Каким свойством обладает медиана в прямоугольном треугольнике

Каким свойством обладает медиана в прямоугольном треугольнике thumbnail

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

1. Что такое медиана?

Это очень просто!

Возьми треугольник:

Треугольник

Отметь на какой-нибудь его стороне середину  .

Середина произвольной стороны треугольника

И соедини с противоположной вершиной!

Медиана треугольника

Получившаяся линия   и есть медиана.

Медиана – линия, проведённая из вершины треугольника к середине противоположной стороны.

2. Свойства медианы.

Какие же хорошие свойства есть у медианы?

1) Вот представим, что треугольник   – прямоугольный. Бывают же такие, верно?

Медиана равна половине гипотенузыТогда медиана равна половине гипотенузы!

Почему??? При чём тут прямой угол?

Давай смотреть внимательно. Только не на треугольник, а на … прямоугольник. Зачем, спросишь?

А вот ты ходишь по Земле – ты видишь, что она круглая? Нет, конечно, для этого на Землю нужно смотреть из космоса. Вот и мы посмотрим на наш прямоугольный треугольник «из космоса».

Итак, рассмотрим прямоугольник  .

Медиана. Свойство 1. Доказательство 1

Ты заметил, что наш треугольник   – ровно половина этого прямоугольника?

Проведём диагональ  :

Медиана. Свойство 1. Доказательство 2

Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам? (Если не помнишь, загляни в тему «Параллелограмм, прямоугольник, ромб…»)
Но одна из диагоналей –   – наша гипотенуза! Значит, точка пересечения диагоналей – середина гипотенузы  . Она называлась у нас  .

Медиана. Свойство 1. Доказательство 3

Значит, половина второй диагонали – наша медиана  . Диагонали равны, их половинки, конечно же, тоже. Вот и получим  

Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.

Более того, так бывает только в прямоугольном треугольнике!

Если медиана равна половине стороны, то треугольник прямоугольный, и эта медиана проведена к гипотенузе.

Доказывать это утверждение мы не будем, а чтобы в него поверить, подумай сам: разве бывает какой-нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника? Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике.

Давай посмотрим, как это свойство помогает решать задачи.

Вот, задача:
В   стороны  ;  . Из вершины   проведена медиана  . Найти  , если  .

Рисуем:

Медиана. Свойство 1. ЗадачаСразу вспоминаем, это если  , то  !

Ура! Можно применить теорему Пифагора! Видишь, как здорово? Если бы мы не знали, что медиана равна половине стороны только в прямоугольном треугольнике, мы никак не могли бы решить эту задачу. А теперь можем!

Применяем теорему Пифагора:

Медиана. Прямоугольный треугольник. Задача 
 
 
Вот и ответ!

2) А теперь пусть у нас будет не одна, а целых три медианы! Как же они себя ведут?

Запомни очень важный факт:

Три медианы в треугольнике (любом!) пересекаются в одной точке и делятся этой точкой в отношении  , считая от вершины.

Сложно? Смотри на рисунок:

Медиана. Свойство 2Медианы  ,   и   пересекаются в одной точке.

И….( доказываем это в следующем уровне теории, а пока запомни!):

  •   – вдвое больше, чем  ;
  •   – вдвое больше, чем  ;
  •   – вдвое больше, чем  .

Не устал ещё? На следующий пример сил хватит? Сейчас мы применим всё, о чём говорили!

Задача: В треугольнике   проведены медианы   и  , которые пересекаются в точке  . Найти  , если  

Медиана. Задача Решение
  — треугольник прямоугольный! Значит,  .
(Применили то, что медиана, проведённая к гипотенузе равна половине гипотенузы).

Найдём   по теореме Пифагора:

Значит,  .

А теперь применим знания про точку пересечения медиан.

Давай обозначим  . Отрезок  , а  . Если не все понятно – посмотри на рисунок.

Мы уже нашли, что  .

Значит,  ;  .

В задаче нас спрашивают об отрезке  .

В наших обозначениях  .

Значит,  .

Ответ:  .

Понравилось? Старайся теперь сам применять знания про медиану!

МЕДИАНА. СРЕДНИЙ УРОВЕНЬ

1. Медиана делит сторону пополам.

Медиана — линия, проведенная из вершины треугольника к середине противоположной стороны.

Медиана треугольникаПосмотри на рисунок. Линия   – медиана.

Итак,

Медиана делит сторону пополам.

И все? А может, она ещё что-нибудь делит пополам? Представь себе, что это так!

2. Теорема: медиана делит площадь пополам.

Почему? А давай вспомним самую простую форму площади треугольника.

медиана делит площадь пополам 

И применим эту формулу аж два раза!

Две медианы.

Посмотри, медиана   разделила   на два треугольника:   и  . Но! Высота-то у них одна и та же –  ! Только в   эта высота   опускается на сторону  , а в   – на продолжение стороны  . Удивительно, но вот бывает и так: треугольники разные, а высота – одна. И вот, теперь-то и применим два раза формулу  .

1) B  :

» » – это  
» » – это  
 

2) B  :

» » – это  
» » – это опять  
 

Запишем ещё раз:

 ;  

Но  ! (Посмотри на рисунок или вспомни, что   – медиана).

Читайте также:  Какие свойства называют окислительными

Значит,   — площадь   разделилась на две равные части. Ура! Доказали теорему. И получилось совсем несложно — всего-то одна формула площади.

3. Три медианы треугольника

Теорема. Три медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении  , считая от вершины.

Три медианы треугольника

Что бы это такое значило? Посмотри на рисунок. На самом деле утверждений в этой теореме целых два. Ты это заметил?

Первое утверждение: медианы пересекаются в одной точке.

Второе утверждение: точкой пересечения медианы делятся в отношении  , считая от вершины.

Давай попробуем разгадать секрет этой теоремы:

Каким свойством обладает медиана в прямоугольном треугольникеСначала проведем не все три, а только две медианы. Они-то уж точно пересекутся, правда? Обозначим точку их пресечения буквой  .

Соединим точки   и  . Что получилось?

Каким свойством обладает медиана в прямоугольном треугольникеКонечно,   — средняя линяя  . Ты помнишь, что это значит?

  1.   — параллельна  ;
  2.  .

А теперь проведем ещё одну среднюю линию: отметим середину   – поставим точку  , отметим середину   — поставим точку  .

Теперь   – средняя линия  . То есть

  1.   параллельна  ;
  2.  .

Заметил совпадения? И   , и   – параллельны  . И  , и  .

Что из этого следует?

  1.   параллельна  ;
  2.  
Каким свойством обладает медиана в прямоугольном треугольникеПосмотри теперь на четырехугольник  . У какого четырехугольника противоположные стороны (  и  ) параллельны и равны?

Конечно же, только у параллелограмма!

Значит,   – параллелограмм. Ну и что? А давай вспомним свойства параллелограмма. Например, что тебе известно про диагонали параллелограмма? Правильно, они делятся точкой пересечения пополам.

Снова смотрим на рисунок.

Каким свойством обладает медиана в прямоугольном треугольнике

Получилось, что

  1.   (мы так выбирали точку  )
  2.   (из-за того, что   – параллелограмм)

То есть   — медиана   разделена точками   и   на три равные части. И точно так же  .

Значит, точкой   обе медианы разделились именно в отношении  , то есть   и  .

Что же будет происходить с третьей медианой? Давай вернемся в начало. О, ужас?! Нет, сейчас будет все гораздо короче. Давай выбросим медиану   и проведем медианы   и  .

Каким свойством обладает медиана в прямоугольном треугольнике

А теперь представим, что мы провели точно такие же рассуждения, как для медиан   и  . Что тогда?

Получится, что медиана   разделит медиану   абсолютно точно так же: в отношении  , считая от точки  .

Но сколько же может быть точек на отрезке  , которые делят его в отношении  , считая от точки  ?

Конечно же, только одна! И мы её уже видели – это точка  .

Что же получилось в итоге?

Медиана   точно прошла через  ! Все три медианы через неё прошли. И все разделились в отношении  , считая от вершины.

Вот и разгадали (доказали) теорему. Разгадкой оказался параллелограмм, сидящий внутри треугольника.

4. Формула длины медианы

Как же найти длину медианы, если известны стороны? А ты уверен, что тебе это нужно? Откроем страшную тайну: эта формула не очень полезная. Но всё-таки мы её напишем, а доказывать не будем (если интересно доказательство – смотри следующий уровень).

Каким свойством обладает медиана в прямоугольном треугольникеИтак,  

5. Медиана в прямоугольном треугольнике.

Теорема:

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

свойство медианы прямоугольного треугольника

Как бы понять, отчего так выходит?

Давай смотреть внимательно. Только не на треугольник, а на прямоугольник.

Итак, рассмотрим прямоугольник  .

Каким свойством обладает медиана в прямоугольном треугольнике

Ты заметил, что наш треугольник   – ровно половина этого прямоугольника?

Проведём диагональ  

Каким свойством обладает медиана в прямоугольном треугольнике

Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам? (Если не помнишь, загляни в тему «Параллелограмм, прямоугольник, …»)
Но одна из диагоналей –   – наша гипотенуза! Значит, точка пересечения диагоналей – середина гипотенузы  . Она называлась у нас  .

Каким свойством обладает медиана в прямоугольном треугольнике

Значит, половина второй диагонали – наша медиана  . Диагонали равны, их половинки, конечно же, тоже. Вот и получим  

Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.

Более того, так бывает только в прямоугольном треугольнике!

Если медиана равна половине стороны, то треугольник прямоугольный, и эта медиана проведена к гипотенузе.

Доказывать это утверждение мы не будем, а чтобы в него поверить подумай сам: разве бывает какой – нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника? Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике. Давай посмотрим, как это свойство помогает решать задачи.

Вот, задача:

В   стороны  ;  . Из вершины   проведена медиана  . Найти  , если  .

Рисуем:

Медиана. Свойство 1. ЗадачаСразу вспоминаем, это если  , то  !

Ура! Можно применить теорему Пифагора! Видишь, как здорово? Если бы мы не знали, что медиана равна половине стороны только в прямоугольном треугольнике, мы никак не могли бы решить эту задачу. А теперь можем!

Применяем теорему Пифагора:

Медиана. Прямоугольный треугольник. Задача 
 
 
Вот и ответ!

МЕДИАНА. КОРОТКО О ГЛАВНОМ

1. Медиана делит сторону пополам.

Каким свойством обладает медиана в прямоугольном треугольникеМедиана — линия, проведенная из вершины треугольника к середине противоположной стороны.

2. Теорема: медиана делит площадь пополам

Каким свойством обладает медиана в прямоугольном треугольнике

Но  , значит,

3. Три медианы треугольника

Каким свойством обладает медиана в прямоугольном треугольникеТри медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении  , считая от вершины.

4. Формула длины медианы

Каким свойством обладает медиана в прямоугольном треугольнике 

5. Медиана в прямоугольном треугольнике

Каким свойством обладает медиана в прямоугольном треугольникеВ прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.
Читайте также:  Какие химические свойства проявляет вода

Обратная теорема: если медиана равна половине стороны, то треугольник прямоугольный и эта медиана проведена к гипотенузе.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц», 

А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

можно кликнув по этой ссылке.

Источник

В этой статье мы рассмотрим свойства медианы в прямоугольном треугольнике, а также их доказательства.

Медиана — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. Для прямоугольного треугольника это будут медианы, проведённые с острого угла к серединам катетов или с прямого к центру гипотенузы (рис. 1).

Рисунок 1

Свойства медианы в прямоугольном треугольнике

  1. Медианы в прямоугольном треугольнике пересекаются в одной точке, а точка пересечения делит их в соотношении два к одному считая от вершины, из которой проведена медиана.
  2. Медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
  3. Медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

Доказательства свойств

Первое свойство

Доказать, что медианы в прямоугольном треугольнике пересекаются в одной точке и делятся в пропорции 2:1, считая от вершины.

Доказательство:

  1. Рассмотрим прямоугольный треугольник ABC. Проведем две медианы AE и BD, которые пересекаются в точке X (рис. 2).

    Рисунок 2

  2. Середины отрезков AX и BX обозначим, соответственно, буквами F и G (рисунок 3).

    Рисунок 3

  3. Соединим между собой точки (D, F, G и E) и получим четырёхугольник DFGE (рис. 4).

    Рисунок 4

  4. Сторона DE этого четырёхугольника будет средней линией треугольника ABC. Согласно определению: отрезок, соединяющий середины двух сторон треугольника, является его средней линией. При этом по свойству средняя линия параллельна не пересекающейся с ней стороне и равна половине этой стороны, то есть.
    DE || AB и DE = AB / 2.
  5. Аналогично сторона FG треугольника AXB будет его средней линией.
    FG || AB и FG = AB / 2
  6. Отсюда следует, что отрезки DE и FG являются параллельными и равными. Следовательно, четырехугольник DFGE – параллелограмм (по признаку параллелограмма).
  7. Так как диагонали параллелограмма в точке пересечения делятся пополам, то
    FX=XE, GX=XD

    Рисунок 5

  8. Так как AF = FX (по построению), то и AF = FX = XE, аналогично DX = XG = GB.
  9. Получается, что точка X делит обе медианы AE и BD в соотношении 2 к 1 считая от вершины треугольника.
  10. Аналогично, мы сможем доказать, что точка пересечения 3-ей медианы, проведенной из прямого угла к гипотенузе, с медианой AE (или BD) будет делить ее в соотношении 2 к 1, считая от вершины. То есть наша 3-я медиана также пройдет через точку X. Отсюда следует, что все 3 наши медианы пересекаются в одной точке.

Что и требовалось доказать.

Второе свойство

Доказать, что медиана, проведённая с вершины прямого угла к гипотенузе, равна половине гипотенузы.

Доказательство:

  1. Чтобы доказать это свойство рассмотрим прямоугольный треугольник ABC и проведём медиану к гипотенузе. Точку ее пересечения с гипотенузой обозначим буквой D (рис. 6).

    Рисунок 6

  2. Отразим симметрично наш треугольник ABC относительно отрезка AB (рисунок 7). В результате получим четырёхугольник AEBC, в котором AD=DB (поскольку CD медиана к стороне AB) и CD=DE (по построению). То есть диагонали четырехугольника AEBC пересекаются и точкой пересечения делятся пополам. Отсюда следует, что AEBC является параллелограммом (по признаку параллелограмма).

    Рисунок 7

  3. Один из признаков прямоугольника говорит о том, что параллелограмм является прямоугольником, если хотя бы один из его углов прямой. Поскольку ∠ACB прямой (по построению), то AEBC — прямоугольник.
  4. Поскольку диагонали прямоугольника равны и в точке пересечения делятся пополам (свойство прямоугольника), то AB = CE и AD = DB = CD = DE.

    Рисунок 8

  5. Так как AB = AD + DB, AD = BD и СD = AD = BD, то получается, что медиана AD, проведенная к гипотенузе AB равна половине ее длины.

Что и требовалось доказать.

Третье свойство

Доказать, что медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

Доказательство:

  1. Опишем вокруг прямоугольного треугольника ABC окружность.

    Рисунок 9

  2. Поскольку точка C уже лежит на окружности, то для того, чтобы доказать, что медиана CM является радиусом, нам надо доказать, что точка M – центр описанной окружности (т.е. равноудалена от нее).
  3. Так как медиана делит отрезок пополам, а медиана проведенная к гипотенузе равна ее половине (согласно доказанному выше свойству), то точка M будет равноудалена от всех вершин треугольника, которые в свою очередь касаются окружности (рисунок 8).
  4. Отсюда следует, что окружность, описанная вокруг прямоугольного треугольника ABC будет иметь центр на середине гипотенузы (в точке M), а медиана CM будет радиусом описанной окружности.
Читайте также:  Высший оксид фосфора проявляет какие свойства

Что и требовалось доказать.

Источник

У этого термина существуют и другие значения, см. Медиана.

Треугольник и его медианы.

Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.

Связанные определения[править | править код]

Три медианы, проходящие через общую точку

На рис. справа в треугольнике ABC через точку O проведены 3 медианы: AD, BE и CF. Тогда точка O пересечения 3 медиан разбивает каждую медиану на 2 отрезка прямых, один из них (который начинается в вершине, а заканчивается в точке пересечения O) мы назовем домедианой или предмедианой, а второй из них (который начинается в точке пересечения O, а заканчивается в точке его пересечения со стороной, противоположной вершине) мы назовем постмедианой.[1]
С помощью этих 2 понятий совсем просто формулируются некоторые теоремы геометрии. Например, в любом треугольнике отношение пред- и постмедианы равно двум.

Свойства[править | править код]

Основное свойство[править | править код]

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника[править | править код]

В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой. Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.

У равностороннего треугольника все три медианы равны.

Свойства оснований медиан[править | править код]

  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.
  • Теркем доказал теорему Теркема.[2] Она утверждает, что если окружность девяти точек пересекает стороны треугольника или их продолжения в 3 парах точек (в 3 основаниях соответственно высот и медиан), являющихся основаниями 3 пар чевиан, то, если 3 чевианы для 3 из этих оснований пересекаются в 1 точке (например 3 медианы пересекаются в 1 точке), то 3 чевианы для 3 других оснований также пересекаются в 1 точке (т. е. 3 высоты также обязаны пересечься в 1 точке).

Другие свойства[править | править код]

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников. Центры описанных окружностей этих шести треугольников лежат на одной окружности, которая называется окружностью Ламуна.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.

Бесконечно удаленная прямая — трилинейная поляра центроида

  • Трилинейная поляра центроида (точки пересечения трех медиан) — бесконечно удаленная прямая (см. рис.).

Основные соотношения[править | править код]

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

где  — медианы к сторонам треугольника соответственно.

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

.

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

где  — медианы к соответствующим сторонам треугольника,  — стороны треугольника.

Площадь любого треугольника, выраженная через длины его медиан:

где  — полусумма длин медиан.

См. также[править | править код]

  • Биссектриса
  • Высота треугольника
  • Инцентр
  • Симедиана
  • Центроид
  • Чевиана

Примечания[править | править код]

Литература[править | править код]

  • Ефремов Дм. Новая геометрия треугольника, 1902 год.

Источник