Каким свойством обладает четырехугольник вписанный в окружность

Каким свойством обладает четырехугольник вписанный в окружность thumbnail

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

«Описанная окружность» мы видели, что вокруг всякого треугольника можно описать окружность. То есть, для всякого треугольника найдётся такая окружность, что все три вершины треугольника «сидят» на ней. Вот так:

Вписанный треугольник

Вопрос: а можно ли то же самое сказать о четырехугольнике? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?

Вот оказывается, что это НЕПРАВДА! НЕ ВСЕГДА четырехугольник можно вписать в окружность. Есть очень важное условие:

Вписанный четырехугольник Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма двух его противоположных углов равна  .

На нашем рисунке:

Посмотри, углы   и   лежат друг напротив друга, значит, они противоположные. А что же тогда с углами   и  ? Они вроде бы тоже противоположные? Можно ли вместо углов   и   взять углы   и  ?

Конечно, можно! Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет  . Оставшиеся два угла тогда сами собой тоже дадут в сумме  . Не веришь? Давай убедимся. Смотри:

Вписанный четырехугольник 2

Пусть  . Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно,  . То есть   — всегда!  . Но  , → .

Волшебство прямо!

Так что запомни крепко-накрепко:

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна  

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна  , то такой четырехугольник вписанный.

Доказывать всё это мы здесь не будем (если интересно, заглядывай в следующие уровни теории). Но давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна  .

Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма? Попробуем сперва «методом тыка».

Параллелограмм. Можно ли описать окружность.

Вот как-то не получается.

Теперь применим знание:

Параллелограмм

предположим, что нам как-то удалось посадить на параллелограмм   окружность. Тогда непременно должно быть:  , то есть  .

А теперь вспомним о свойствах параллелограмма:

у всякого параллелограмма противоположные углы равны.

То есть  .

У нас получилось, что

  →  

А что же углы   и  ? Ну, то же самое конечно.

  – вписанный →   →  

  — параллелограмм→   →  

Потрясающе, правда?

Получилось, что если параллелограмм вписан в окружность, то все его углы равны  , то есть это прямоугольник!

Прямоугольник

И ещё при этом – центр окружности совпадает с точкой пересечения диагоналей этого прямоугольника. Это, так сказать, в качестве бонуса прилагается.

Ну, вот значит, выяснили, что параллелограмм, вписанный в окружность – прямоугольник.

А теперь поговорим о трапеции. Что будет, если трапецию вписать в окружность? А оказывается, будет равнобедренная трапеция. Почему?

Вписанная трапеция

Вот пусть трапеция   вписана в окружность. Тогда опять  , но из-за параллельности прямых   и   .

Значит, имеем:   →   → трапеция равнобокая.

Даже проще чем с прямоугольником, правда? Но запомнить нужно твёрдо – пригодиться: Трапеция, вписанная в окружность – равнобедренная.

Вписанная трапеция - равнобедренная

Давай ещё раз перечислим самые главные утверждения, касающиеся четырехугольника, вписанного в окружность:

  1. Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна  
  2. Параллелограмм, вписанный в окружность – непременно прямоугольник и центр окружности совпадает с точкой пересечения диагоналей
  3. Трапеция, вписанная в окружность – равнобокая.

Вписанный четырехугольник. Средний уровень

Известно, что для всякого треугольника существует описанная окружность (это мы доказывали в теме «Описанная окружность»). Что же можно сказать о четырёхугольнике? Вот, оказывается, что НЕ ВСЯКИЙ четырехугольник можно вписать в окружность, а есть такая теорема:

Четырёхугольник вписан в окружность тогда и только тогда, когда сумма его противоположных углов равна  .

Четырехугольник вписан в окружность

На нашем рисунке –  

Давай попробуем понять, почему так? Другими словами, мы сейчас докажем эту теорему. Но прежде чем доказывать, нужно понять, как устроено само утверждение. Ты заметил в утверждении слова «тогда и только тогда»? Такие слова означают, что вредные математики впихнули два утверждения в одно.

Расшифровываем:

  1. «Тогда» означает: Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна  .
  2. «Только тогда» означает: Если у четырёхугольника найдутся два противоположных угла, сумма которых равна  , то такой четырехугольник можно вписать в окружность.

Прямо как у Алисы: «думаю, что говорю» и «говорю, что думаю».

А теперь разбираемся, отчего же верно и 1, и 2?

Сначала 1.

Пусть четырехугольник   вписан в окружность. Отметим её центр   и проведём радиусы   и  . Что же получится? Помнишь ли ты, что вписанный угол вдвое меньше соответствующего центрального? Если помнишь – сейчас применим, а если не очень – загляни в тему «Окружность. Вписанный угол».

Четырехугольник вписан в окружность. Вписанный угол.

Итак,

  — вписанный  

  — вписанный  

Но посмотри:  .

Значит,

 .

Получаем, что если   – вписанный, то

 .

Ну, и ясно, что   и   тоже в сумме составляет  . (нужно так же рассмотреть   и  ).

Теперь и «наоборот», то есть 2.

Пусть оказалось так, что у четырехугольника   сумма каких – то двух противоположных углов равна  . Скажем, пусть

 .

Четырехугольник. Сумма противоположных углов - равна.

Мы пока не знаем, можем ли описать вокруг него окружность. Но мы точно знаем, что вокруг треугольника   мы гарантированно окружность описать можем. Так и сделаем это.

Если точка   не «села» на окружность, то она неминуемо оказалась или снаружи или внутри.

Рассмотрим оба случая.

Пусть сначала точка   – снаружи. Тогда отрезок   пересекает окружность в какой-то точке  . Соединим   и  . Получился вписанный (!) четырехугольник  .

Не вписанный четырехугольник

Про него уже знаем, что сумма его противоположных углов равна  , то есть  , а по условию у нас  .

Получается, что должно бы быть так, что  .

Но это никак не может быть поскольку   – внешний угол для   и значит,  .

А внутри? Проделаем похожие действия. Пусть точка   внутри.

Вписанный четырехугольник 2

Тогда продолжение отрезка   пересекает окружность в точке  . Снова   – вписанный четырехугольник  , а по условию  должно выполняться  , но   — внешний угол для   и значит,  , то есть опять никак не может быть так, что  .

Читайте также:  Какими свойствами обладают клетки мышечной ткани

То есть точка   не может оказаться ни снаружи, ни внутри окружности – значит, она на окружности!

Доказали всю-всю теорему!

Теперь посмотрим, какие же хорошие следствия даёт эта теорема.

Следствие 1

Параллелограмм, вписанный в окружность, может быть только прямоугольником.

Параллелограмм

Давай-ка поймём, почему так. Пусть параллелограмм   вписан в окружность. Тогда должно выполняться  .

Но из свойств параллелограмма мы знаем, что  .

То есть

И то же самое, естественно, касательно углов   и  .

Вот и получился прямоугольник – все углы по  .

Впсанный прямоугольник

Но, кроме того, есть ещё дополнительный приятный факт: центр окружности, описанной около прямоугольника, совпадает с точкой пересечения диагоналей.

Давай поймём почему. Надеюсь, ты отлично помнишь, что угол, опирающийся на диаметр – прямой.

Ну вот,

  — диаметр,

  — диаметр

а значит,   – центр. Вот и всё.

Следствие 2

Трапеция, вписанная в окружность – равнобедренная.

Докажем?

Вписанная трапеция

Пусть трапеция   вписана в окружность. Тогда  .

Но  

То есть

   . И так же  .

Вписанная равнобедренная трапеция

Всё ли мы обсудили? Не совсем. На самом деле есть ещё один, «секретный» способ, как узнавать вписанный четырехугольник. Мы этот способ сформулируем не очень строго (но понятно), а докажем только в последнем уровне теории.

Итак:

Если в четырёхугольнике можно наблюдать такую картинку, как здесь на рисунке (тут углы, «смотрящие» на сторону   из точек   и  , равны), то такой четырехугольник – вписанный.

Вписанный четырехугольник. Правило.

Это очень важный рисунок – в задачах часто бывает легче найти равные углы, чем сумму углов   и  .

Несмотря на совершенное отсутствие строгости в нашей формулировке, она верна, и более того, всегда принимается проверяющими ЕГЭ. Ты должен писать примерно так:

«  — вписанный» — и всё будет отлично!

Не забывай этот важный признак – запомни картинку, и, возможно, она тебе вовремя бросится в глаза при решении задачки.

Вписанный четырехугольник. Краткое описание и основные формулы

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна  

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна  , то такой четырехугольник вписанный.
Каким свойством обладает четырехугольник вписанный в окружность

Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна  .

 .

Параллелограмм, вписанный в окружность – непременно прямоугольник, и центр окружности совпадает с точкой пересечения диагоналей.

Каким свойством обладает четырехугольник вписанный в окружность

Трапеция, вписанная в окружность – равнобокая.

Каким свойством обладает четырехугольник вписанный в окружность

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц», 

А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

можно кликнув по этой ссылке.

Источник

Определение

Если все вершины четырехугольника принадлежат окружности, то он называется вписанным в эту окружность, а окружность — описанной около него.

Для начала найдем ГМТ, из которых данный отрезок виден под данным углом $alpha$, если $alpha$: 1) прямой; 2) острый; 3) тупой.

Утверждение 1

ГМТ, из которых данный отрезок $AB$ виден под прямым углом, является окружность, построенная на отрезке $AB$ как на диаметре, исключая точки $A$ и $B$. 

Построим окружность с диаметром $AB$. Пусть $C$ — произвольная точка окружности, отличная от $A$ и $B$. Тогда $angle ACB = 90^circ$, так как опирается на диаметр. Следовательно, точка $C$ удовлетворяет условию. Осталось доказать, что другие точки условию не удовлетворяют.

Пусть точка $C$ лежит вне окружности. Тогда отрезок $AC$ пересекает окружность. Обозначив точку пересечения через $K$, получим, что $angle AKB = 90^circ$. Используя теорему о внешнем угле для треугольника $BKC$, получим, что $angle ACB$ острый, то есть точка $C$ условию не удовлетворяет.

Каким свойством обладает четырехугольник вписанный в окружность

Пусть теперь точка $C$ лежит внутри окружности. Обозначив точку пересечения луча $AC$ и окружности через $K$ получим, что $angle AKB = 90^circ$. Используя теорему о внешнем угле для треугольника $BKC$, получим, что $angle ACB$ тупой, то есть точка $C$ условию не удовлетворяет. 

Утверждение 2

ГМТ, из которых данный отрезок $AB$ виден под данным углом $alpha$, является объединение двух симметричных дуг, стягиваемых хордой $AB$, за исключением точек $A$ и $B$.  

Каким свойством обладает четырехугольник вписанный в окружность

Пусть $alpha$ — острый. Построим окружность с хордой $AB$ и центром в точке $O$ так, чтобы $angle AOB = 2alpha$. Рассмотрим большую дугу данной окружности и дугу, ей симметричную относительно прямой $AB$. Пусть $C$ — произвольная точка такой дуги, отличная от $A$ и $B$. Тогда $angle ACB = 0{,}5angle AOB=alpha$ по теореме о вписанном угле. Следовательно, точки, принадлежащие объединению дуг, удовлетворяют условию.

Осталось доказать, что другие точки условию не удовлетворяют. Рассуждения аналогичны случаю прямого угла.

Пусть точка $C$ лежит вне данной фигуры. Тогда отрезок $AC$ пересекает окружность. Обозначив точку пересечения через $K$, получим, что $angle AKB=alpha$. Используя теорему  о внешнем угле для треугольника $BKC$, получим, что $angle ACB$ меньше $alpha$, то есть точка $C$ условию не удовлетворяет.

Пусть теперь точка $C$ лежит внутри данной фигуры. Обозначив точку пересечения луча $AC$ и окружности через $K$, получим, что $angle AKB=alpha$. Используя теорему о внешнем угле для треугольника $BKC$, получим, что $angle ACB$ больше $alpha$, то есть точка $C$ условию не удовлетворяет. 

Если $alpha$ тупой, то, построив аналогичную окружность так, чтобы $angle AOB = 360^circ-2alpha$ выберем меньшую дугу $AB$. Отразив ее симметрично относительно прямой $AB$, получим искомое ГМТ.

Теорема 1

Для того чтобы около четырехугольника можно было описать окружность, необходимо и достаточно, чтобы сумма его противоположных углов была равна $180^{circ}$.

Поскольку сумма углов выпуклого четырехугольника $ABCD$  равна $360^circ$, достаточно доказать, что $angle B + angle D = 180^circ$ тогда и только тогда, когда он вписанный (см. рисунок).

Каким свойством обладает четырехугольник вписанный в окружность

Если он вписанный, то $angle ABC$ и $angle ADC$ опираются на дуги, дополняющие друг друга до окружности. По следствию из теоремы о вписанном угле, их сумма равна $180^circ$, что и требовалось. 

Читайте также:  Какие свойства элементов электрической цепи характеризуют параметры r l c

Пусть теперь  $angle B + angle D = 180^circ$. Предположим противное, пусть четырехугольник не вписанный, то есть описанная окружность треугольника $ABC$ не проходит через точку $D$. Тогда точка $D$ лежит либо внутри, либо вне окружности. Используя ГМТ, из которых данный отрезок виден под данным углом (утверждение 2), получим, что $angle D$ меньше или, наоборот, больше, чем   $180^circ-angle B$. Противоречие, значит, точка $D$ лежит на окружности.

Теорема 2

Выпуклый четырёхугольник $ABCD$ является вписанным тогда и только тогда, когда $angle ABD=angle ACD$. 

Если он вписанный, то $angle ABD$ и $angle ACD$ опираются на одну дугу. По следствию из теоремы о вписанном угле, $angle ABD=angle ACD$, что и требовалось. 

Каким свойством обладает четырехугольник вписанный в окружность

Пусть в выпуклом четырехугольнике $angle ABD=angle ACD$. Заметим, что из точек $B$ и $C$ отрезок $AD$ виден под одним и тем же углом. Поскольку точки $B$ и $C$ лежат в одной полуплоскости относительно прямой $AD$, то они лежат на одной из дуг полученного в утверждении 2 ГМТ. Действительно, если описать окружность около треугольника $ABD$, то точка $C$ должна на ней лежать. Следовательно, $ABCD$ вписан в окружность, что и требовалось.

Итак, мы разобрались с условиями, при которых четырехугольник вписан в окружность. Поскольку центр окружности равноудален от его вершин, то справедливо следующее

Предложение

Серединные перпендикуляры к сторонам вписанного четырехугольника пересекаются в одной точке, которая и является центром описанной около него окружности.

Также можно сформулировать  следующее очевидное

Утверждение

Для того чтобы около четырехугольника можно было описать окружность, необходимо и достаточно, чтобы серединные перпендикуляры к трем его сторонам пересекались в одной точке.

Так как центр описанной около четырехугольника окружности равноудален от его вершин, то он принадлежит серединным перпендикулярaм к его сторонам.

Обратно, если серединные перпендикуляры к трем сторонам четырехугольника пересекаются в одной точке, то эта точка будет равноудалена от всех его вершин и поэтому будет центром описанной около него окружности.

Источник

      Определение 1. Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником.

Описанные четырехугольники свойства

Рис.1

      Замечание. В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

      Теорема 1. Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

      Доказательство. Рассмотрим четырёхугольник ABCD, описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

Описанные четырехугольники свойства

Рис.2

      В силу теоремы об отрезках касательных, проведённых к окружности из одной точки, справедливы равенства

AH = AE,       BF = BE,       CF = CG,       DH = DG,

      Складывая эти равенства, получим:

AH + BF + CF + DH =
= AE + BE + CG + DG,

      Поскольку

AH + BF + CF + DH =
= AD + BC,      
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

AD + BC = AB + CD,

что и требовалось доказать.

      Теорема 2 (обратная теорема к теореме 1). Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

      Доказательство. Рассмотрим четырёхугольник ABCD, длины сторон которого удовлетворяют равенству

AD +BC = AB + CD,

и проведём биссектрисы углов BAD и CDA. Обозначим точку пересечения этих биссектрис буквой O, и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

Описанные четырехугольники свойства

Рис.3

      Поскольку точка O лежит на биссектрисе угла BAD, то справедливо равенство

OH = OE,

      Поскольку точка O лежит на биссектрисе угла ADC, то справедливо равенство

OH = OG,

      Следовательно, справедливы равенства

OH = OE = OG,

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH, касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

  1. Окружность касается касается стороны BC (рис.4).

    Описанные четырехугольники свойства

    Рис.4

          В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

  2. Окружность не касается стороны BC.

    В этом случае касательная, проведенная к окружности из точки B, пересекает прямую DC в точке K, и возможны два случая:

    1. Точка K лежит между точками C и D (рис.5)
    2. Описанные четырехугольники свойства

      Рис.5

    3. Точка C лежит между точками K и D (рис.6)
    4. Описанные четырехугольники свойства

      Рис.6

      Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

      Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольниканеравенству треугольниканеравенству треугольника. Полученное противоречие доказывает, что случай 2а невозможен.

      Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

      Итак, возможен и реализуется лишь случай 1.

      Теорема доказана.

      Из доказательства теоремы 2 непосредственно вытекает

      Теорема 3. Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

      В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

      Примеры описанных четырёхугольников

      На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Читайте также:  Какие свойства внимания необходимы для избираемой вами профессии

Что такое описанный четырехугольник? Посмотри – сперва нарисуем:

описанный четырехугольник. определение

А теперь напишем:

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

А что, разве не всегда существует такая окружность? Ведь вон треугольник-то всегда является описанным – потому что во всякий треугольник можно вписать окружность. Чем же четырехугольник-то хуже? И вот оказывается, что чем-то, да хуже.

Представь себе, например длинный прямоугольник.

не описанный четырехугольник

Как вот в него, спрашивается, можно вписать окружность? Конечно, никак. И это лишь один из примеров четырехугольника, в которой НЕЛЬЗЯ вписать окружность.

А в какие же можно? Вот, оказывается есть такая теорема (утверждение то есть).

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

Вот как это записывается в буквах:

описанный четырехугольник 2 
или (то же самое)
 

Для лучшего понимания давай в буквальном смысле разберём на кусочки описанный четырехугольник. Смотри: пусть в четырехугольнике   «сидит» окружность.

Каким свойством обладает четырехугольник вписанный в окружность

Но тогда у нас есть огромное количество касательных! Ты ещё помнишь, что отрезки касательных, проведённых из одной точки, равны? Ну, вот, значит

  (обозначим  )

  (обозначим  )

  (обозначим  )

  (обозначим  )

А теперь получилось, что

и

То есть  ! Здорово, правда?

А теперь получим простое, но красивое следствие из этой теоремы.

Следствие. Если в параллелограмм можно вписать окружность, то это ромб.

Почему? Давай разберёмся. Пусть есть параллелограмм  .

описанный четырехугольник 3

Раз параллелограмм, то   (вспоминаем свойства параллелограмма). Обозначим   буквой  , а   буквой  .

А теперь применим теорему.   описанный  , то есть   – вот и получился ромб.

описанный четырехугольник 4Видишь, как сработала теорема?

Вот и ты, если видишь в задачке надпись «в четырёхугольник вписана окружность» или, конкретнее, скажем, «в трапецию вписана окружность», то сразу вспоминай, что   – и задача решится! … Ну… или не сразу решится, но этот факт непременно тебе поможет.

ОПИСАННЫЙ ЧЕТЫРЕХУГОЛЬНИК. СРЕДНИЙ УРОВЕНЬ

Каким свойством обладает четырехугольник вписанный в окружностьЧетырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

Давай прежде всего осознаем, что, в отличие от треугольника, далеко не во всякий четырехугольник можно поместить окружность так, чтобы она касалась всех его сторон.

Ну, вот пример:

Каким свойством обладает четырехугольник вписанный в окружность

А раз так, то математики, конечно же, не могли успокоиться, пока не придумали теорему, которая сообщит нам, что же такое нужно требовать от четырехугольника, чтобы в него можно было поместить окружность, касающуюся всех сторон.

И вот эта теорема:

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

Каким свойством обладает четырехугольник вписанный в окружностьВ буквах:
 
или (в других буквах)
 

Заметь, что (как всегда) слова «тогда и только тогда» означают сразу два утверждения: «туда» и «обратно». Итак, если подробнее, то теорема утверждает

a) Если в четырехугольник можно вписать окружность, то  

b) Если в четырехугольнике есть  , то в него можно вписать окружность.

(Вспоминаем Алису с безумным шляпником и их «ем то, что вижу» и «вижу то, что ем»)

А теперь – доказательство!

Пункт a) вообще ОЧЕНЬ лёгкий. Смотри:

Каким свойством обладает четырехугольник вписанный в окружностьПусть в   вписана окружность. Тогда получается из точек   и   проведено по две касательных, которые равны! (Вспоминаем о равенстве отрезков касательных проведённых из одной точки)

Итак, у нас

  (обозначим  )

  (обозначим  )

  (обозначим  )

  (обозначим  )

И теперь получается, что

и

Обе этих суммы состоят из одинаковых кусочков, просто взятых в разном порядке.

Готово: пункт a) доказали.

А теперь, наоборот, пункт б).

Пусть в   выполняется  

Чтобы что-то понять, впишем окружность сперва в такую «кастрюлю» —   без стороны  .

Каким свойством обладает четырехугольник вписанный в окружностьОбрати внимание, что это всегда можно сделать – центром   такой окружности будет пересечение биссектрис углов   и  .

Ну вот, в «кастрюле» сидит окружность. При этом сторона  , если она НЕ касается этой окружности, может либо пересекать её, либо вовсе не иметь с ней общих точек. Разберём эти случаи и убедимся, что оба они ведут к противоречию.

Каким свойством обладает четырехугольник вписанный в окружностьПусть   пересекает окружность. Давай тогда проведём  , которая будет касаться окружности.

По пункту а) для четырехугольника   должно быть

 ,

а по условию для четырехугольника   

 .

Значит (вычитаем нижнее равенство из верхнего)

То есть  

Но так СОВСЕМ не может быть – нарушается неравенство треугольника для  :

должно быть  , а у нас  .

Вот и противоречие. Поэтому точно выяснили, что   НЕ МОЖЕТ пересекать окружность.

Пусть теперь   «не дотягивается» до окружности.

Каким свойством обладает четырехугольник вписанный в окружностьСнова проведём  , которая этой окружности каснется. И опять   и  . Теперь вычитаем из нижнего верхнее.
 

То есть   – опять нарушаем неравенство треугольника для   — значит, опять имеем противоречие и заключаем, что   НЕ МОЖЕТ вовсе не иметь общих точек с окружностью.

И что же этой бедной   остаётся?

Только касаться окружности.

Вот и доказали пункт б), а с ним и всю теорему.

А теперь посмотрим, как работает эта теорема. Докажем такое следствие:

Следствие. Если в параллелограмм можно вписать окружность, то это – ромб.

Доказываем: пусть есть параллелограмм  .

Каким свойством обладает четырехугольник вписанный в окружностьПо свойству параллелограмма   (обозначим  ) и   (обозначим  ).

Раз в   можно вписать окружность, то  , то есть  ;  .

Каким свойством обладает четырехугольник вписанный в окружностьВот и получился ромб. Понравилось?

Вот и прими на вооружение: если в задаче сказано, что окружность вписана в какой-нибудь четырехугольник, то постарайся применить то, что тогда   или даже прямо структуру из кусочков касательных – обязательно поможет!

ОПИСАННЫЙ ЧЕТЫРЕХУГОЛЬНИК. КОРОТКО О ГЛАВНОМ

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

Каким свойством обладает четырехугольник вписанный в окружность
  • В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. В буквах:  
Каким свойством обладает четырехугольник вписанный в окружность
  • Если в параллелограмм можно вписать окружность, то это – ромб.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц», 

А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

можно кликнув по этой ссылке.

Источник