Каким свойством обладает равнобедренный треугольник

Содержание:
- Свойства равнобедренного треугольника.
- Признаки равнобедренного треугольника.
- Формулы равнобедренного треугольника:
- формулы длины стороны;
- формулы длины равных сторон;
- формулы высоты, медианы, биссектрисы равнобедренного треугольника.
Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона — основанием.
АВ = ВС — боковые стороны
АС — основание
Свойства равнобедренного треугольника
Свойства равнобедренного треугольника выражаются через 5 теорем:
Теорема 1. В равнобедренном треугольнике углы при основании равны.
Доказательство теоремы:
Рассмотрим равнобедренный Δ ABC с основанием АС.
Боковые стороны равны АВ = ВС,
Следовательно углы при основании ∠ BАC = ∠ BСA.
Теорема о биссектрисе, медиане, высоте, проведенной к основанию равнобедренного треугольника
- Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
- Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
- Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Доказательство теоремы:
- Дан Δ ABC.
- Из точки В проведем высоту BD.
- Треугольник разделился на Δ ABD и ΔCBD. Эти треугольники равны, т.к. гипотенузы и общий катет у них равны (теорема Пифагора).
- Прямые АС и BD называются перпендикуляром.
- В Δ ABD и Δ BCD ∠ BАD = ∠ BСD (из Теоремы 1).
- АВ = ВС — боковые стороны равны.
- Стороны АD = СD, т.к. точка D отрезок делит пополам.
- Следовательно Δ ABD = ΔBCD.
- Биссектриса, высота и медиана это один отрезок — BD
Вывод:
- Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
- Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
- Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и высотой.
Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.
- Теорема 5. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.
Доказательство теоремы:
Дано два Δ ABC и Δ A1B1C1. Стороны AB = A1B1; BC = B1C1; AC = A1C1.
Доказательство от противного.
- Пусть треугольники не равны (а то треугольники были равны по первому признаку).
- Пусть Δ A1B1C2 = Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Δ A1C1C2 и Δ B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точку D прямой C1C2 можно провести только одну перпендикулярную ей прямую.
- Отсюда пришли к противоречию и теорему доказали.
Признаки равнобедренного треугольника
- Если в треугольнике два угла равны.
- Сумма углов треугольника 180°.
- Если в треугольнике биссектриса является медианой или высотой.
- Если в треугольнике медиана является биссектрисой или высотой.
- Если в треугольнике высота является медианой или биссектрисой.
Формулы равнобедренного треугольника
Формулы сторон равнобедренного треугольника
- b — сторона (основание)
- а — равные стороны
- a — углы при основании
- b — угол образованный равными сторонами
Формулы длины стороны (основания — b):
- b = 2a sin( beta /2)= a sqrt { 2-2 cos beta }
- b = 2a cos alpha
Формулы длины равных сторон — (а):
- a=frac { b } { 2 sin(beta /2) } = frac { b } { sqrt { 2-2 cos beta } }
- a=frac { b } { 2 cosalpha }
Формулы высоты, медианы, биссектрисы равнобедренного треугольника
- L — высота=биссектриса=медиана
- b — сторона (основание)
- а — равные стороны
- a — углы при основании
- b — угол образованный равными сторонами
Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):
- L = a sina
- L = frac { b } { 2 } *tgalpha
- L = a sqrt { (1 + cos beta)/2 } =a cos (beta)/2)
Формула высоты, биссектрисы и медианы, через стороны, (L):
- L = sqrt { a^ { 2 } -b^ { 2 } /4 }
Площадь равнобедренного треугольника
- b — сторона (основание)
- а — равные стороны
- h — высота
Формула площади треугольника через высоту h и основание b, (S):
S=frac { 1 } { 2 } *bh
Смотри также:
- Теорема о сумме углов треугольника
- Формулы площади поверхности, основания, сечения призмы
- Площадь поверхности куба, формулы и примеры
- Основные формулы по математике
- Справочные материалы ЕГЭ от ФИПИ по математике
Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
Среди всех треугольников есть два особенных вида: прямоугольные треугольники и равнобедренные треугольники. Чем же эти виды треугольников такие уж особенные? Ну, во-первых, такие треугольники чрезвычайно часто оказываются главными действующими «лицами» задач ЕГЭ первой части. А во-вторых, задачи про прямоугольные и равнобедренные треугольники решаются гораздо легче, чем другие задачи по геометрии. Нужно всего лишь знать несколько правил и свойств. Все самое интересное о прямоугольных треугольниках обсуждается в соответствующей теме, а сейчас рассмотрим равнобедренные треугольники. И прежде всего, что же такое – равнобедренный треугольник. Или, как говорят математики, каково определение равнобедренного треугольника?
Треугольник называется равнобедренным, если у него есть две равные стороны.
Посмотри, как это выглядит:
Как и у прямоугольного треугольника, у равнобедренного треугольника есть специальные названия для сторон. Две равные стороны называются боковыми сторонами, а третья сторона – основанием.
И снова внимание на картинку:
Может быть, конечно, и так:
Так что будь внимательным: боковая сторона – одна из двух равных сторон в равнобедренном треугольнике, а основание – третья сторона.
Чем же так уж хорош равнобедренный треугольник? Чтобы это понять, давай проведём высоту к основанию. Ты помнишь, что такое высота?
![]() | Это просто линия, проведённая из вершины треугольника перпендикулярно противоположной стороне. Итак, провели высоту. |
Что же получилось? Из одного равнобедренного треугольника получилось два прямоугольных.
Это уже хорошо, но так получится в любом, самом «кособедренном» треугольнике.
Смотри:
![]() | Тоже два прямоугольных…. |
Чем же отличается картинка для равнобедренного треугольника? Смотри ещё раз:
![]() | Видишь, два прямоугольных треугольника ( и ) – одинаковые! Или, как математически любят говорить? равные! |
Ну, во-первых, конечно, этим странным математикам мало просто видеть – нужно непременно доказывать. А то вдруг эти треугольники чуть-чуть разные, а мы будем считать их одинаковыми.
Но не переживай: в данном случае доказывать почти так же просто, как и видеть.
Начнём? Посмотри внимательно, у нас есть:
![]() | (ещё говорят, — общая) |
И, значит, ! Почему? Да мы просто найдём и , и из теоремы Пифагора (помня ещё при этом, что )
Удостоверились? Ну вот, теперь у нас
А уж по трём сторонам – самый легкий (третий) признак равенства треугольников.
Ну вот, наш равнобедренный треугольник разделился на два одинаковых прямоугольных.
![]() | Отметим на картинке все одинаковые элементы (углы и стороны). |
Видишь, как интересно? Получилось, что:
Как же об этом принято говорить у математиков? Давай по порядку:
- В равнобедренном треугольнике углы при основании равны
- Высота, проведенная к основанию, совпадает с медианой и биссектрисой.
(Вспоминаем тут, что медиана – линия, проведённая из вершины, которая делит сторону пополам, а биссектриса – угол.)
Ну вот, здесь мы обсудили, что хорошего можно увидеть, если дан равнобедренный треугольник. Мы вывели, что у равнобедренного треугольника углы при основании равны, а высота, биссектриса и медиана, проведенные к основанию, совпадают.
И теперь возникает другой вопрос: а как узнать равнобедренный треугольник? То есть, как говорят математики, каковы признаки равнобедренного треугольника?
И оказывается, что нужно просто «перевернуть» все высказывания наоборот. Так, конечно, не всегда бывает, но равнобедренный треугольник всё-таки отличная штука! Что же получится после «переворачивания»?
I. Если в каком-то треугольнике есть два равных угла, то такой треугольник – равнобедренный (ну и естественно, углы эти окажутся при основании).
II. Если в каком-то треугольнике
- высота и медиана или
- высота и биссектриса или
- биссектриса и медиана
проведённые к какой-то стороне, совпадут, то такой треугольник – равнобедренный, а сторона эта – основание.
Ну вот смотри:
Если совпадают высота и медиана, то:
Если совпадают высота и биссектриса, то:
Если совпадают биссектриса и медиана, то:
Ну вот, не забывай и пользуйся:
- Если дан равнобедренный треугольный треугольник, смело проводи высоту, получай два прямоугольных треугольника и решай задачу уже про прямоугольный треугольник.
- Если дано, что два угла равны, то треугольник точно равнобедренный и можно проводить высоту и ….( Дом, который построил Джек…).
- Если оказалось, что высота разделена сторону пополам, то треугольник – равнобедренный со всеми вытекающими бонусами.
- Если оказалось, что высота разделила угол полам – тоже равнобедренный!
- Если биссектриса разделила сторону пополам или медиана – угол, то это тоже бывает только в равнобедренном треугольнике
Давай посмотрим, как выглядит в задачах.
Задача 1 (самая простая)
В треугольнике стороны и равны, а . Найти .
Решаем:
Сначала рисунок.
Что здесь – основание? Конечно, .
Вспоминаем, что если , то и .
Обновлённый рисунок:
Обозначим за . Чему там равна сумма углов треугольника? ?
Пользуемся:
Вот и ответ: .
Несложно, правда? Даже высоту проводить не пришлось.
Задача 2 (Тоже не очень хитрая, но нужно повторить тему «Прямоугольный треугольник»)
В треугольнике , . Найти .
Решаем:
![]() | Смотрим внимательно и соображаем, что раз , то . |
Треугольник-то — равнобедренный! Проводим высоту (это и есть фокус, с помощью которого сейчас все решится).
![]() | Вспоминаем, что высота = медиана, то есть . |
Теперь «вычёркиваем из жизни» , рассмотрим только .
Итак, в имеем:
Вспоминаем табличное значения косинусов (ну, или глядим в шпаргалку…)
Осталось найти : .
Ответ: .
Заметим, что нам тут очень потребовались знания, касающиеся прямоугольного треугольника и «табличных» синусов и косинусов. Очень часто так и бывает: темы «Прямоугольный треугольник», «Равнобедренный треугольник» и «Основные формулы тригонометрии» в задачках ходят в связках, а с другими темами не слишком дружат.
Равнобедренный треугольник. Средний уровень.
Треугольник называется равнобедренным, если у него есть две равные стороны.
Эти две равные стороны называются боковыми сторонами, а третья сторона – основание равнобедренного треугольника.
Посмотри на рисунок: и – боковые стороны, – основание равнобедренного треугольника.
Свойства равнобедренного треугольника:
- Углы при основании равнобедренного треугольника равны (на рисунке: ).
- Высота, проведённая к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой.
Давай на одном рисунке поймём, почему так выходит. Проведем из точки высоту .
![]() | Что получилось? Треугольник разделился на два прямоугольных треугольника и . И эти треугольники равны! У них равны гипотенузы и общий катет . |
Значит, у них равны все соответствующие элементы.
То есть:
![]() |
|
Всё! Одним махом (высотой ) доказали сразу все утверждения.
И ты запомни: чтобы решить задачу про равнобедренный треугольник часто бывает очень полезно опустить высоту на основание равнобедренного треугольника и разделить его на два равных прямоугольных треугольника.
Признаки равнобедренного треугольника
Верны и обратные утверждения:
- Если в некотором треугольнике два угла равны, то он – равнобедренный.
- Если в некотором треугольнике совпадают:
а) высота и биссектриса или
б) высота и медиана или
в) медиана и биссектриса,
проведённые к одной стороне, то такой треугольник – равнобедренный.
Почти все из этих утверждений снова можно доказать «одним махом».
1. Итак, пусть в оказались равны и .
Проведём высоту . Тогда
![]() | – как прямоугольные по катету и острому углу. |
Значит, .
![]() | Доказали, что – равнобедренный. |
2. a) Теперь пусть в каком–то треугольнике совпадают высота и биссектриса.
![]() | Тогда снова по катету и острому углу. Значит, опять . |
2. б) А если совпадают высота и медиана? Все почти так же, ничуть не сложнее!
![]() | — по двум катетам |
2. в) А вот если нет высоты, которая опущена на основание равнобедренного треугольника, то нет и никаких изначально прямоугольных треугольников. Плохо!
Но выход есть – читай его в следующем уровне теории, поскольку тут доказательство посложнее, а пока просто запомни, что если медиана и биссектриса совпали, то треугольник тоже окажется равнобедренным, и высота всё-таки тоже совпадёт с этими биссектрисой и медианой.
Подытожим:
- Если треугольник равнобедренный, то углы при основании равны, и высота, биссектриса и медиана, проведенные к основанию, совпадают.
- Если в каком-то треугольнике найдутся два равных угла, или какие-то две из трех линий (биссектриса, медиана, высота) совпадут, то такой треугольник – равнобедренный.
Равнобедренный треугольник. Краткое описание и основные формулы
Равнобедренный треугольник — треугольник, у которого есть две равные стороны.
![]() |
|
Свойства равнобедренного треугольника:
![]() |
|
Признаки равнобедренного треугольника:
- Если в некотором треугольнике два угла равны, то он – равнобедренный.
- Если в некотором треугольнике совпадают:
а) высота и биссектриса или
б) высота и медиана или
в) медиана и биссектриса,
проведённые к одной стороне, то такой треугольник – равнобедренный.
ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!
Стать учеником YouClever,
Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц»,
А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.
можно кликнув по этой ссылке.
Понятие равнобедренного треугольника
Введем для начала определение треугольника.
Выберем на плоскости три произвольные точки, которые будут удовлетворять условию аксиомы 1. Соединим эти точки между собой отрезками. Тогда
Определение 1
Треугольником будем называть такую геометрическую фигуру, которая состоит из трех точек, не имеющих общей прямой, соединенных отрезками.
Определение 2
Точки в рамках определения 1 называются вершинами треугольника.
Определение 3
Отрезки в рамках определения 1 называются сторонами треугольника.
Введем теперь понятие равнобедренного треугольника.
Определение 4
Треугольник будем называть равнобедренным, если две его стороны будут равны между собой.
Определение 5
Равные стороны в рамках определения 4, будем называть боковыми, а третью – основанием (рис. 1).
Замечание 1
Отметим, что если боковые стороны равнобедренного треугольника также равняются его основанию, то треугольник будем называть равносторонним.
Свойства равнобедренного треугольника
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Введем свойства равнобедренного треугольника в виде теорем.
Теорема 1
Углы при основании равнобедренного треугольника будут равными.
Доказательство.
Пусть нам дан треугольник $ABC$, в котором $AB=AC$. Проведем биссектрису $AD$ к основанию данного нам треугольника (рис. 2).
Так как $AD$ – биссектриса, то будет верно равенство
$∠1=∠2$
Для треугольников $ABD$ и $ACD$ сторона $AD$ является общей. Следовательно, треугольники $ABD$ и $ACD$ равны по первому признаку. Но тогда будет верно, что
$∠B=∠C$
Теорема доказана.
Замечание 2
Из этой теоремы можно выделить признак равнобедренности треугольника. Если в треугольнике будут иметься два равных угла, то он будет являться равнобедренным.
Теорема 2
Высота, медиана и биссектриса в равнобедренном треугольнике являются одной и той же прямой.
Доказательство.
Пусть нам дан треугольник $ABC$, в котором $AB=AC$. Проведем биссектрису $AD$ к основанию данного нам треугольника (рис. 3). Докажем, для начала, что $AD$ является медианой.
Так как $AD$ – биссектриса, то будет верно равенство
$∠1=∠2$
Для треугольников $ABD$ и $ACD$ сторона $AD$ является общей. Следовательно, треугольники $ABD$ и $ACD$ равны по первому признаку. Но тогда верно, что $BD=DC$. Следовательно, $AD$ – медиана.
Докажем теперь, что $AD$ — высота. Введем следующие обозначения. Пусть $∠1=α$, $∠B=β$.
Так как $AD$ – биссектриса, то $∠A=2α$.
По теореме о сумме углов в треугольнике, из треугольника $ABC$ будем иметь
$∠A+∠B+∠C=180^0$
То есть
$2α+2β=180^0$
$α+β=90^0$
Из треугольника $ABD$ будем иметь
$∠BDA+α+β=180^0$
Тогда
$∠BDA=180^0-(α+β)=180^0-90^0=90^0$
Следовательно, $AD$ — высота.
Теорема доказана.
Пример задач
Пример 1
Пусть дан треугольник $ABC$. Доказать, что если в нем $BD$ будет и высотой и медианой, то треугольник является равнобедренным.
Доказательство.
Для этого нам нужно доказать, что $AB=BC$.
Изобразим рисунок по условию задачи (рис. 4).
Так как $BD$ является медианой, то по определению 4 будет верно равенство
$AD=DC$
Так как $BD$ является высотой, то по определению 6 будет верно равенство
$∠ADB=∠BDC=90^0$
У треугольников $ADB$ и $BDC$ сторона $BD$ будет общей, следовательно, по всему сказанному выше эти треугольники равняются по первому признаку. Но тогда и стороны $AB$ и $BC$ равны.
Пример 2
Пусть дан треугольник $ABC$. Доказать, что он будет равнобедренным в условиях рисунка 5.
Доказательство.
По условию задачи угол 1 равняется углу 2, а сторона $BD$ равняется стороне $CD$. Так как у треугольников $ADB$ и $ADC$ сторона $AD$ является общей, то треугольники $ADB$ и $ADC$ будут равняться по первому признаку. Но тогда и стороны $AB$ и $AC$ также равны между собой. Следовательно, данный треугольник будет равнобедренным.