Каким свойством обладают вертикальные углы смежные углы

Каким свойством обладают вертикальные углы смежные углы thumbnail

Геометрия

7 класс

Урок № 6

Смежные и вертикальные углы. Аксиомы и теоремы

Перечень вопросов, рассматриваемых в теме:

  • Понятие смежных и вертикальных углов
  • Свойства смежных и вертикальных углов
  • Отличие аксиомы от теоремы

Тезаурус

Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.

Свойства смежных углов:

  • Сумма смежных углов равна 1800.
  • Если два угла равны, то и смежные с ними углы равны.
  • Угол, смежный с прямым углом, есть прямой угол.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.

Свойство вертикальных углов: вертикальные углы равны.

Аксиома– положение, принимаемое без доказательств.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7 – 9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Погорелов А. В. Геометрия: 7 – 9 класс. // Погорелов А. В. – М.: Просвещение, 2017. – 224 с.

Теоретический материал для самостоятельного изучения

Давайте построим развёрнутый угол АОС и проведём в нём луч ОВ. В результате у нас получилось два угла ∠АОВ – острый угол и ∠ВОС– тупой угол. Стороны АО и ОС – продолжают друг друга, ВО– общая сторона. Углы АОВ и ВОС – это смежные углы. На основании этого сформулируем определение смежных углов.

Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.

Каким свойством обладают вертикальные углы смежные углы

Обратите, внимание, что смежные углы АОВ и ВОС лежат на развёрнутом угле АОС. Отсюда можно сделать вывод: сумма смежных углов равна 180о.

Свойство смежных углов: сумма смежных углов равна 180о.

Давайте докажем это свойство.

Доказательство. Пусть углы ∠АОВ и ∠ВОС – смежные, луч ОВ – проходит между сторонами развёрнутого угла ∠АОС. Поэтому, сумма углов ∠АОВ и ∠ВОС равна ∠АОС, а этот угол развёрнутый, он равен 180о. Свойство доказано.

Укажем ещё одно свойство смежных углов.

  • Если два угла равны, то и смежные с ними углы равны.

Сейчас давайте вспомним определение прямого угла: угол, равный 900, называется прямым углом. Опираясь на свойство суммы смежных углов, можно сделать вывод: угол, смежный с прямым углом, есть прямой угол.

Каким свойством обладают вертикальные углы смежные углы

Теперь построим две пересекающиеся прямые, АС и BD. Посмотрите, при пересечении прямых у нас получилось четыре угла: ∠АОВ, ∠АОD, ∠CОD, ∠BОC. Из них попарно являются смежными углы: ∠АОВ и ∠АОD, ∠АОD и ∠CОD, ∠CОD и ∠BОC, ∠АОВ и ∠BОC.

Углы, которые не являются смежными:

∠АОВ и ∠CОD; ∠АОD и ∠BОC. Пары этих углов называются вертикальными углами.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.

Свойство вертикальных углов: вертикальные углы равны. Убедимся в справедливости этого свойства, докажем его.

Каким свойством обладают вертикальные углы смежные углы

Доказательство. Посмотрим на чертёж: пары углов 1 и 2, 2 и 3, 3 и 4, 4 и 1– смежные углы. Угол 2 одновременно является смежным с углом 1 и с углом 3. По свойству смежных углов

∠1+ ∠2= 1800 и ∠3+ ∠2= 1800. Получаем, что ∠1+ ∠2= ∠3+ ∠2, значит, ∠1= ∠3. Углы ∠1 и ∠3 – вертикальные. Мы доказали справедливость этого свойства.

Свойства смежных и вертикальных углов, которые мы сегодня рассмотрели– в геометрии называются теоремами. Правильность утверждения о свойстве той или иной геометрической фигуры устанавливается путём рассуждения. Это рассуждение называется доказательством. А само утверждение, которое доказывается, называется теоремой.

На предыдущих уроках вы познакомились с понятием аксиомы.

В чём же различие между аксиомой и теоремой? Ответ на этот вопрос таков: аксиома – положение, принимаемое без доказательств.

Разбор решения заданий тренировочного модуля

№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.

Используя чертёж, найдите угол ∠ВОК.

Каким свойством обладают вертикальные углы смежные углы

Ответ: ∠ВОК=____0

Решение. Воспользуемся свойством смежных углов: сумма смежных углов равна 1800. По условию задачи ∠АОК= 110, то ∠ВОК+ ∠АОК= 1800

∠ВОК+ 110= 1800

∠ВОК= 1800– 110= 1690.

Ответ: ∠ВОК= 1690

№2. Тип задания: единичный / множественный выбор.

Используя чертёж, найдите угол ∠AOD.

Каким свойством обладают вертикальные углы смежные углы

Варианты ответов:

  1. 1120
  2. 640
  3. 1160
  4. 680

Решение. На чертеже указано, что углы ∠СОЕ= ∠DOE. Значит, ∠COD= ∠СОЕ+ ∠DOE= 320+ 320= 640. ∠AOD смежный с углом ∠COD, по свойству смежных углов: ∠AOD= 1800–∠COD= 1800– 640=1160.

Читайте также:  Реакция соединение какая у него исходное свойство

Ответ: 1160

№3. Тип задания: выделение цветом.

Используя чертёж, найдите градусную меру угла ∠BMD, если ∠AMD= 1250, ∠BMC= 1150.

∠BМD=____0.

Выделите верный ответ из списка:

600; 300; 750; 900

Каким свойством обладают вертикальные углы смежные углы

Решение. По чертежу можно увидеть, что ∠BМD является частью ∠AMD и ∠BMC. Рассмотрим ∠DMC и ∠AMD. Эти углы – смежные, т.е. их сумма равна 1800. Значит, зная градусную меру ∠AMD, мы сможем найти градусную меру ∠DMC= 1800–∠AMD= 1800-–1250= 550. Теперь рассмотрим ∠BMC= ∠BMD+ ∠DMC. Мы знаем градусные меры ∠BMC и ∠DMC, значит, мы сможем найти градусную меру ∠BMD.

∠BMD= ∠BMC–∠DMC= 1150– 550= 600.

Верный ответ: 600

Источник

На данном уроке мы рассмотрим и уясним для себя понятие смежные углы. Рассмотрим теорему, которая их касается. Введем понятие «вертикальные углы». Рассмотрим опорные факты, касающиеся этих углов. Далее сформулируем и докажем два следствия об угле между биссектрисами вертикальных углов. В конце занятия рассмотрим несколько задач, посвященных этой теме.

Понятие «смежные углы», сумма смежных углов

Начнем наш урок с понятия «смежные углы». На рисунке 1 изображен развернутый угол ∠АОС и луч ОВ, который делит данный угол на 2 угла.

                                

Рис. 1. Угол ∠АОС

Рассмотрим углы ∠АОВ и ∠ВОС. Вполне очевидно, что они имеют общую сторону ВО, а стороны АО и ОС являются противолежащими. Лучи ОА и ОС дополняют друг друга, а значит, они лежат на одной прямой. Углы ∠АОВ и ∠ВОС являются смежными.

Определение: Если два угла имеют общую сторону, а две другие стороны являются дополняющими лучами, то данные углы называются смежными.

Теорема 1: Сумма смежных углов – 180о.

                              

Рис. 2. Чертеж к теореме 1

∠МОL + ∠LON = 180o. Данное утверждение является верным, так как луч OL делит развернутый угол ∠MON на два смежных угла. То есть мы не знаем градусных мер ни одного из смежных углов, а знаем лишь их сумму – 180о.

Вертикальные углы

Рассмотрим пересечение двух прямых. На рисунке изображено пересечение двух прямых  в точке О.

    

Рис. 3. Вертикальные углы ∠ВОА и ∠СОD

Определение: Если стороны одного угла являются продолжением второго угла, то такие углы называются вертикальными. Именно поэтому на рисунке изображено две пары вертикальных углов: ∠АОВ и ∠СОD, а также ∠AOD и ∠ВОС.

Теорема 2: Вертикальные углы равны.

Используем рисунок 3. Рассмотрим развернутый угол ∠АОС. ∠АОВ = ∠АОС – ∠ВОС = 180о – β. Рассмотрим развернутый угол ∠ВОD. ∠CОD = ∠BОD – ∠BОС = 180о – β.

Из этих соображений мы делаем вывод, что ∠АОВ = ∠СОD = α. Аналогично, ∠AOD = ∠ВОС = β.

Следствия из теорем о смежных и вертикальных углах

Следствие 1: Угол между биссектрисами смежных углов равен 90о.

                             

Рис. 4. Чертеж к следствию 1

Поскольку ОL – биссектриса угла ∠ВОА, то угол ∠LOB =  , аналогично ∠ВОК =  . ∠LOK = ∠LOB + ∠BOK =  +    =  . Сумма углов α + β равна 180о, поскольку данные углы – смежные.

Следствие 2: Угол между биссектрисами вертикальных углов равен 180о.

                  

Рис. 5. Чертеж к следствию 2

KO – биссектриса ∠AOB, LO – биссектриса ∠COD. Очевидно, что ∠KOL = ∠KOB + ∠BOC + ∠COL =  o. Сумма углов α + β равна 180о, так как данные углы – смежные.

Задачи

Рассмотрим некоторые задачи:

Пример 1:

Найдите угол, смежный с ∠АOС, если ∠АOС = 111о.

Решение:

Выполним чертеж к задаче:

                             

Рис. 6. Чертеж к примеру 1

Решение

Поскольку ∠АОС = β и ∠СOD = α смежные углы, то α + β = 180о. То есть 111о + β = 180о.

Значит, β = 69о.

Этот тип задач эксплуатирует теорему о сумме смежных углов.

Пример 2:

Один из смежных углов прямой, каким (острым, тупым или прямым) является другой угол?

Решение:

Если один из углов прямой, а сумма двух углов 180о, то и другой угол тоже прямой. Эта задача проверяет знания о сумме смежных углов.

Пример 3:

Верно ли, что если смежные углы равны, то они прямые?

Решение:

Составим уравнение: α + β = 180о, но поскольку α = β, то β + β = 180о, значит, β = 90о.

Ответ: Да, утверждение верно.

Пример 4:

Даны два равных угла. Верно ли, что и смежные им углы тоже будут равны?

Читайте также:  Прополис при каких заболеваниях лечебные свойства

Решение:

                                                   

Рис. 7. Чертеж к примеру 4

Если два угла равны α, то соответствующие им смежные углы будут 180о – α. То есть они будут равны между собой.

Ответ: Утверждение верно.

Список рекомендованной литературы

  1. Александров  А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. – М.: Просвещение.
  2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5-е изд. – М.: Просвещение.
  3. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузова, С.Б. Кадомцев, В.В. Прасолова, под редакцией В.А. Садовничего. – М.: Просвещение, 2010.

Рекомендованные ссылки на интернет-ресурсы

  1. Измерение отрезков (Источник).
  2. Обобщающий урок по геометрии в 7-м классе (Источник).
  3. Прямая линия, отрезок (Источник).

Рекомендованное домашнее задание

  1. № 13, 14. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузова, С.Б. Кадомцев, В.В. Прасолова, под редакцией В.А. Садовничего. – М.: Просвещение, 2010.
  2. Найдите два смежных угла, если один из них в 4 раза больше другого.
  3. Дан угол. Постройте для него смежный и вертикальный углы. Сколько таких углов можно построить?
  4. * В каком случае получается больше пар вертикальных углов: при пересечении трех прямых в одной точке или в трех точках?

Источник

Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. На рисунке 20 углы АОВ и ВОС смежные.

Геометрия ГИА, Сумма смежных углов равна 180°

Сумма смежных углов равна 180°

Рис.1

Теорема 1. Сумма смежных углов равна 180°.

Доказательство. Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .

Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.

Геометрия ГИА, Вертикальные углы равны

Вертикальные углы равны

Рис.2

Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).

Теорема 2. Вертикальные углы равны.

Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1
∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.

Отсюда заключаем, что ∠ АОВ = ∠ COD.

Следствие 1. Угол, смежный с прямым углом, есть прямой угол.

Геометрия ГИА, Прямые АС и BD перпендикулярные

Рис.3

Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 — смежные, углы 1 и 3 — вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.

Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.

Геометрия ГИА, АН — перпендикуляр к прямой

АН — перпендикуляр к прямой

Рис.4

Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.

Геометрия ГИА, Чертежный угольник

Чертежный угольник

Рис.5

Справедлива следующая теорема.

Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).

Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 — углы вертикальные; заключение — эти углы равны.

Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение — словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».

Обучение по геометрии

Пример 1. Один из смежных углов равен 44°. Чему равен другой?

Решение. Обозначим градусную меру другого угла через x, тогда согласно теореме 1.

44° + х = 180°.

Решая полученное уравнение, находим, что х = 136°. Следовательно, другой угол равен 136°.

Читайте также:  Какими свойства денежных товаров

Пример 2. Пусть на рисунке 21 угол COD равен 45°. Чему равны углы АОВ и АОС?

Решение. Углы COD и АОВ вертикальные, следовательно, по теореме 1.2 они равны, т. е. ∠ АОВ = 45°. Угол АОС смежный с углом COD, значит, по теореме 1.

∠ АОС = 180° — ∠ COD = 180° — 45° = 135°.

Пример 3. Найти смежные углы, если один из них в 3 раза больше другого.

Решение. Обозначим градусную меру меньшего угла через х. Тогда градусная мера большего угла будет Зх. Так как сумма смежных углов равна 180° (теорема 1), то х + Зх = 180°, откуда х = 45°.

Значит, смежные углы равны 45° и 135°.

Пример 4. Сумма двух вертикальных углов равна 100°. Найти величину каждого из четырех углов.

Решение. Пусть условию задачи отвечает рисунок 2. Вертикальные углы COD к АОВ равны (теорема 2), значит, равны и их градусные меры. Поэтому ∠ COD = ∠ АОВ = 50° (их сумма по условию 100°). Угол BOD (также и угол
АОС) смежный с углом COD, и, значит, по теореме 1

∠ BOD = ∠ АОС = 180° — 50° = 130°.

В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°.

Найдите величину угла ABC . Ответ дайте в градусах.

Обучение по геометрии

Источник

 

Êëèêíèòå, ÷òîáû äîáàâèòü â èçáðàííûå ñåðâèñû.

 

Êëèêíèòå, ÷òîáû óäàëèòü èç èçáðàííûõ ñåðâèñîâ.

Ñìåæíûìè óãëàìè íàçûâàåòñÿ ïàðà óãëîâ ñ îáùåé âåðøèíîé è îäíîé îáùåé ñòîðîíîé. 2 îñòàâøèåñÿ ñòîðîíû äåëàþò ïðîäîëæåíèå äðóã äðóãó, îáðàçîâûâàÿ ïðÿìóþ ëèíèþ.

Êàêèå óãëû íàçûâàþòñÿ ñìåæíûìè?

Ñìåæíûìè óãëàìè íàçûâàåòñÿ ïàðà óãëîâ ñ îáùåé âåðøèíîé è îäíîé

îáùåé ñòîðîíîé. 2 îñòàâøèåñÿ ñòîðîíû äåëàþò ïðîäîëæåíèå äðóã

äðóãó, îáðàçîâûâàÿ ïðÿìóþ ëèíèþ. Äëÿ óãëà 135 ãðàäóñîâ ñìåæíûì

áóäåò óãîë ðàâíûé 45 ãðàäóñàì. Äëÿ óãëà x ãðàäóñîâ ñìåæíûì

ÿâëÿåòñÿ óãîë (180 – x) ãðàäóñîâ.

Óãëû. Ñìåæíûå óãëû.

Äâà ñìåæíûõ óãëà — ýòî óãëû, ñ îäíîé îáùåé ñòîðîíîé, à îñòàëüíûå ñòîðîíû íàõîäÿòñÿ íà îäíîé ïðÿìîé.

Ïðè ïåðåñå÷åíèè 2-õ ïðÿìûõ ïîëó÷àåòñÿ 4-ðå ïàðû ñìåæíûõ óãëîâ:

∠1 è ∠2, ∠3 è ∠4,

∠1 è ∠3,  ∠2 è ∠4

Íî, òàê êàê ∠1 =∠4,  ∠2 = ∠3 (êàê âåðòèêàëüíûå), òî äîñòàòî÷íî ðàññìàòðèâàòü

òîëüêî îäíó èç ýòèõ ïàð.

Óãëû. Ñìåæíûå óãëû.

Ñâîéñòâî ñìåæíûõ óãëîâ.

×åìó ðàâíà ñóììà ñìåæíûõ óãëîâ?

Ñìåæíûå óãëû ðàâíû: ñóììà ñìåæíûõ óãëîâ 180º.

1.   α+ β= 180°

2.   α= 180°−β

Ñëåäñòâèÿ èç òåîðåìû î ñìåæíûõ óãëàõ.

  • Åñëè 2 óãëà ðàâíû, òî ñìåæíûå èì óãëû òîæå ðàâíû.
  • Åñëè óãîë íå ðàçâåðíóòûé, çíà÷èò îí ≠180°.
  • Ñìåæíûé óãîë äëÿ ïðÿìîãî óãëà (ò.å. óãëà, ó íåãî ãðàäóñíàÿ ìåðà = 90°), òîæå ïðÿìîé.
  • Ñìåæíûé óãîë äëÿ îñòðîãî óãëà (ãðàäóñíàÿ ìåðà ìåíüøå 90°), áóäåò òóïûì (ãðàäóñíàÿ ìåðà áîëüøå

90°), à ñìåæíûé òóïîìó — îñòðûì.

Òðèãîíîìåòðè÷åñêèå ñîîòíîøåíèÿ.

  • Ñèíóñû ñìåæíûõ óãëîâ îäèíàêîâû. Èõ êîñèíóñû è òàíãåíñû ðàâíû ïî âåëè÷èíå, íî èìåþò

ïðîòèâîïîëîæíûå çíàêè (èñêëþ÷åíèå íåîïðåäåëåííûå çíà÷åíèÿ).

  • ×òîáû ïîñòðîèòü óãîë, ñìåæíûé ñóùåñòâóþùåìó, íåîáõîäèìî îäíó èç ñòîðîí íàøåãî óãëà ïðîäëèòü

äàëüøå âåðøèíû.

Óãëû. Ñìåæíûå óãëû.

Ðàññìîòðèì ïðèìåð:

Çàäàíèå. ×åìó áóäåò ðàâíà ãðàäóñíàÿ ìåðà óãëà α, êîãäà ãðàäóñíàÿ ìåðà ñìåæíîãî åìó óãëà = 70°?

Êàê íàéòè ñìåæíûé óãîë?

Ðåøåíèå. Èç òåîðåìû î ñìåæíûõ óãëàõ íàõîäèì:

Óãëû. Ñìåæíûå óãëû.

Äàëåå

Óãëû. Ñìåæíûå óãëû.

Îòâåò.

Óãëû. Ñìåæíûå óãëû.

Äîïîëíèòåëüíûå ìàòåðèàëû ïî òåìå: Óãëû. Ñìåæíûå óãëû.

  

Êàëüêóëÿòîðû ïî ãåîìåòðèè

Ïîìîùü â ðåøåíèè çàäà÷ ïî ãåîìåòðèè, ó÷åáíèê îíëàéí (âñå êàëüêóëÿòîðû ïî ãåîìåòðèè).
Êàëüêóëÿòîðû ïî ãåîìåòðèè
  

Óãëû. Âèäû, ñâîéñòâà óãëîâ.

Óãëû — ñìåæíûå, âïèñàííûå, âåðòèêàëüíûå, óãëîâîé êîýôôèöèåíò, ãðàäóñíàÿ ìåðà óãëà, èçìåðåíèå, ñâîéñòâà óãëîâ.
Óãëû. Âèäû, ñâîéñòâà óãëîâ.
  

Ãåîìåòðèÿ 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ãåîìåòðèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Ãåîìåòðèÿ 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Óãëû. Ãðàäóñíàÿ ìåðà óãëà.

Ãðàäóñíîé ìåðîé óãëà ÿâëÿåòñÿ ÷èñëî áîëüøå íóëÿ, êîòîðîå ïîêàçûâàåò, êàêîå ÷èñëî ðàç ãðàäóñ è åãî ÷àñòè — ìèíóòà è ñåêóíäà — ïîìåùàþòñÿ â ýòîì óãëå.
Óãëû. Ãðàäóñíàÿ ìåðà óãëà.
  

Óãîë. Èçìåðåíèå óãëîâ.

Èçìåðåíèå óãëîâ ñâîäèòñÿ ê èçìåðåíèþ ñîîòâåòñòâóþùèõ èì äóã ñëåäóþùèì îáðàçîì.
Óãîë. Èçìåðåíèå óãëîâ.
  

Óãîë. Âïèñàííûé óãîë.

Âïèñàííûé óãîë – ýòî óãîë, ñôîðìèðîâàííûé äâóìÿ õîðäàìè , áåðóùèìè íà÷àëî â îäíîé òî÷êè îêðóæíîñòè.
Óãîë. Âïèñàííûé óãîë.

Источник