Каким свойством обладает длина отрезка 5 класс ответы

Каким свойством обладает длина отрезка 5 класс ответы thumbnail

ВОПРОСЫ

1. Сколько существует отрезков, концами которых являются две дан­ные точки?

§3. Отрезок. Длина отрезка
2. Как обозначают отрезок?

§3. Отрезок. Длина отрезка
3. Какие вы знаете единицы длины?

Нам известны такие единицы длины: миллиметр, сантиметр, дециметр, метр, километр.

1 см — 10 мм
1 дм — 10 см
1 м — 100 см — 10 дм
1 км — 1000 м

4. Объясните, что означает измерить длину отрезка.

§3. Отрезок. Длина отрезка
5. Каким свойством обладает длина отрезка?

§3. Отрезок. Длина отрезка
6. Какие отрезки называют равными?

§3. Отрезок. Длина отрезка
7. Какие длины имеют равные отрезки?

§3. Отрезок. Длина отрезка
8. Какой из двух неравных отрезков считают большим?

§3. Отрезок. Длина отрезка
9. Что называют расстоянием между точками А и В?

§3. Отрезок. Длина отрезка
10. Объясните, какую геометрическую фигуру называют ломаной.

§3. Отрезок. Длина отрезка
11. Что называют длиной ломаной?

§3. Отрезок. Длина отрезка
12. Какую ломаную называют замкнутой?

§3. Отрезок. Длина отрезка


РЕШАЕМ УСТНО

1. Какое число больше числа 46 на 9? Какое число меньше числа 72 на 15? Какое число больше числа 21 в 7 раз? Какое число меньше числа 65 в 13 раз?

55, 57, 147, 5

2. Назовите все двузначные числа, сумма цифр которых равна 6.

15, 24, 33, 42, 51, 60

3. Назовите все двузначные числа, разность цифр которых равна 7.

18, 29, 70, 81, 92

4. Назовите три последовательных натуральных числа, наименьшим из которых является наибольшее четырехзначное число.

9999, 10000, 10001

5. Назовите три последовательных натуральных числа, наибольшим из которых является наименьшее четырехзначное число.

9997, 9998, 9999

6. Выразите в сантиметрах:

1) 7 дм 4 см = 74 см
2) 4 м 1 см = 401 см
3) 2 м 6 дм = 260 см
4) 1 м 2 дм 5 см = 125 см

7. Выразите в дециметрах и сантиметрах:

1) 72 см = 7 дм 2 см
2) 146 см = 14 дм 6 см
3) 450 мм = 4 дм 5 см
4) 8 м 40 мм = 80 дм 4 см

УПРАЖНЕНИЯ

44. Запишите все отрезки, изображенные на рисунке 15.

§3. Отрезок. Длина отрезка

a) AB, BC, AC, BK
б) OP, OR, OT, PR, PT, RT
в) AE, EC, CD, AC, ED, AD
г) MN, NE, ME, EP, PQ, EQ, MQ, NP

45. Запишите все отрезки, изображенные на рисунке 16.

§3. Отрезок. Длина отрезка

а) AO, OC, AC, BO, OD, BD, AD
б) MK, KN, NP, MN, KP, MP, FK, KE, FE, EN, NS, ES

46. Отметьте в тетради точки A, B, C, D и соедините их попарно отрезками. Сколько отрезков образовлось? Сколько образовалось отрезков с концом в точке А?

§3. Отрезок. Длина отрезка

47. Начертите отрезки MN и AC так, чтобы MN=6 см 3 мм, AC = 5 см 3 мм.

§3. Отрезок. Длина отрезка

48. Начертите отрезки EF и BK так, что EF = 9 см 2 мм, BK = 7 см 6 мм.

§3. Отрезок. Длина отрезка

49. Начертите отрезок АВ, длина которого равна 8 см 9 мм. Отметьте на нём точку С так, чтобы СВ = 3 см 4 мм. Какова длина отрез­ка АС?

§3. Отрезок. Длина отрезка

50. Начертите отрезок TP, длина которого равна 7 см 8 мм. Отметьте на нём точку Е так, чтобы ТЕ = 2 см 6 мм. Какова длина отрезка ЕР?

§3. Отрезок. Длина отрезка

51. Сравните на глаз отрезки АВ и CD (рис. 17). Проверьте свой вывод измерением.

§3. Отрезок. Длина отрезка

52. Назовите все ломаные, изобра­жённые на рисунке 11. Какая из них имеет наибольшее коли­чество звеньев?

§3. Отрезок. Длина отрезка

53. Назовите звенья ломаной, изображённой на рисунке 18, и измерьте их длины (в миллиметрах). Вычислите длину ломаной.

§3. Отрезок. Длина отрезка

54. Запишите звенья ломаной, изображённой на рисунке 19, и измерь­те их длины (в миллиметрах). Вычислите длину ломаной.

§3. Отрезок. Длина отрезка

55. Отметьте в узле клеток тетради точку А; точку В разместите на 4 клетки левее и на 5 клеток выше точки А; точку С — на 3 клет­ки правее и на 1 клетку выше точки В; точку D — на 3 клетки пра­вее и на 3 клетки ниже точки С; точку Е — на 1 клетку правее и на 2 клетки ниже точки D. Соедините последовательно отрезками точ­ки А, В, С, D и Е. Какая фигура образовалась? Запишите её назва­ние и укажите количество звеньев.

§3. Отрезок. Длина отрезка

56. Вычислите длину ломаной ABCDE, если АВ = 8 см, ВС = 14 см, CD = 23 см, DE = 10 см.

§3. Отрезок. Длина отрезка

57. Вычислите длину ломаной MNKPEE, если MN = 42 мм, NK = 38 мм, КР = 19 мм, РЕ = 12 мм, ЕF = 29 мм.

§3. Отрезок. Длина отрезка

58. Начертите в тетради ломаную, изображённую на рисунке 20. Измерьте длины звеньев (в мил­лиметрах) и найдите длину ло­маной.

§3. Отрезок. Длина отрезка

59. Известно, что отрезок SK в 3 ра­за больше отрезка RS (рис. 21). Найдите длину отрезка RK, ес­ли RS = 34 см.

§3. Отрезок. Длина отрезка

60. Известно, что отрезок DВ в 5 раз меньше отрезка AD (рис. 22). Найдите длину отрезка АВ, ес­ли АD = 135 см.

§3. Отрезок. Длина отрезка

61. Известно, что AC = 32 см, ВС = 9 см, CD = 12 см (рис. 23). Найдите длины отрезков АВ и BD.

§3. Отрезок. Длина отрезка

62. Известно, что MF= 43 см, МЕ = 26 см, КЕ = 18 см (рис. 24). Найди­те длины отрезков МК и EF.

§3. Отрезок. Длина отрезка

63. Даны две точки А и В. Сколько можно провести отрезков, соеди­няющих эти точки? Сколько можно провести ломаных, соединяю­щих эти точки?

§3. Отрезок. Длина отрезка

64. Начертите отрезок МК и отметьте на нём точки А и С. Запишите все образовавшиеся отрезки.

Читайте также:  Какие свойства есть у карандаша

§3. Отрезок. Длина отрезка

65. Длина отрезка АВ равна 28 см. Точки М и К принадлежат этому от­резку, причём точка К лежит между точками М и В, AM =12 см, ВК = 9 см. Найдите длину отрезка МК.

§3. Отрезок. Длина отрезка

66. Точка С принадлежит отрезку АВ, длина отрезка АС равна 15 см, а отрезок АВ на 5 см больше отрезка АС. Чему равна длина отрез­ка ВС? Есть ли в условии задачи лишние данные?

§3. Отрезок. Длина отрезка

67. Отрезки МТ и FK равны (рис. 25). Сравните отрезки MF и ТК.

§3. Отрезок. Длина отрезка

68. Постройте ломаную ACDM так, чтобы АС = 15 мм, CD = 24 мм, DM = 32 мм. Вычислите длину ло­маной.

§3. Отрезок. Длина отрезка

69. Постройте ломаную CEFK так, чтобы звено СЕ было равно 8 мм, звено EF было на 14 мм больше звена СЕ, а звено FK — на 7 мм меньше звена EF. Вычислите длину ломаной.

§3. Отрезок. Длина отрезка

70. Вычислите длину ломаной, изображённой на рисунке 26.

§3. Отрезок. Длина отрезка

71. Известно, что АС = 8 см, BD = 6 см, ВС = 2 см (рис. 27). Найдите длину отрезка AD.

§3. Отрезок. Длина отрезка

72. Известно, что MF = 30 см, ME = 18 см, KF = 22 см (рис. 28). Найди­те длину отрезка КЕ.

§3. Отрезок. Длина отрезка

73. Известно, что КР = РЕ = EF = FT = 2 см (рис. 29). Какие ещё равные отрезки есть на этом рисунке? Найдите их длины.

§3. Отрезок. Длина отрезка

74. На первом отрезке отметили семь точек так, что расстояние между любыми соседними точками равно 3 см, а на втором — десять точек так, что расстояние между любыми соседними точками равно 2 см. Расстояние между какими крайними точками больше: лежащими на первом отрезке или лежащими на втором отрезке?

§3. Отрезок. Длина отрезка

75. Известно, что АЕ = 12 см, AQ = QB, ВМ = МС, СК = KD, DR = RE, МК = 4 см (рис. 30). Найдите длину отрезка QR.

§3. Отрезок. Длина отрезка

76. Какое наименьшее количество точек надо отметить на отрезках, изображённых на рисунке 31, чтобы на каждом из них было две от­меченные точки, не считая концов отрезков?

§3. Отрезок. Длина отрезка

77. У Миши есть линейка, на которой отмечены только 0 см, 5 см и 13 см (рис. 32). Как, пользуясь этой линейкой, он может постро­ить отрезок длиной: 1) 3 см; 2) 2 см; 3) 1 см?

§3. Отрезок. Длина отрезка

УПРАЖНЕНИЯ ДЛЯ ПОВТОРЕНИЯ

78. Вычислите:

§3. Отрезок. Длина отрезка
§3. Отрезок. Длина отрезка

79. Выполните действия:

§3. Отрезок. Длина отрезка

80. Детскому саду подарили четыре ящика конфет по 5 кг в каждом и шесть ящиков печенья по 3 кг в каждом. На сколько килограм­мов больше подарили конфет, чем печенья?

§3. Отрезок. Длина отрезка

81. Медведица Настасия Петровна заготовила на зиму семь бочонков мёда по 12 кг в каждом и 8 бочонков мёда по 10 кг в каждом. Сколько всего килограммов мёда заготовила Настасия Петровна?

§3. Отрезок. Длина отрезка

82. В магазин привезли 240 кг бананов и 156 кг апельсинов. Треть при­везённых фруктов продали в первый день, а остальные — во второй день. Сколько килограммов фруктов продали во второй день?

§3. Отрезок. Длина отрезка

83. Кот Матроскин вырастил в своём саду 246 кг яблок и 354 кг груш. Шестую часть всех фруктов он отдал своим друзьям из детского са­да, пятую часть всех фруктов — друзьям из школы, а остальное — в больницу. Сколько килограммов фруктов Матроскин отдал в больницу?

§3. Отрезок. Длина отрезка

84. Укажите наименьшее натуральное число, сумма цифр которого равна 101.

§3. Отрезок. Длина отрезка

Источник

  • Длина отрезка
  • Равные отрезки
  • Сравнение отрезков
  • Середина отрезка

Отрезок — это часть прямой, ограниченная двумя точками, лежащими на этой прямой. Точки, определяющие границы отрезка, называются концами отрезка.

концы отрезка ав

Отрезок обозначается двумя большими латинскими буквами, поставленными при его концах: отрезок  AB  или  BA.

Длина отрезка

Длина отрезка — это расстояние между концами отрезка. Любой отрезок имеет длину, бо́льшую нуля:

длина отрезка

Измерение длины отрезка осуществляется путём сравнения данного отрезка с длиной единичного отрезка. Единичный отрезок — это отрезок, длина которого принимается за единицу. Следовательно:

длина отрезка – это положительное число, показывающее, сколько раз единичный отрезок и его части укладываются в данном отрезке.

Чаще всего используются единичные отрезки равные  1 мм,  1 см,  1 дм,  1 м  или  1 км. Измерить длину отрезка можно линейкой или любым другим прибором для измерения длины:

измерение отрезков

AB = 6 см.

Свойства длин отрезков:

  • Основное свойство длины отрезка: если точка делит отрезок на два отрезка, длина всего отрезка равна сумме длин этих двух отрезков.

    основное свойство длины отрезка

  • Длины равных отрезков равны.
  • Любой отрезок имеет определённую длину, большую нуля.

Равные отрезки

Равные отрезки — это отрезки, имеющие одинаковую длину. Если наложить равные отрезки друг на друга, то их концы совпадут.

Пример. Возьмём два отрезка  CD  и  LM:

2 равных отрезка

Если расположить отрезки параллельно друг над другом так, чтобы точка  C  была над точкой  L,  то станет видно, что точка  D  располагается над точкой  М:

сравнение отрезков

Значит длины отрезков равны, следовательно  CD = LM.

Сравнение отрезков

Сравнить два отрезка — это значит определить, равны они, или один больше другого.

Сравнить два отрезка можно, отложив на прямой оба отрезка из одной точки в одну и туже сторону. Для этого можно воспользоваться циркулем.

Читайте также:  Какие свойствами воды люди пользуются когда умываются

Чтобы отложить на прямой отрезок равный данному, сначала помещают ножки циркуля так, чтобы острия их концов упирались в концы отрезка, а затем, не изменяя раствора циркуля, переносят его так, чтобы оба его конца находились на прямой.

как отложить отрезок на прямой

При сравнении двух отрезков возможно получение одного из представленных результатов: отрезки будут равны, первый отрезок будет больше второго или первый отрезок будет меньше второго.

Пример. Если отложить на прямой от любой точки, например  C,  в одну сторону два отрезка  CA  и  CB  и точка  A  окажется между точками  C  и  B,  то отрезок  CA  меньше отрезка  CB  (или  CB  больше отрезка  CA):

как сравнить два отрезка

CA < CB   или   CB > CA.

Если точка  B  окажется между точками  C  и  A,  то отрезок  CA  больше отрезка  CB  (или  CB  меньше отрезка  CA):

как сравнить отрезки

CA > CB   или   CB < CA.

Если точки  A  и  B  совпадут, то отрезки  CA  и  CB  равны:

равные отрезки

CA = CB.

Если при наложении отрезков оба их конца совмещаются, значит отрезки равны.

При сравнении отрезков путём измерения их длин больше будет тот отрезок, у которого больше длина.

Пример. Сравнить длину отрезков  AB  и  AC.

Каким свойством обладает длина отрезка 5 класс ответы

Так как отрезок  AB  имеет большую длину, чем отрезок  AC,  то

AB > AC.

Каким свойством обладает длина отрезка 5 класс ответы

Так как отрезки   AB  и  AC  имеют одинаковую длину, то

AB = AC.

Если при измерении отрезков их длины равны, то и отрезки равны.

Середина отрезка

Середина отрезка — это точка, делящая отрезок на две равные части.

середина отрезка аб

Источник

Математика

5 класс

Урок №22

Измерение отрезков

Перечень рассматриваемых вопросов:

— понятие длины отрезка;

— равные отрезки на чертежах;

— определение длины отрезков.

Тезаурус

Длина отрезка – число, которое показывает, сколько раз в отрезке содержится единичный отрезок.

Единичный отрезок – это отрезок, длина которого принята за единицу измерения.

Обязательная литература

Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др.– М.: Просвещение, 2017. – 272 с.

Дополнительная литература

1. Чулков П. В. Математика: тематические тесты. 5 класс.// П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. –М.: Просвещение, 2009. – 142с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95с.

Теоретический материал для самостоятельного изучения

Каждому человеку неоднократно приходилось что-то измерять: свой рост, длину прыжка, высоту потолка и многое другое. Все эти действия означают вычисление величины какого-нибудь отрезка. Каким же образом можно измерить длину отрезка? На этот вопрос ответим в ходе урока.

За свою историю человечество придумало много разных единиц длины. Позже появились меры, заимствованные из природы:

— пядь – расстояние между растянутыми большим и указательным пальцами;

— вершок – длина основной фаланги указательного пальца;

— локоть – расстояние от локтевого сустава до конца вытянутого среднего пальца руки.

Некоторые названия сохранились до сих пор: ярд, фут, пядь, дюйм.

Ну, а герои одного известного мультфильма измеряли длину удава в попугаях. В зависимости от того, в ком измеряли удава, он становился то длиннее, то короче.

Два слонёнка, пять мартышек или тридцать восемь попугаев.

«А в попугаях я гораздо длиннее!» – воскликнул удав.

На самом деле мы с вами понимаем, что его размеры не менялись. Тогда возникает вопрос: в чём измерять? Что брать за единицу длины? Слонёнка, попугая или мартышку.

Измерить длину какого-нибудь отрезка в заданных единицах измерения – значит найти число, показывающее, сколько единичных отрезков поместится в данном отрезке.

Длиной отрезка называют число, которое показывает, сколько раз в отрезке содержится единица измерения.

Отрезок, длина которого принята за единицу измерения, называется единичным отрезком.

Чем же можно измерить длину отрезка?

Наиболее древними геометрическими инструментами являются линейка и циркуль, последний был изобретён в первом веке в Древней Греции.

Для более точных измерений используют миллиметровую линейку и штангенциркуль.

Если при измерении линейкой определённого отрезка какая-то точка не совпадает с делением шкалы, то можно говорить о приближенном значении длины этого отрезка. Приближенное значение длины может быть с избытком, с недостатком и с округлением. Например, на рисунке отрезок АВ может быть измерен с точностью до сантиметров. Его длину можно найти приближенно с избытком или с недостатком. В таких случаях говорят, что с недостатком его длина равна 5 см, а с избытком — 6 см. Это записывают так: АВ 5 см (с недостатком); АВ 6 см (с избытком).

Далее построим отрезок ВК заданной длины –например, 8см. Для этого отметим точку В и приложим к ней линейку, совместив точку В с нулём. Затем отмеряем с помощью линейки 8 см, отмечаем точку К и соединяем обе точки линией.

Читайте также:  Какие свойства памяти развиваются у детей и подростков

Каким свойством обладает длина отрезка 5 класс ответы

Такой отрезок можно построить и с помощью циркуля. Для этого отметим точку В. Приложим к линейке циркуль, выставив его ножки на восемь сантиметров. Перенесём циркуль к точке В, поместив на неё одну ножку, а другой ножкой поставим точку К. Соединив обе точки линией, получим отрезок с длиной 8 см.

Отрезки можно сравнить с помощью измерителя –например, циркуля. Для этого попеременно подставляем ножки циркуля ко всем предложенным для сравнения отрезкам. При этом они должны быть выставлены по одному из отрезков. Если длины отрезков одинаковы, то отрезки считают равными и пишут CD = КМ.

Если один из отрезков является частью другого, следовательно, он короче. Например, ЕН короче EF, так как отрезок EH является частью EF.

Каким свойством обладает длина отрезка 5 класс ответы

Рассмотрим ещё одно свойство длин.

Если на отрезке АВ отметить точку С, то длина отрезка АВ равна сумме длин отрезков АС и СВ. Пишут: АВ = АС + СВ.

Наши органы чувств – это один из способов получения информации об окружающем нас мире, но информация полученная таким образом, бывает искажена.

Посмотрите на рисунки и ответьте на вопрос, равны ли отрезки?

На первый взгляд покажется, что правый отрезок больше, чем левый, но при сравнении с помощью линейки окажется, что отрезки равны.

Каким свойством обладает длина отрезка 5 класс ответы

Такая же ситуация, складывается и со следующей картинкой. Кажется, что нижний отрезок больше, чем верхний, но при наложении линейки окажется, что отрезки равны.

Каким свойством обладает длина отрезка 5 класс ответы

В другом же случае на тот же вопрос о равенстве отрезков ответ очевиден.

АВ

СК

Таким образом, можно сделать вывод, что глазомерные оценки геометрических реальных величин неточны.

Разбор решения заданий тренировочного модуля

№1. Тип задания: выбор элемента из выпадающего списка.

Сравните длины горизонтального и вертикального отрезков?

Каким свойством обладает длина отрезка 5 класс ответы

  1. Отрезки равны
  2. Вертикальный отрезок больше
  3. Горизонтальный отрезок больше

Правильный ответ: при выполнении данного задания нужно использовать линейку, нужно измерить длину каждого отрезка и сравнить их. В результате измерений мы увидим, что отрезки равны.

№2. Тип задания: выделение цветом.

Точка К расположена на прямой между точками А и В. Длина отрезка АК = 8 см, длина отрезка КВ на 2 см больше длины отрезка АК. Какова длина отрезка АВ?

Выберите правильный ответ: 6 см; 10 см; 12 см; 18 см.

Решение: изобразим условие задачи на рисунке.

Каким свойством обладает длина отрезка 5 класс ответы

АВ = АК + КВ. Найдём КВ по условию задачи.

КВ = 8 см + 2 см = 10 см.

Следовательно, АВ = 8 см + 10 см = 18 см.

Источник

Инфоурок

Математика
›Презентации›Презентация по математике «Отрезок. Длина отрезка» 5 класс

Описание презентации по отдельным слайдам:

1 слайд

ОТРЕЗОК. ДЛИНА ОТРЕЗКА.

Описание слайда:

ОТРЕЗОК. ДЛИНА ОТРЕЗКА.

2 слайд

 ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ ТОЧКА ЛИНИЯ ОТРЕЗОК ТОЧКА ОТРЕЗОК

Описание слайда:

ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ ТОЧКА ЛИНИЯ ОТРЕЗОК ТОЧКА ОТРЕЗОК

3 слайд

 Читают « Отрезок АВ» Точки А и В - концы отрезка Обозначают АВ или ВА

Описание слайда:

Читают « Отрезок АВ» Точки А и В — концы отрезка Обозначают АВ или ВА

4 слайд

АВ = 1 см (длина отрезка АВ равна 1 см) На MN помещается три отрезка АВ MN =

Описание слайда:

АВ = 1 см (длина отрезка АВ равна 1 см) На MN помещается три отрезка АВ MN = 3 см. На EF помещается четыре отрезка АВ EF= 4 см. РК = 17 мм Измерить отрезок означает подсчитать сколько единичных отрезков в нем помещается

5 слайд

Если на отрезке АВ отметить точку С, то длина отрезка равна сумме длин отрезк

Описание слайда:

Если на отрезке АВ отметить точку С, то длина отрезка равна сумме длин отрезков АС и СВ АВ = АС + СВ Два отрезка называют РАВНЫМИ, если они совпадают при наложении. Пишут: АВ = CD Равные отрезки имеют равные длины Длину отрезка АВ называют РАССТОЯНИЕМ между точками А и В.

6 слайд

Если конец первого отрезка совпадает с концом второго отрезка, конец второго

Описание слайда:

Если конец первого отрезка совпадает с концом второго отрезка, конец второго отрезка совпадает с концом третьего отрезка и т.д., то отрезки образуют ЛОМАНУЮ Являются ли следующие фигуры ломаными? (Если нет , то почему?)

7 слайд

ЗАМКНУТЫЕ ЛОМАННЫЕ

Описание слайда:

ЗАМКНУТЫЕ ЛОМАННЫЕ

8 слайд

Отрезок ВС на 3 см меньше отрезка АВ, длина которого равна 8 см. найдите дли

Описание слайда:

Отрезок ВС на 3 см меньше отрезка АВ, длина которого равна 8 см. найдите длину отрезка АС. Задача

9 слайд

Имеем: ВС = 8 – 3 = 5 (см) АС = АВ + ВС. Отсюда АС = 8 + 5 = 13 (см) Ответ:

Описание слайда:

Имеем: ВС = 8 – 3 = 5 (см) АС = АВ + ВС. Отсюда АС = 8 + 5 = 13 (см) Ответ: 13 см. Решение:

10 слайд

Известно, что МК = 24 см, NP = 32 см, МР = 50 см. Найдите длину отрезка NK.

Описание слайда:

Известно, что МК = 24 см, NP = 32 см, МР = 50 см. Найдите длину отрезка NK. Задача

11 слайд

MN = MP – NP MN = 50 – 32 = 18 (см) NK = MK – MN NK = 24 -18 = 6 (см) Ответ:

Описание слайда:

MN = MP – NP MN = 50 – 32 = 18 (см) NK = MK – MN NK = 24 -18 = 6 (см) Ответ: 6 см. Решение: