Каким свойством обладает четырехугольник описанный около окружности
Определение 1. Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником.
Рис.1
Замечание. В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.
Теорема 1. Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.
Доказательство. Рассмотрим четырёхугольник ABCD, описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).
Рис.2
В силу теоремы об отрезках касательных, проведённых к окружности из одной точки, справедливы равенства
AH = AE, BF = BE, CF = CG, DH = DG,
Складывая эти равенства, получим:
AH + BF + CF + DH =
= AE + BE + CG + DG,
Поскольку
AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,
то справедливо равенство
AD + BC = AB + CD,
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1). Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.
Доказательство. Рассмотрим четырёхугольник ABCD, длины сторон которого удовлетворяют равенству
AD +BC = AB + CD,
и проведём биссектрисы углов BAD и CDA. Обозначим точку пересечения этих биссектрис буквой O, и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).
Рис.3
Поскольку точка O лежит на биссектрисе угла BAD, то справедливо равенство
OH = OE,
Поскольку точка O лежит на биссектрисе угла ADC, то справедливо равенство
OH = OG,
Следовательно, справедливы равенства
OH = OE = OG,
из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH, касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:
Окружность касается касается стороны BC (рис.4).
Рис.4
В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.
Окружность не касается стороны BC.
В этом случае касательная, проведенная к окружности из точки B, пересекает прямую DC в точке K, и возможны два случая:
- Точка K лежит между точками C и D (рис.5)
- Точка C лежит между точками K и D (рис.6)
Рис.5
Рис.6
Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:
Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольниканеравенству треугольниканеравенству треугольника. Полученное противоречие доказывает, что случай 2а невозможен.
Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.
Итак, возможен и реализуется лишь случай 1.
Теорема доказана.
Из доказательства теоремы 2 непосредственно вытекает
Теорема 3. Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.
В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.
Примеры описанных четырёхугольников
На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.
Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
Что такое описанный четырехугольник? Посмотри – сперва нарисуем:
А теперь напишем:
Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.
А что, разве не всегда существует такая окружность? Ведь вон треугольник-то всегда является описанным – потому что во всякий треугольник можно вписать окружность. Чем же четырехугольник-то хуже? И вот оказывается, что чем-то, да хуже.
Представь себе, например длинный прямоугольник.
Как вот в него, спрашивается, можно вписать окружность? Конечно, никак. И это лишь один из примеров четырехугольника, в которой НЕЛЬЗЯ вписать окружность.
А в какие же можно? Вот, оказывается есть такая теорема (утверждение то есть).
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.
Вот как это записывается в буквах:
или (то же самое) |
Для лучшего понимания давай в буквальном смысле разберём на кусочки описанный четырехугольник. Смотри: пусть в четырехугольнике «сидит» окружность.
Но тогда у нас есть огромное количество касательных! Ты ещё помнишь, что отрезки касательных, проведённых из одной точки, равны? Ну, вот, значит
(обозначим )
(обозначим )
(обозначим )
(обозначим )
А теперь получилось, что
и
То есть ! Здорово, правда?
А теперь получим простое, но красивое следствие из этой теоремы.
Следствие. Если в параллелограмм можно вписать окружность, то это ромб.
Почему? Давай разберёмся. Пусть есть параллелограмм .
Раз параллелограмм, то (вспоминаем свойства параллелограмма). Обозначим буквой , а буквой .
А теперь применим теорему. описанный , то есть – вот и получился ромб.
Видишь, как сработала теорема? |
Вот и ты, если видишь в задачке надпись «в четырёхугольник вписана окружность» или, конкретнее, скажем, «в трапецию вписана окружность», то сразу вспоминай, что – и задача решится! … Ну… или не сразу решится, но этот факт непременно тебе поможет.
ОПИСАННЫЙ ЧЕТЫРЕХУГОЛЬНИК. СРЕДНИЙ УРОВЕНЬ
Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон. |
Давай прежде всего осознаем, что, в отличие от треугольника, далеко не во всякий четырехугольник можно поместить окружность так, чтобы она касалась всех его сторон.
Ну, вот пример:
А раз так, то математики, конечно же, не могли успокоиться, пока не придумали теорему, которая сообщит нам, что же такое нужно требовать от четырехугольника, чтобы в него можно было поместить окружность, касающуюся всех сторон.
И вот эта теорема:
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.
В буквах: или (в других буквах) |
Заметь, что (как всегда) слова «тогда и только тогда» означают сразу два утверждения: «туда» и «обратно». Итак, если подробнее, то теорема утверждает
a) Если в четырехугольник можно вписать окружность, то
b) Если в четырехугольнике есть , то в него можно вписать окружность.
(Вспоминаем Алису с безумным шляпником и их «ем то, что вижу» и «вижу то, что ем»)
А теперь – доказательство!
Пункт a) вообще ОЧЕНЬ лёгкий. Смотри:
Пусть в вписана окружность. Тогда получается из точек и проведено по две касательных, которые равны! (Вспоминаем о равенстве отрезков касательных проведённых из одной точки) |
Итак, у нас
(обозначим )
(обозначим )
(обозначим )
(обозначим )
И теперь получается, что
и
Обе этих суммы состоят из одинаковых кусочков, просто взятых в разном порядке.
Готово: пункт a) доказали.
А теперь, наоборот, пункт б).
Пусть в выполняется
Чтобы что-то понять, впишем окружность сперва в такую «кастрюлю» — без стороны .
Обрати внимание, что это всегда можно сделать – центром такой окружности будет пересечение биссектрис углов и . |
Ну вот, в «кастрюле» сидит окружность. При этом сторона , если она НЕ касается этой окружности, может либо пересекать её, либо вовсе не иметь с ней общих точек. Разберём эти случаи и убедимся, что оба они ведут к противоречию.
Пусть пересекает окружность. Давай тогда проведём , которая будет касаться окружности. |
По пункту а) для четырехугольника должно быть
,
а по условию для четырехугольника
.
Значит (вычитаем нижнее равенство из верхнего)
То есть
Но так СОВСЕМ не может быть – нарушается неравенство треугольника для :
должно быть , а у нас .
Вот и противоречие. Поэтому точно выяснили, что НЕ МОЖЕТ пересекать окружность.
Пусть теперь «не дотягивается» до окружности.
Снова проведём , которая этой окружности каснется. И опять и . Теперь вычитаем из нижнего верхнее. |
То есть – опять нарушаем неравенство треугольника для — значит, опять имеем противоречие и заключаем, что НЕ МОЖЕТ вовсе не иметь общих точек с окружностью.
И что же этой бедной остаётся?
Только касаться окружности.
Вот и доказали пункт б), а с ним и всю теорему.
А теперь посмотрим, как работает эта теорема. Докажем такое следствие:
Следствие. Если в параллелограмм можно вписать окружность, то это – ромб.
Доказываем: пусть есть параллелограмм .
По свойству параллелограмма (обозначим ) и (обозначим ). |
Раз в можно вписать окружность, то , то есть ; .
Вот и получился ромб. Понравилось? |
Вот и прими на вооружение: если в задаче сказано, что окружность вписана в какой-нибудь четырехугольник, то постарайся применить то, что тогда или даже прямо структуру из кусочков касательных – обязательно поможет!
ОПИСАННЫЙ ЧЕТЫРЕХУГОЛЬНИК. КОРОТКО О ГЛАВНОМ
Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.
|
|
ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!
Стать учеником YouClever,
Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц»,
А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.
можно кликнув по этой ссылке.
Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
«Описанная окружность» мы видели, что вокруг всякого треугольника можно описать окружность. То есть, для всякого треугольника найдётся такая окружность, что все три вершины треугольника «сидят» на ней. Вот так:
Вопрос: а можно ли то же самое сказать о четырехугольнике? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?
Вот оказывается, что это НЕПРАВДА! НЕ ВСЕГДА четырехугольник можно вписать в окружность. Есть очень важное условие:
Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма двух его противоположных углов равна . |
На нашем рисунке:
Посмотри, углы и лежат друг напротив друга, значит, они противоположные. А что же тогда с углами и ? Они вроде бы тоже противоположные? Можно ли вместо углов и взять углы и ?
Конечно, можно! Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет . Оставшиеся два угла тогда сами собой тоже дадут в сумме . Не веришь? Давай убедимся. Смотри:
Пусть . Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, . То есть — всегда! . Но , → .
Волшебство прямо!
Так что запомни крепко-накрепко:
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна
и наоборот:
Если у четырехугольника есть два противоположных угла, сумма которых равна , то такой четырехугольник вписанный.
Доказывать всё это мы здесь не будем (если интересно, заглядывай в следующие уровни теории). Но давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна .
Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма? Попробуем сперва «методом тыка».
Вот как-то не получается.
Теперь применим знание:
предположим, что нам как-то удалось посадить на параллелограмм окружность. Тогда непременно должно быть: , то есть .
А теперь вспомним о свойствах параллелограмма:
у всякого параллелограмма противоположные углы равны.
То есть .
У нас получилось, что
→
А что же углы и ? Ну, то же самое конечно.
– вписанный → →
— параллелограмм→ →
Потрясающе, правда?
Получилось, что если параллелограмм вписан в окружность, то все его углы равны , то есть это прямоугольник!
И ещё при этом – центр окружности совпадает с точкой пересечения диагоналей этого прямоугольника. Это, так сказать, в качестве бонуса прилагается.
Ну, вот значит, выяснили, что параллелограмм, вписанный в окружность – прямоугольник.
А теперь поговорим о трапеции. Что будет, если трапецию вписать в окружность? А оказывается, будет равнобедренная трапеция. Почему?
Вот пусть трапеция вписана в окружность. Тогда опять , но из-за параллельности прямых и .
Значит, имеем: → → трапеция равнобокая.
Даже проще чем с прямоугольником, правда? Но запомнить нужно твёрдо – пригодиться: Трапеция, вписанная в окружность – равнобедренная.
Давай ещё раз перечислим самые главные утверждения, касающиеся четырехугольника, вписанного в окружность:
- Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна
- Параллелограмм, вписанный в окружность – непременно прямоугольник и центр окружности совпадает с точкой пересечения диагоналей
- Трапеция, вписанная в окружность – равнобокая.
Вписанный четырехугольник. Средний уровень
Известно, что для всякого треугольника существует описанная окружность (это мы доказывали в теме «Описанная окружность»). Что же можно сказать о четырёхугольнике? Вот, оказывается, что НЕ ВСЯКИЙ четырехугольник можно вписать в окружность, а есть такая теорема:
Четырёхугольник вписан в окружность тогда и только тогда, когда сумма его противоположных углов равна .
На нашем рисунке –
Давай попробуем понять, почему так? Другими словами, мы сейчас докажем эту теорему. Но прежде чем доказывать, нужно понять, как устроено само утверждение. Ты заметил в утверждении слова «тогда и только тогда»? Такие слова означают, что вредные математики впихнули два утверждения в одно.
Расшифровываем:
- «Тогда» означает: Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна .
- «Только тогда» означает: Если у четырёхугольника найдутся два противоположных угла, сумма которых равна , то такой четырехугольник можно вписать в окружность.
Прямо как у Алисы: «думаю, что говорю» и «говорю, что думаю».
А теперь разбираемся, отчего же верно и 1, и 2?
Сначала 1.
Пусть четырехугольник вписан в окружность. Отметим её центр и проведём радиусы и . Что же получится? Помнишь ли ты, что вписанный угол вдвое меньше соответствующего центрального? Если помнишь – сейчас применим, а если не очень – загляни в тему «Окружность. Вписанный угол».
Итак,
— вписанный
— вписанный
Но посмотри: .
Значит,
.
Получаем, что если – вписанный, то
.
Ну, и ясно, что и тоже в сумме составляет . (нужно так же рассмотреть и ).
Теперь и «наоборот», то есть 2.
Пусть оказалось так, что у четырехугольника сумма каких – то двух противоположных углов равна . Скажем, пусть
.
Мы пока не знаем, можем ли описать вокруг него окружность. Но мы точно знаем, что вокруг треугольника мы гарантированно окружность описать можем. Так и сделаем это.
Если точка не «села» на окружность, то она неминуемо оказалась или снаружи или внутри.
Рассмотрим оба случая.
Пусть сначала точка – снаружи. Тогда отрезок пересекает окружность в какой-то точке . Соединим и . Получился вписанный (!) четырехугольник .
Про него уже знаем, что сумма его противоположных углов равна , то есть , а по условию у нас .
Получается, что должно бы быть так, что .
Но это никак не может быть поскольку – внешний угол для и значит, .
А внутри? Проделаем похожие действия. Пусть точка внутри.
Тогда продолжение отрезка пересекает окружность в точке . Снова – вписанный четырехугольник , а по условию должно выполняться , но — внешний угол для и значит, , то есть опять никак не может быть так, что .
То есть точка не может оказаться ни снаружи, ни внутри окружности – значит, она на окружности!
Доказали всю-всю теорему!
Теперь посмотрим, какие же хорошие следствия даёт эта теорема.
Следствие 1
Параллелограмм, вписанный в окружность, может быть только прямоугольником.
Давай-ка поймём, почему так. Пусть параллелограмм вписан в окружность. Тогда должно выполняться .
Но из свойств параллелограмма мы знаем, что .
То есть
И то же самое, естественно, касательно углов и .
Вот и получился прямоугольник – все углы по .
Но, кроме того, есть ещё дополнительный приятный факт: центр окружности, описанной около прямоугольника, совпадает с точкой пересечения диагоналей.
Давай поймём почему. Надеюсь, ты отлично помнишь, что угол, опирающийся на диаметр – прямой.
Ну вот,
— диаметр,
— диаметр
а значит, – центр. Вот и всё.
Следствие 2
Трапеция, вписанная в окружность – равнобедренная.
Докажем?
Пусть трапеция вписана в окружность. Тогда .
Но
То есть
. И так же .
Всё ли мы обсудили? Не совсем. На самом деле есть ещё один, «секретный» способ, как узнавать вписанный четырехугольник. Мы этот способ сформулируем не очень строго (но понятно), а докажем только в последнем уровне теории.
Итак:
Если в четырёхугольнике можно наблюдать такую картинку, как здесь на рисунке (тут углы, «смотрящие» на сторону из точек и , равны), то такой четырехугольник – вписанный.
Это очень важный рисунок – в задачах часто бывает легче найти равные углы, чем сумму углов и .
Несмотря на совершенное отсутствие строгости в нашей формулировке, она верна, и более того, всегда принимается проверяющими ЕГЭ. Ты должен писать примерно так:
« — вписанный» — и всё будет отлично!
Не забывай этот важный признак – запомни картинку, и, возможно, она тебе вовремя бросится в глаза при решении задачки.
Вписанный четырехугольник. Краткое описание и основные формулы
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна
и наоборот:
Если у четырехугольника есть два противоположных угла, сумма которых равна , то такой четырехугольник вписанный.
Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна .
.
Параллелограмм, вписанный в окружность – непременно прямоугольник, и центр окружности совпадает с точкой пересечения диагоналей.
Трапеция, вписанная в окружность – равнобокая.
ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!
Стать учеником YouClever,
Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц»,
А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.