Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности thumbnail

ГДЗ по классам

2 класс

  • Математика

3 класс

  • Математика

4 класс

  • Математика

5 класс

  • Математика
  • Русский язык
  • Английский язык

6 класс

  • Математика
  • Русский язык
  • Английский язык

7 класс

  • Русский язык
  • Английский язык
  • Алгебра
  • Геометрия
  • Физика

8 класс

  • Русский язык
  • Английский язык
  • Алгебра
  • Геометрия
  • Физика
  • Химия

9 класс

  • Русский язык
  • Английский язык
  • Алгебра
  • Геометрия
  • Физика
  • Химия

10 класс

  • Геометрия
  • Химия

11 класс

  • Геометрия
Введите условие

Каким свойством обладают все точки окружности

ГДЗ и решебники
вип уровня

  • 2 класс
    • Математика
  • 3 класс
    • Математика
  • 4 класс
    • Математика
  • 5 класс
    • Математика
    • Русский язык
    • Английский язык
  • 6 класс
    • Математика
    • Русский язык
    • Английский язык
  • 7 класс
    • Русский язык
    • Английский язык
    • Алгебра
    • Геометрия
    • Физика
  • 8 класс
    • Русский язык
    • Английский язык
    • Алгебра
    • Геометрия
    • Физика
    • Химия
  • 9 класс
    • Русский язык
    • Английский язык
    • Алгебра
    • Геометрия
    • Физика
    • Химия
  • 10 класс
    • Геометрия
    • Химия
  • 11 класс
    • Геометрия
  1. ГДЗ
  2. 5 класс
  3. Математика
  4. Виленкин
  5. Задание 1811

Каким свойством обладают все точки окружности

Назад к содержанию

Условие

Каким свойством обладают точки окружности? Какой отрезок называют радиусом окружности? Диаметром окружности? Начертите окружность и проведите три радиуса этой окружности и её диаметр.

Решение 1

Фото ответа 1 на Задание 1811 из ГДЗ по Математике за 5 класс: Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. 2013г.

Решение 2

Фото ответа 3 на Задание 1811 из ГДЗ по Математике за 5 класс: Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. 2013г.

Решение 3

Фото ответа 2 на Задание 1811 из ГДЗ по Математике за 5 класс: Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. 2013г.

Другие задачи из этого учебника

  • 1808
  • 1809
  • 1810
  • 1811
  • 1812
  • 1813
  • 1814

Поиск в решебнике

Популярные решебники

ГДЗ по Математике за 5 класс: Виленкин Н.ЯГДЗ по Математике за 5 класс: Виленкин Н.Я

Издатель: Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. 2013г.

ГДЗ по Математике за 5 класс: Мерзляк А.Г.ГДЗ по Математике за 5 класс: Мерзляк А.Г.

Издатель: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. 2014г.

ГДЗ по Математике за 5 класс: Никольский С.М.ГДЗ по Математике за 5 класс: Никольский С.М.

Издатель: С.М. Никольский, М.К, Потапов, Н.Н. Решетников, А.В. Шевкин. 2015г.

ГДЗ по Математике за 5 класс: Дорофеев Г.В.ГДЗ по Математике за 5 класс: Дорофеев Г.В.

Издатель: Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова. 2017г.

ГДЗ по Математике за 5 класс: Зубарева, МордковичГДЗ по Математике за 5 класс: Зубарева, Мордкович

Издатель: И.И. Зубарева, А.Г. Мордкович. 2013г.

Источник

Глава 4. Окружность и круг. Геометрические построения

В этой главе вы познакомитесь со свойствами окружности. Вы узнаете, как, отказавшись от привычных инструментов — угольника и транспортира, используя лишь циркуль и линейку без делений, выполнить многие построения.

§ 19. Геометрическое место точек. Окружность и круг

Любое множество точек — это геометрическая фигура. Изобразить произвольную фигуру легко: всё, что нарисуете, — это геометрическая фигура (рис. 273). Однако изучать фигуры, состоящие из хаотически расположенных точек, вряд ли целесообразно. Поэтому разумно выделить тот класс фигур, все точки которых обладают каким-то характерным свойством. Каждую из таких фигур называют геометрическим местом точек.

Каким свойством обладают все точки окружности

Определение

Геометрическим местом точек (ГМТ) называют множество всех точек, обладающих определённым свойством.

Образно ГМТ можно представить так: задают некоторое свойство, а потом на белой плоскости все точки, обладающие этим свойством, красят в красный цвет. Та «красная фигура», которая при этом получится, и будет ГМТ.

Например, отметим две точки A и B. Для всех точек зададим свойство: одновременно принадлежать лучам AB и BA. Ясно, что указанным свойством обладают все точки отрезка AB, и только они (рис. 274). Поэтому искомым ГМТ является отрезок AB.

Рис. 273

Рис. 274

Рис. 275

Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

Рассмотрим перпендикулярные прямые a и b. Для всех точек зададим свойство: принадлежать прямой b и находиться на расстоянии 1 см от прямой a. Очевидно, что точки A и B (рис. 275) удовлетворяют этим условиям. Также понятно, что никакая другая точка, отличная от A и B, этим свойством не обладает. Следовательно, искомое ГМТ — это фигура, состоящая из двух точек A и B (см. рис. 275).

Чтобы иметь право какое-то множество точек называть ГМТ, надо доказать две взаимно обратные теоремы:

1)каждая точка данного множества обладает заданным свойством;

2)если точка обладает заданным свойством, то она принадлежит данному множеству.

Каким свойством обладают все точки окружности

Теорема 19.1

Серединный перпендикуляр отрезка является геометрическим местом точек, равноудалённых от концов этого отрезка.

Доказательство

По теореме 8.2 каждая точка серединного перпендикуляра обладает заданным свойством. По теореме 11.2, если точка обладает заданным свойством, то она принадлежит серединному перпендикуляру. Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

Теорема 19.2

Биссектриса угла является геометрическим местом точек, принадлежащих углу и равноудалённых от его сторон.

Читайте также:  Какие свойства у спиртов

Каким свойством обладают все точки окружности

Прямая теорема

Каждая точка биссектрисы угла равноудалена от его сторон.

Доказательство

Очевидно, что вершина угла обладает доказываемым свойством.

Рис. 276

Каким свойством обладают все точки окружности

Рассмотрим произвольную точку X, которая не совпадает с вершиной угла ABC и принадлежит его биссектрисе. Опустим перпендикуляры XM и XN соответственно на стороны BA и BC (рис. 276). Надо доказать, что XM = XN.

В прямоугольных треугольниках BXM и BXN гипотенуза BX — общая, ∠MBX = ∠NBX, так как BX — биссектриса угла ABC. Следовательно, треугольники BXM и BXN равны по гипотенузе и острому углу. Отсюда XM = XN. Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

Обратная теорема

Если точка, принадлежащая углу, равноудалена от его сторон, то она лежит на биссектрисе этого угла.

Доказательство

Очевидно, что вершина угла обладает доказываемым свойством.

Рассмотрим произвольную точку X, принадлежащую углу ABC, не совпадающую с его вершиной и равноудалённую от его сторон. Опустим перпендикуляры XM и XN соответственно на стороны BA и BC. Надо доказать, что ∠MBX = ∠NBX (см. рис. 276).

В прямоугольных треугольниках BXM и BXN гипотенуза BX — общая, отрезки XM и XN равны по условию. Следовательно, треугольники BXM и BXN равны по гипотенузе и катету. Отсюда ∠MBX = ∠NBX. Каким свойством обладают все точки окружности

Заметим, что доказательство теоремы будет полным, если показать, что равноудалённость точки угла от его сторон исключает возможность, когда одна из точек M или N принадлежит продолжению стороны угла (рис. 277). Исследовать эту ситуацию вы можете на занятии математического кружка.

Также отметим, что теорема остаётся справедливой и для развёрнутого угла.

Каким свойством обладают все точки окружности

Определение

Окружностью называют геометрическое место точек, равноудалённых от заданной точки.

Заданную точку называют центром окружности. На рисунке 278 точка O — центр окружности.

Любой отрезок, соединяющий точку окружности с её центром, называют радиусом окружности. На рисунке 278 отрезок OX — радиус. Из определения следует, что все радиусы одной окружности равны.

Рис. 277

Рис. 278

Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

Отрезок, соединяющий две точки окружности, называют хордой окружности. На рисунке 278 отрезок AB — хорда. Хорду, проходящую через центр окружности, называют диаметром. На рисунке 278 отрезок BD — диаметр окружности. Очевидно, что BD = 2OX, т. е. диаметр окружности в 2 раза больше её радиуса.

Из курса математики 6 класса вы знаете, что фигуру, ограниченную окружностью, называют кругом (рис. 279). Теперь определение круга можно сформулировать с помощью понятия ГМТ.

Каким свойством обладают все точки окружности

Определение

Крýгом называют геометрическое место точек, расстояние от которых до заданной точки не больше данного положительного числа.

Заданную точку называют центром круга, данное число — радиусом круга. Если X — произвольная точка круга с центром O и радиусом R, то OX ≤ R (см. рис. 279). Если OX < R, то говорят, что точка X лежит внутри окружности, ограничивающей данный круг. Точка Y кругу не принадлежит (см. рис. 279). В этом случае говорят, что точка Y лежит вне окружности, ограничивающей круг. Из определения круга следует, что окружность, ограничивающая круг, ему принадлежит.

Хорда и диаметр круга — это хорда и диаметр окружности, ограничивающей круг.

Задача. На продолжении хорды CD окружности с центром O за точку D отметили точку E такую, что отрезок DE равен радиусу окружности. Прямая OE пересекает данную окружность в точках A и B (рис. 280). Докажите, что ∠AOC = 3∠CEO.

Решение. Пусть ∠CEO = α.

Так как треугольник ODE — равнобедренный, то ∠DOE = ∠CEO = α.

Угол ODC — внешний угол треугольника ODE. Тогда ∠ODC = ∠DOE + ∠CEO = 2α.

Рис. 279

Рис. 280

Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

Так как треугольник COD — равнобедренный, то ∠OCD = ∠ODC = 2α.

Угол AOC — внешний угол треугольника COE. Тогда ∠AOC = ∠OCD + + ∠CEO = 2α + α = 3α, т. е. ∠AOC = 3∠CEO. Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

  1. Какое множество точек называют геометрическим местом точек?
  2. Какие две теоремы надо доказать, чтобы иметь право утверждать, что некоторое множество точек является ГМТ?
  3. Какая фигура является геометрическим местом точек, равноудалённых от концов отрезка?
  4. Какая фигура является геометрическим местом точек, принадлежащих углу и равноудалённых от его сторон?
  5. Что называют окружностью?
  6. Что называют радиусом окружности?
  7. Что называют хордой окружности?
  8. Что называют диаметром окружности?
  9. Как связаны между собой диаметр и радиус окружности?
  10. Что называют кругом?
  11. Принадлежит ли окружности её центр?
  12. Принадлежит ли кругу его центр?
  13. Какое неравенство выполняется для любой точки A, принадлежащей кругу с центром O и радиусом R?
  14. Какое неравенство выполняется для любой точки B, не принадлежащей кругу с центром O и радиусом R?
Читайте также:  Мумие какие свойства и для чего

Каким свойством обладают все точки окружности

Практические задания

Каким свойством обладают все точки окружности

476.Начертите окружность с центром O и радиусом 3,5 см. Отметьте на этом рисунке какие-нибудь:

1)точки A и B такие, что OA < 3,5 см, OB < 3,5 см;

2)точки C и D такие, что OC = 3,5 см, OD = 3,5 см;

3)точки E и F такие, что OE > 3,5 см, OF > 3,5 см.

477.Начертите отрезок AB, длина которого равна 3 см. Найдите точку, удалённую от каждого из концов отрезка AB на 2 см. Сколько существует таких точек?

478.Начертите отрезок CD, длина которого равна 4 см. Найдите точку, удалённую от точки C на 2,5 см, а от точки D — на 3,5 см. Сколько существует таких точек?

Каким свойством обладают все точки окружности

479.Начертите окружность, диаметр которой равен 7 см. Отметьте на окружности точку A. Найдите на окружности точки, удалённые от точки A на 4 см.

Каким свойством обладают все точки окружности

Упражнения

Каким свойством обладают все точки окружности

480.На рисунке 281 изображена окружность с центром B. Укажите радиус, хорду и диаметр окружности. Сколько изображено на рисунке радиусов? Хорд?

481.Хорды AB и CD окружности с центром O равны. Докажите, что ∠AOB = ∠COD.

482.На рисунке 282 точка O — центр окружности, ∠COD = ∠MOK. Докажите, что хорды CD и MK равны.

483.Отрезки AB и CD — диаметры окружности. Докажите, что ∠BAC =  ∠CDB.

484.Отрезки MK и EF — диаметры окружности с центром O, MK = 12 см, ME = 10 см. Найдите периметр треугольника FOK.

485.Отрезки AC и AB — соответственно диаметр и хорда окружности с центром O, ∠BAC = 26° (рис. 283). Найдите ∠BOC.

486.Отрезки MP и MK — соответственно хорда и диаметр окружности с центром O, ∠POK = 84° (рис. 284). Найдите ∠MPO.

Рис. 281

Рис. 282

Рис. 283

Рис. 284

Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

487.Отрезки AB и AC — соответственно диаметр и хорда окружности с центром O, хорда AC равна радиусу этой окружности. Найдите ∠BAC.

488.Отрезок CD — диаметр окружности с центром O. На окружности отметили точку E так, что ∠COE = 90°. Докажите, что CE = DE.

489.Чему равен диаметр окружности, если известно, что он на 4 см больше радиуса данной окружности?

490.Отрезки AB и CD — диаметры окружности. Докажите, что AC ‖ BD.

Каким свойством обладают все точки окружности

491.Хорда пересекает диаметр окружности под углом 30° и делит его на отрезки длиной 4 см и 10 см. Найдите расстояние от центра окружности до этой хорды.

492.Хорда CD пересекает диаметр AB в точке M, CE ⊥ AB, DF ⊥ AB, ∠AMC = 60°, ME = 18 см, MF = 12 см (рис. 285). Найдите хорду CD.

Рис. 285

Рис. 286

Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

Каким свойством обладают все точки окружности

493.Найдите геометрическое место центров окружностей данного радиуса, проходящих через данную точку.

494.Найдите геометрическое место центров окружностей, проходящих через две данные точки.

495.Найдите ГМТ, равноудалённых от двух данных пересекающихся прямых.

496.Найдите геометрическое место вершин равнобедренных треугольников, имеющих общее основание.

497.Найдите ГМТ, равноудалённых от двух параллельных прямых.

498.Найдите ГМТ, удалённых от данной прямой на заданное расстояние.

Каким свойством обладают все точки окружности

499.Отрезок AB — диаметр окружности, M — произвольная точка окружности, отличная от точек A и B. Докажите, что ∠AMB = 90°.

Каким свойством обладают все точки окружности

500.Даны точки A и B. Найдите геометрическое место точек X таких, что AX > BX.

501.Даны точки A и B. Найдите геометрическое место точек X таких, что AX > AB.

Каким свойством обладают все точки окружности

Упражнения для повторения

502.В равнобедренном треугольнике ABC с основанием AC проведены биссектрисы AD и CE. Докажите, что AE = ED.

503.Из точки O через точки A, B и C проведены лучи OA, OB и OC. Известно, что OA = OB = OC, ∠AOB = 80°, ∠BOC = 110°, ∠AOC = 170°. Найдите углы треугольника ABC.

504.На стороне AB треугольника ABC отметили точку M так, что BM = CM, MK — биссектриса угла AMC. Докажите, что MK ‖ BC.

505.В остроугольном треугольнике один из внешних углов равен 160°. Найдите угол между прямыми, на которых лежат высоты, проведённые из двух других вершин треугольника.

Читайте также:  Какие свойства у кофе

Каким свойством обладают все точки окружности

Наблюдайте, рисуйте, конструируйте, фантазируйте

506.На рисунке 286 прямоугольник ABCD составлен из квадратов. Найдите сторону самого большого квадрата, если сторона самого маленького квадрата равна 1.

Источник

Сколько центров имеет окружность?
.Каким свойством обладают все точки окружности?
.Что такое круг?
Какой отрезок называется диаметром окружности?
Имеет ли окружность длину? От чего она зависит?
Точка в которую ставится игла циркуля, называется ………
Как связаны круг и окружность?
Какое свойство диаметров окружности вы знаете?
Что такое окружность?

И ещё:
Каково взаимное расположение прямой и окружности в зависимости от соотношения между радиусом окружности и расстоянием от её центра до прямой?
Какая прямая называется секущей по отношению к окружности?
Какая прямая называется касательной к окружности? Какая точка называется точкой касания прямой и окружности?
Сформулируйте и докажите теорему о свойстве касательной к окружности.
Сформулируйте и докажите теорему об отрезках касательных к окружности, проведённых из одной точки.
Сформулируйте и докажите признак касательной (теорему, обратную теореме о свойстве касательной) .
Объясните, как через данную точку А окружности с центром О провести касательную к этой окружности.
Какой угол называется центральным углом окружности? В каких случаях градусная мера центрального угла считается равной a, а в каких 3600 — a?
Объясните, что такое дуга окружности? Как она обозначается?
Единицы измерения дуги окружности.
Чему равна градусная мера дуги? В каких случаях градусная мера дуги считается равной a, а в каких 3600 — a ?
Объясните, какая дуга называется полуокружностью.
Какая дуга меньше полуокружности, а какая больше полуокружности?
Чему равна сумма градусных мер дуг окружности с общими концами?
Какой угол называется вписанным? В каком случае говорят, что вписанный угол опирается на дугу?
Сформулируйте и докажите теорему о вписанном угле.
Сформулируйте и докажите теорему о вписанных углах, опирающихся на одну и ту же дугу.
Сформулируйте и докажите теорему о вписанных углах, опирающихся на полуокружность.
Что такое хорда окружности? Какая хорда называется диаметром?
Сформулируйте и докажите теорему об отрезках пересекающихся хорд.
Чему равен угол между хордой окружности и касательной к окружности, проведённой через конец хорды?
Сформулируйте и докажите теорему, выражающую зависимость между касательной и секущей. Следствие.
Сформулируйте и докажите теорему о свойстве секущих. Следствие.
Объясните, как к данной окружности с центром О построить касательную, проходящую через данную точку А вне окружности.
Биссектриса угла. Сформулируйте и докажите теорему о биссектрисе угла.
Биссектриса треугольника. Докажите, что биссектрисы треугольника пересекаются в одной точке.
Какая прямая называется серединным перпендикуляром к отрезку? Сформулируйте и докажите теорему о серединном перпендикуляре к отрезку.
Докажите, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Какой отрезок называется высотой треугольника? Сформулируйте и докажите теорему о пересечении высот треугольника.
Каким замечательным свойством обладают медианы, высоты и биссектрисы треугольника?
Какие точки называют замечательными точками треугольника?
Какая окружность называется вписанной в треугольник? Какой треугольник называется описанным около окружности?
Какая окружность называется вписанной в многоугольник? Какой многоугольник называется описанным около окружности?
Сформулируйте и докажите теорему об окружности, вписанной в треугольник.
Сколько окружностей можно вписать в треугольник?
Какая точка является центром окружности, вписанной в треугольник?
Как построить окружность, вписанную в треугольник? Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждый из них впишите окружность.
Можно ли вписать окружность в четырёхугольник?
В какой четырёхугольник можно вписать окружность?
Можно ли вписать окружность в ромб? квадрат? параллелограмм? прямоугольник? трапецию?
Каким свойством обладают стороны четырёхугольника, описанного около окружности?
Чему равна площадь многоугольника, описанн

Источник