прямоугольный треугольник АВЕ, по теореме Пифагора можно вычислить АВ: x = [4a^2 + a^2]^(1/2) = a * [5]^(1/2). Следовательно, АВ = a * [5]^(1/2) и ВС = 3а. ОЕ находится по формуле: ОЕ = (2 * 2 * а * S) / (8 * a^2 — d^2). Можно править соотношение таким образом через прямоугольный треугольник ДОЕ: ОЕ = [4 * a^2 — (d^2) / 4]^(1/2).
Таким образом, нахождение серединного перпендикуляра позволяет значительно уменьшить объемы вычислений. Однако для этого нужно знать не только основные теоремы, но и его свойства.