Каким свойством обладают точки перпендикуляра

Каким свойством обладают точки перпендикуляра thumbnail
  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Окружность
  5. Свойства серединного перпендикуляра к отрезку

Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему.

Каким свойством обладают точки перпендикуляра

Каким свойством обладают точки перпендикуляра — серединный перпендикуляр к отрезку АВ.

Теорема

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.

Обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему.

Доказательство

1) Дано: m — серединный перпендикуляр отрезка АВ, О — середина АВ, МКаким свойством обладают точки перпендикуляраm

Доказать: АМ = ВМ

Доказательство:

Каким свойством обладают точки перпендикуляра

Если О = М, то АМ = ВМ, т.к. О — середина АВ.

Пусть О Каким свойством обладают точки перпендикуляраМ. Рассмотрим Каким свойством обладают точки перпендикуляраОАМ и Каким свойством обладают точки перпендикуляраОВМ: так как m — серединный перпендикуляр отрезка АВ, то рассматриваемые треугольники прямоугольные. ОА = ОВ, т.к. О — середина отрезка АВ, ОМ — общий катет, следовательно, Каким свойством обладают точки перпендикуляраОАМ = Каким свойством обладают точки перпендикуляраОВМ, по двум катетам, а в равных треугольниках против соответственно равных углов лежат равные стороны, поэтому АМ = ВМ.

2) Дано: m — серединный перпендикуляр отрезка АВ, О — середина АВ, АN = ВN

Доказать:NКаким свойством обладают точки перпендикуляраm

Доказательство:

Каким свойством обладают точки перпендикуляра

Рассмотрим произвольную точку N.

Если NКаким свойством обладают точки перпендикуляраАВ, то N = О, а, значит, она лежит на прямой m.

Если N не лежит на АВ, то Каким свойством обладают точки перпендикуляраANB — равнобедренный, так как АN = ВNО — середина АВ, следовательно, — медиана Каким свойством обладают точки перпендикуляраANB, а, значит, и высота по свойству равнобедренного треугольника. Поэтому Каким свойством обладают точки перпендикуляраАВ, следовательно, прямые и m совпадают, так как по устовию m — серединный перпендикуляр отрезка АВ, т.е. N — точка прямой m. Теорема доказана.

Следствие 1

Следствие2

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Взаимное расположение прямой и окружности

Касательная к окружности

Градусная мера дуги окружности

Теорема о вписанном угле

Свойство биссектрисы угла

Теорема о пересечении высот треугольника

Вписанная окружность

Описанная окружность

Окружность

Правило встречается в следующих упражнениях:

7 класс

Задание 706,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 19,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 25,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 720,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1003,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1085,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1155,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 12,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1172,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1241,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Источник

Серединный перпендикуляр

Общие сведения

Серединным перпендикуляром отрезка называют прямую, которая проходит под прямым углом через среднюю точку, т. е. середину отрезка. Для полного понимания материала следует остановиться на базовых элементах геометрии.

Общие сведения о серединном перпендикуляре

Точка — единица, при помощи которой строятся прямые, отрезки, лучи и фигуры. Прямая — простая фигура в форме бесконечной линии, состоящей из множества точек, лежащих в одной плоскости. Луч — базовая геометрическая фигура в виде бесконечной линии с одной стороны и точки-ограничителя — с другой. Иными словами, луч имеет начало, но не имеет конца. Отрезок — некоторая часть прямой (луча или другого отрезка), ограниченная двумя точками.

Кроме того, в геометрии серединный перпендикуляр встречается в треугольниках. Из определения можно сделать вывод, что им может быть прямая, отрезок и даже луч.

Аксиомы геометрии Евклида

Евклидовой геометрией называется наука о фигурах на плоскости, основанная на аксиомах и теоремах. Аксиома — базовое утверждение, не требующее доказательства. Оно используется для доказательства каких-либо теорем. Математики выделяют пять аксиом:

Доказательство теоремы

  1. Принадлежности.
  2. Порядка.
  3. Конгруэнтности.
  4. Параллельности прямых.
  5. Непрерывности.

Формулировка первой имеет такой вид: если существует в геометрическом пространстве плоскость, состоящая из множества точек, то через любые из них можно провести только одну прямую. Иными словами, можно взять произвольные две точки и провести через них одну прямую. Чтобы начертить еще одну прямую, следует взять две другие точки.

Следующее утверждение называется аксиомой порядка. Она гласит, что существует точка, которая лежит между двумя другими на прямой. Значение слова «конгруэнтность» не совсем понятно для новичка, однако нужно постепенно привыкать к терминологии. Оно обозначает «равенство». Третий геометрический факт формулируется таким образом: когда два отрезка или угла конгруэнтны третьему, тогда они равны между собой. Аксиома касается только отрезков и углов.

Чтобы убедиться в ее правильности, нужно разобрать следующий пример: длина первого отрезка составляет 10 см, второго — тоже, а третий равен первому. Необходимо доказать, что они равны между собой. Это делается очень просто:

  • Вводятся обозначения: первый — MN, второй — OP и третий — RS.
  • Устанавливаются значения по условию: MN = 10 см, ОР = 10 см, а RS = MN.
  • Доказательство строится таким образом: MN = RS = 10 (см). Следовательно, отрезки равны, поскольку MN = ОР = RS = 10 (см).
Читайте также:  Какие шоколады полезные свойства

Евклидова геометрия и основные определения базовых понятий

Следует отметить, что данные действия оказались лишними — было потрачено время на понимание простой «истины». Параллельность прямых является также аксиомой и формулируется таким образом: если существует некоторая прямая на плоскости и точка, не лежащая на ней, то через последнюю можно провести только одну параллельную ей прямую.

И последняя аксиома называется Архимедовой. Ее формулировка имеет такой вид: для произвольных отрезков, лежащих на одной прямой, существует некоторая последовательность базовых элементов (точек), лежащих на одном и другом отрезках, таких, что заданные их части равны между собой. Иными словами, на одной прямой могут быть расположены равные между собой отрезки.

Информация о треугольниках

Треугольником является любая фигура, состоящая из трех вершин (точек) соединенных отрезками (сторонами), причем точки не лежат на одной прямой в одной плоскости. Они классифицируются по такому типу:

Пример решения сложной задачи

  1. Углам.
  2. Сторонам.
  3. Подобию.

В первом случае фигуры делятся на остроугольные, тупоугольные и прямоугольные. Остроугольным называется треугольник, у которого все углы острые (меньше 90 градусов). У тупоугольного — один угол тупой (> 90), а в прямоугольном — один из углов равен 90 градусам. Следует отметить, что сумма градусных мер углов любого треугольника эквивалентна 180.

Когда стороны у треугольника неравны между собой, тогда его называют разносторонним. При равенстве двух боковых сторон он считается равнобедренным, у которого третья сторона — основание. Если все стороны равны, то значит, фигура является равносторонней или правильной.

У треугольника есть еще и другие параметры. Их называют медианой, биссектрисой и высотой. Первый параметр является отрезком, который проводится из любой вершины на среднюю точку стороны. Высота — часть прямой, которая проводится из произвольной вершины и перпендикулярна противоположной стороне. Биссектрисой называется прямая, делящая угол на две равные части.

Медиана, высота и биссектриса, проведенные из вершины к основанию, совпадают и эквивалентны серединному перпендикуляру в треугольниках равнобедренного и равностороннего типов. Это очень важно при решении задач. Еще одним признаком, по которому выполняется классификация — подобность треугольников. У них могут быть равными только углы и некоторые стороны. Они отличаются между собой по определенному параметру, который называется коэффициентом подобия. Последний влияет только на размерность сторон. Говорят, что фигуры подобны по определенному признаку (их всего три).

Основные теоремы

Свойства и соотношения

Теорема — гипотеза (предположение), которую нужно доказать. Они применяются для оптимизации расчетов и вычисления отдельных параметров заданной фигуры. Кроме того, существуют следствия, полученные при доказательстве таких научных предположений. Эти аспекты упрощают и автоматизируют вычисления. Например, при вычислении площади треугольника нет необходимости выводить формулу, достаточно воспользоваться уже готовой.

Математики выделяют всего три теоремы о СП, которые могут значительно упростить расчеты. К ним можно отнести следующие:

  • Прямая.
  • Обратная.
  • Пересечение в треугольнике.

Первая теорема называется прямой о СП. Она показывает, каким свойством обладают точки серединного перпендикуляра. Ее формулировка следующая: произвольная точка, которая взятая на перпендикуляре, удалена на равные расстояния от конечных точек отрезка, ограничивающих его на плоскости.

Чертеж к задаче

Для доказательства следует рассмотреть два прямоугольных треугольника с общей вершиной (искомая точка), общей стороной — катетом и равными катетами (по определению). Фигуры равны по одному из признаков равенства треугольников. Следовательно, их гипотенузы (стороны, равенство которых нужно доказать), равны между собой. Первая теорема доказана.

Следующая теорема — обратная: если точка удалена на равные расстояния от концов отрезка, то значит, она лежит на СП. В этом случае следует рассматривать равнобедренный треугольник, вершиной которого она является. Удалена точка на одинаковые расстояния от вершин основания по условию. Следовательно, этот факт доказывает, что полученный треугольник является равнобедренным, а в нем медиана, проведенная к основанию, является биссектрисой и высотой. Значит, она лежит на серединном перпендикуляре. Утверждение доказано.

Следующую теорему нет необходимости доказывать, поскольку известно, что в равнобедренном и равностороннем треугольниках высоты (медианы и биссектрисы) имеют общую точку пересечения. Они являются также и СП. Следовательно, это утверждение справедливо для них.

Читайте также:  Какие свойства находятся в чае

Важные свойства

Иногда трех теорем недостаточно для решения какой-либо сложной задачи. В этом случае необходимо знать еще и некоторые свойства СП:

  1. Центр описанной окружности вокруг треугольника соответствует точке их пересечения.
  2. Точка, взятая на СП, равноудалена от конечных точек отрезка и образует равнобедренный или равносторонний треугольник.
  3. В треугольниках равнобедренного и равностороннего типов им является высота, медиана и биссектриса.

В первом случае все зависит от типа треугольника. Если он является остроугольным, то центр лежит внутри него. Для тупоугольного — во внешнем пространстве, а в прямоугольном — на середине гипотенузы.

Следует отметить, что есть формулы для его расчета. Если предположить, что существует некоторый произвольный треугольник со сторонами а, b и с. Кроме того, для них выполняется условие a >= b >= c. Исходя из полученных данных, можно записать формулы перпендикуляров (Р), проведенных к определенной стороне:

  1. а: Pa = (2 * а * S) / (a^2 + b^2 — c^2).
  2. b: Pb = (2 * b * S) / (a^2 + b^2 — c^2).
  3. c: Pc = (2 * c * S) / (a^2 — b^2 + c^2).

Иными словами, Р является отношением удвоенного произведения стороны на площадь треугольника к сумме квадратов смежных сторон без квадрата противоположной. Кроме того, справедливы неравенства: Pa >= Pb и Pс >= Pb. Стороны — известные параметры, а вот площадь находится по некоторым соотношениям, которые выглядят следующим образом:

  1. Основание и высоту, проведенную к нему: S = (1/2) * a * Ha = (1/2) * b * Hb = (1/2) * c * Hc.
  2. Через радиус вписанной окружности: S = (1/2) * r * (a + b + c).
  3. Формулу Герона через полупериметр (р) и без него: S = [p * (p — a) * (p — b) * (p — c)]^(1/2) и S = 1/4 * [(a + b + c) * (b + c — a) * (а + c — b) * (a + b — c)]^(1/2).

В основном по таким соотношениям и нужно определить площадь. Полупериметр вычисляется таким образом: р = (а + b + с) / 2.

Бывают задачи, в которых необходимо просто подставить значения в формулу. Они называются простейшими. Однако встречаются и сложные. К ним относятся все виды без некоторых промежуточных параметров фигуры.

Пример решения задачи

В интернете попадаются примеры решения простых задач, а сложные приходится решать самостоятельно, просить помощи у кого-нибудь или покупать на сайтах готовое решение. Для примера нужно решить задание с такими данными:

Понятие о серединном перпендикуляре

  1. Прямоугольник, изображенный на рисунке 1 с диагональю равной d.
  2. Серединный перпендикуляр, проведенный к диагонали прямоугольника.
  3. Точка Е делит сторону на отрезки а и 2а.

Нужно найти: углы, указанные на рисунке, стороны и ОЕ. Кроме того, дополнительные данные можно узнать из чертежа, который используется для решения задачи (рис. 1). К любому заданию нужно делать графическое представление, поскольку оно позволяет избежать ошибок при вычислении

Рисунок 1. Чертеж для решения задачи.

Числовых значений нет, тогда необходимо решать в общем виде. Углы можно найти по такому алгоритму:

  1. Нужно рассмотреть треугольник ВДЕ. Он является равнобедренным, поскольку ОЕ — СП, а диагональ — отрезок. Следовательно, ВЕ = ДЕ = 2а.
  2. Необходимо найти угол ЕВО. Сделать это проблемно. Рекомендуется обратить внимание на треугольник АВЕ.
  3. При помощи тригонометрической функции синуса можно вычислить значение угла АBE: sin(АBE) = a/2а = 0,5. Следовательно, arcsin(0,5) = 30 (градусов).
  4. Угол СВЕ вычисляется следующим образом: 90 — 30 = 60 (градусов).
  5. Следовательно, искомый угол равен 30, поскольку 90 — 30 — 30 = 30.
  6. В равнобедренном треугольнике углы при основании равны между собой: ЕДО = ЕВО = 30 (градусов).

Для нахождения сторон нужно составить уравнение в общем виде, обозначив неизвестную величину АВ литерой «х». Рассмотрев прямоугольный треугольник АВЕ, по теореме Пифагора можно вычислить АВ: x = [4a^2 + a^2]^(1/2) = a * [5]^(1/2). Следовательно, АВ = a * [5]^(1/2) и ВС = 3а. ОЕ находится по формуле: ОЕ = (2 * 2 * а * S) / (8 * a^2 — d^2). Можно править соотношение таким образом через прямоугольный треугольник ДОЕ: ОЕ = [4 * a^2 — (d^2) / 4]^(1/2).

Таким образом, нахождение серединного перпендикуляра позволяет значительно уменьшить объемы вычислений. Однако для этого нужно знать не только основные теоремы, но и его свойства.

Источник

Перпендикуля́рность — бинарное отношение между различными объектами (векторами, прямыми, подпространствами и т. д.).

Для обозначения перпендикулярности имеется общепринятый символ:
, предложенный в 1634 году французским математиком Пьером Эригоном.
Например, перпендикулярность прямых и записывают как .

На плоскости[править | править код]

Перпендикулярные прямые на плоскости[править | править код]

Две прямые на плоскости называются перпендикулярными, если при пересечении образуют 4 прямых угла.

Читайте также:  Каким необычным свойством обладают кварки

Про прямую перпендикулярную к прямой проведённую через точку вне прямой , говорят, что есть перпендикуляр опущенный из на .
Если же точка лежит на прямой , то говорят, что есть перпендикуляр к восстановленный из к (устаревший термин восставленный[1]).

В координатах[править | править код]

В аналитическом выражении прямые, заданные линейными функциями

и

будут перпендикулярны, если выполнено следующее условие на их угловые коэффициенты

Построение перпендикуляра[править | править код]

Построение перпендикуляра

Шаг 1: С помощью циркуля проведём полуокружность с центром в точке P, получив точки А и В.

Шаг 2: Не меняя радиуса, построим две полуокружности с центром в точках A и В соответственно, проходящими через точку P. Кроме точки P есть ещё одна точка пересечения этих полуокружностей, назовём её Q.

Шаг 3: Соединяем точки P и Q. PQ и есть перпендикуляр к прямой AB.

Координаты точки основания перпендикуляра к прямой[править | править код]

Пусть прямая задаётся точками и . На прямую опускается перпендикуляр из точки .
Тогда основание перпендикуляра  можно найти следующим образом.

Если (вертикаль), то и .
Если (горизонталь), то и .

Во всех остальных случаях:

;.

В трёхмерном пространстве[править | править код]

Перпендикулярные прямые[править | править код]

Две прямые в пространстве перпендикулярны друг другу, если они соответственно параллельны некоторым двум другим взаимно перпендикулярным прямым, лежащим в одной плоскости. Две прямые, лежащие в одной плоскости, называются перпендикулярными (или взаимно перпендикулярными), если они образуют четыре прямых угла.

Перпендикулярность прямой к плоскости[править | править код]

Определение: Прямая называется перпендикулярной к плоскости, если она перпендикулярна всем прямым, лежащим в этой плоскости.

Признак: Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.

Плоскость, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

Перпендикулярные плоскости[править | править код]

Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90°.

  • Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
  • Если из точки, принадлежащей одной из двух перпендикулярных плоскостей, провести перпендикуляр к другой плоскости, то этот перпендикуляр полностью лежит в первой плоскости.
  • Если в одной из двух перпендикулярных плоскостей провести перпендикуляр к их линии пересечения, то этот перпендикуляр будет перпендикулярен второй плоскости.
  • Плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна их линии пересечения[2].

В многомерных пространствах[править | править код]

Перпендикулярность плоскостей в 4-мерном пространстве[править | править код]

Перпендикулярность плоскостей в четырёхмерном пространстве имеет два смысла: плоскости могут быть перпендикулярны в 3-мерном смысле, если они пересекаются по прямой (а следовательно, лежат в одной гиперплоскости), и двугранный угол между ними равен 90°.

Плоскости могут быть также перпендикулярны в 4-мерном смысле, если они пересекаются в точке (а следовательно, не лежат в одной гиперплоскости), и любые 2 прямые, проведённые в этих плоскостях через точку их пересечения (каждая прямая в своей плоскости), перпендикулярны.

В 4-мерном пространстве через данную точку можно провести ровно 2 взаимно перпендикулярные плоскости в 4-мерном смысле (поэтому 4-мерное евклидово пространство можно представить как декартово произведение двух плоскостей). Если же объединить оба вида перпендикулярности, то через данную точку можно провести 6 взаимно перпендикулярных плоскостей (перпендикулярных в любом из двух вышеупомянутых значений).

Существование шести взаимно перпендикулярных плоскостей можно пояснить таким примером. Пусть дана система декартовых координат x y z t. Для каждой пары координатных прямых существует плоскость, включающая эти две прямые. Количество таких пар равно : xy, xz, xt, yz, yt, zt, и им соответствуют 6 плоскостей. Те из этих плоскостей, которые включают одноимённую ось, перпендикулярны в 3-мерном смысле и пересекаются по прямой (например, xy и xz, yz и zt), а те, которые не включают одноимённых осей, перпендикулярны в 4-мерном смысле и пересекаются в точке (например, xy и zt, yz и xt).

Перпендикулярность прямой и гиперплоскости[править | править код]

Пусть задано n-мерное евклидово пространство (n>2) и ассоциированное с ним векторное пространство , а прямая l с направляющим векторным пространством и гиперплоскость с направляющим векторным пространством (где , ) принадлежат пространству .

Прямая l называется перпендикулярной гиперплоскости , если подпространство ортогонально подпространству , то есть

Вариации и обобщения[править | править код]

См. также[править | править код]

  • Нормаль
  • Параллельность
  • Ортогональность
  • Высота
  • Теорема о трёх перпендикулярах

Примечания[править | править код]

Источник