Каким свойством должен обладать металл из которого
Металлические изделия и детали используются в разных сферах промышленности. Существует множество видов металлов и каждый из них обладает сильными и слабыми сторонами. При изготовлении деталей для машин, самолётов или промышленного оборудования мастера обращают внимание на характеристики материала. Поэтому требуется знать свойства металлов и сплавов.
Свойства металлов и сплавов
Содержание
Признаки металлов
У металлов есть признаки, которые их характеризуют:
- Высокие показатели теплопроводности. Металлические материалы хорошо проводят электричество.
- Блеск на изломе.
- Ковкость.
- Кристаллическая структура.
Не все материалы прочные и обладают высокими показателя износоустойчивости. Это же касается плавления при высоких температурах.
Классификация металлов
Металлы разделяются на две большие группы — черные и цветные. Представители обоих видов различаются не только характеристиками, но и внешним видом.
Черные
Представители этой группы считаются самыми распространёнными и недорогими. В большинстве своем имеют серый или тёмный цвет. Плавятся при высокой температуре, обладают высокой твердостью и большой плотностью. Главный представитель этой группы — железо. Эта группа разделяется на подгруппы:
- Железные — к представителям этой подгруппы относится железо, никель и кобальт.
- Тугоплавкие — сюда входят металлы температура плавления которых начинается с 1600 градусов. Их применяют при создании основ для сплавов.
- Редкоземельные — к ним относятся церий, празеодим и неодим. Обладают низкой прочностью.
Существуют урановые и щелочноземельные металлы, однако они менее популярны.
Цветные
Представители этой группы отличаются яркой окраской, меньшей прочностью, твердостью и температурой плавления (не для всех). Разделяется эта группа на следующие подгруппы:
- Лёгкие — подгруппа, включающая в себя металлы с плотностью до 5000 кг/м3. Это такие материалы, как литий, натрий, калий, магний и другие.
- Тяжёлые — сюда относится серебро, медь, свинец и другие. Плотность превышает 5000 кг/м3.
- Благородные — представили этой подгруппы имеют высокую стоимость и устойчивость к коррозийным процессам. К ним относятся золото, палладий, иридий, платина, серебро и другие.
Выделяются тугоплавкие и легкоплавкие металлы. К тугоплавким относится вольфрам, молибден и ниобий, а к легкоплавким все остальные.
Основные виды сплавов
Человечество знакомо с различными металлическими сплавами. Самыми многочисленными из них являются соединения на основе железа. К ним относятся ферриты, стали и чугун. Ферриты имеют магнитные свойства, в чугуне содержится более 2,4% углерода, а сталь — это материал с высокой прочность и твердостью.
Отдельное внимания требуют металлические сплавы из цветных металлов.
Производство стали
Цинковые сплавы
Соединения металлов, которые плавятся при низких температурах. Смеси на основе цинка устойчивы к воздействию коррозийных процессов. Легко обрабатываются.
Алюминиевые сплавы
Популярность алюминий и сплавы на его основе получили во второй половине 20 века. Этот материал обладает такими преимуществами:
- Устойчивость к низким температурам.
- Электропроводность.
- Малый вес заготовок в сравнении с другими металлами.
- Износоустойчивость.
Однако нельзя забывать про то, что алюминий плавится при низких температурах. При температуре около 200 градусов характеристики ухудшаются.
Алюминий применяется при изготовлении комплектующих к машинам, производстве деталей для самолётов, составляющих промышленного оборудования, посуды, инструментов. Не многие знают, что алюминий популярен в сфере производства оружия. Связано это с тем, что детали из алюминия не искрят при сильном трении.
Чтобы увеличить прочность детали, алюминий смешивают с медью. Чтобы заготовка выдерживала давление — с марганцем. Кремний добавляют, чтобы получить обычную отливку.
Медные сплавы
Сплавы на основе меди — марки латуни. Из этого материала изготавливаются детали высокой точности, так как латунь легко обрабатывать. В составе сплава может содержаться до 45% цинка.
Свойства сплавов
Чтобы изготавливать детали и конструкции, нужно знать основные свойства металлов и сплавов. При неправильной обработке готовая деталь может быстро выйти из строя и разрушить оборудование.
Двигатель внутреннего сгорания
Физические свойства
Сюда относятся визуальные параметры и характеристики материала, изменяющиеся при обработке:
- Теплопроводность. От этого зависит насколько поверхность будет передавать тепло при нагревании.
- Плотность. По этому параметру определяется количество материла, которое содержится в единице объёма.
- Электропроводность. Возможность металла проводить электрический ток. Этот параметр называется электрическое сопротивление.
- Цвет. Этот визуальный показатель меняется под воздействием температур.
- Прочность. Возможность материала сохранять структуру при обработке. Сюда же относится твердость. Эти показатели относятся и к механическим свойствам.
- Восприимчивость к действию магнитов. Это возможность материала проводить через себя магнитные лучи.
Физические основы позволяют определить в какой сфере будет использоваться материал.
Химические свойства
Сюда относятся возможности материала противостоять воздействию химических веществ:
- Устойчивость к коррозийным процессам. Этот показатель определяет на сколько материал защищён от воздействия воды.
- Растворимость. Устойчивость металла к воздействию растворителей — кислотам или щелочным составам.
- Окисляемость. Параметр указывает на выделение оксидов металлом при его взаимодействии с кислородом.
Обуславливаются эти характеристики химическим составом материала.
Механические свойства
Механические свойства металлов и сплавов отвечают за целостность структуры материала:
- прочность;
- твердость;
- пластичность;
- вязкость;
- хрупкость;
- устойчивость к механическим нагрузкам.
Технологические свойства
Технологические свойства определяют способность металла или сплава изменяться при обработке:
- Ковкость. Обработка заготовки давлением. Материал не разрушается. Структура изменяется.
- Свариваемость. Восприимчивость детали к работе сварочным оборудованием.
- Усадка. Происходит этот процесс при охлаждении заготовки после её разогрева.
- Обработка режущим инструментом.
- Ликвация (затвердевание жидкого металла при понижении температуры).
Основной способ обработки металлических деталей — нагревание.
Свойства металлов и сплавов отвечают за то, как себя будет вести готовое изделие при эксплуатации. При обработке материалов также важно знать его характеристики.
Пожалуйста поддержите канал: ставьте лайки, делайте репосты, а мы будем размещать для Вас полезную информацию о металлах!
Так же Вы можете посетить наш информационный сайт всё о металлах и обработке.
Физика
8 класс
Основная часть современной лампы накаливания — спираль из тонкой вольфрамовой проволоки. Вольфрам — тугоплавкий металл, его температура плавления 3387 °С. В лампе накаливания вольфрамовая спираль нагревается до 3000 °С, при такой температуре она достигает белого каления и светится ярким светом. Спираль помещают в стеклянную колбу, из которой выкачивают насосом воздух, чтобы спираль не перегорала.
Но в вакууме вольфрам быстро испаряется, спираль становится тоньше и тоже сравнительно быстро перегорает. Чтобы предотвратить быстрое испарение вольфрама, лампы наполняют азотом, иногда инертными газами — криптоном или аргоном. Молекулы газа препятствуют выходу частиц вольфрама из нити, т. е. препятствуют разрушению накалённой нити.
Лодыгин Александр Николаевич (1847-1923)
Русский электротехник, изобретатель лампы накаливания.
Эдисон Томас (1847—1931)
Американский изобретатель, основатель крупных электротехнических компаний. Усовершенствовал телеграф, телефон, лампу накаливания для промышленного производства.
Газонаполненная лампа накаливания изображена на рисунке 87. Выдающимся изобретением в области освещения было создание русским инженером Александром Николаевичем Лодыгиным электрической лампы накаливания. Лампу, удобную для промышленного изготовления, с угольной нитью создал американский изобретатель Томас Эдисон.
Рис. 87. Лампа накаливания:
1 — спираль; 2 — стеклянный баллон; 3 — цоколь; 4 — изолированное основание цоколя; 5 — пружинящий контакт патрона
Промышленность выпускает лампы накаливания на напряжение 220 В (для осветительной сети), 50 В (для железнодорожных вагонов), 12 В (для автомобилей), 3,5 и 2,5 В (для карманных фонарей).
Сегодня лампы накаливания, имеющие малый срок службы, а также низкую световую отдачу, вытесняются люминесцентными и светодиодными лампами.
Энергосберегающие лампочки (люминесцентные) более экономичны и служат гораздо дольше (рис. 88). В них 70% энергии преобразуется в свет, а в лампочке накаливания только 5%, остальная часть энергии (90—95%) переводится в тепло.
Рис. 88. Энергосберегающая лампа:
1 — электронный блок; 2 — стеклянная колба, покрытая люминофором; 3 — цоколь
Энергосберегающая лампочка состоит из колбы, наполненной парами ртути и аргона, и пускорегулирующего устройства. На внутреннюю поверхность колбы нанесено специальное вещество — люминофор, которое при воздействии ультрафиолетового излучения испускает видимый свет.
В светодиодных лампах электрический ток пропускают не по нити накала, а через миниатюрное электронное устройство (ЧИП — от англ. chip — миниатюрный), нанесённое на полупроводниковый кристалл. При прохождении электрического тока светодиод испускает свет.
Соотношение мощностей ламп
В последние годы светодиодные лампы находят применение при освещении помещений, их устанавливают в светофорах, фарах автомобилей. Светодиоды используют как индикаторы включения на панелях приборов, цифровых и буквенных табло, подсветке мобильных телефонов, мониторов и др.
Тепловое действие тока используют в различных электронагревательных приборах и установках. В домашних условиях широко применяют электрические плиты, утюги, чайники, кипятильники. В промышленности тепловое действие тока используют для выплавки специальных сортов стали и многих других металлов, для электросварки. В сельском хозяйстве с помощью электрического тока обогревают теплицы, кормозапарники, инкубаторы, сушат зерно, приготовляют силос.
Основная часть всякого нагревательного электрического прибора — нагревательный элемент. Нагревательный элемент представляет собой проводник с большим удельным сопротивлением, способный, кроме того, выдерживать, не разрушаясь, нагревание до высокой температуры (1000—1200 °С). Чаще всего для изготовления нагревательного элемента применяют сплав никеля, железа, хрома и марганца, известный под названием «нихром». Удельное сопротивление нихрома
что примерно в 70 раз больше удельного сопротивления меди. Большое удельное сопротивление нихрома даёт возможность изготовлять из него весьма удобные — малые по размерам — нагревательные элементы.
Электронагревательные приборы
В нагревательном элементе проводник в виде проволоки или ленты наматывается на пластинку из жароустойчивого материала: слюды, керамики. Так, например, нагревательным элементом в электрическом утюге служит ни-хромовая лента, от которой нагревается нижняя часть утюга.
Вопросы
- Пользуясь рисунком 87, расскажите, как устроена современная лампа накаливания.
- Зачем баллоны современных ламп накаливания наполняют инертным газом?
- Приведите примеры использования тепловых действий тока.
- Какими свойствами должен обладать металл, из которого изготовляют спирали или ленты нагревательного элемента?
Задание
Подготовьте доклад на одну из тем (по выбору).
- История развития электрического освещения.
- Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.
изучение нового материала
Урок физики в 8-м классе «Лампа накаливания. Короткое замыкание.»
Цель урока: познакомить учащихся с использованием теплового действия тока на практике.
Демонстрации:
- Устройство лампы накаливания.
- Нагревание проводников из разных веществ электрическим током.
- Устройство и принцип действия электронагревательных приборов .
Ход урока
1. Организационный момент:
- организация класса (проверка отсутствующих, проверка готовности учащихся к началу работы).
2. Проверка домашнего задания.
При изучении темы «Электрические явления» учащиеся изготавливают карточки с обозначениями изученных физических величин, которые используются при проверке домашнего задания
Надпись | Ответ учащегося | |
Формула | Определение | |
I | Сила тока – это заряд, проходящий через поперечное сечение проводника за единицу времени. | |
U | Напряжение – это величина, показывающая, какую работу совершает электрическое поле при перемещении единичного положительного заряда. | |
R | Электрическое сопротивление – это способность проводника препятствовать прохождению тока. | |
A | Работа электрического тока – это величина, равная произведению силы тока на напряжение на концах этого участка и на время прохождения тока. | |
P | Мощность электрического тока – это величина, равная произведению силы тока на напряжение. | |
Закон Джоуля-Ленца | Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока на сопротивление проводника и на время прохождения тока. |
Учащиеся отвечают на вопросы и решают задачи:
l Какой вклад внес в физику Ленц Эмилий Христианович?
l По какой формуле можно расчитать работу тока?
l Как формулируется закон Какой вклад в физику внес Джоуль Джеймс Прескотт?
l Джоуля – Ленца?
l Как можно объяснить нагревание проводника электрическим током?
l 1. какое количество теплоты выделится за 30 мин. Проволочной спиралью сопротивлением 10 Ом при силе тока 2 А?
l 2.В цепь источника тока включены последовательно три проволоки одинакового сечения и длины: медная, стальная и никелевая. Какая из них больше нагреется?
3. Изучение нового материала
Учитель. Любой проводник, по которому идёт электрический ток, нагревается. К этому выводу впервые пришли независимо друг от друга Джеймс Джоуль и Эмилий Христианович Ленц. Этот опытный факт нашёл своё отражение в законе Джоуля-Ленца, который мы изучали на прошлом уроке. Сегодня нам предстоит ознакомиться с использованием теплового действия тока на практике. Мы с вами должны выявить общую закономерность всех нагревательных приборов и изучить устройство лампы накаливания. Но для начала нам нужно опытным путём выяснить, какой из проводников, имеющихся у вас на столах, при прохождении по нему тока нагревается сильней? Что для этого нужно сделать? Выслушав предложения, учитель подводит учащихся к демонстрации опыта, показывающего тепловое действие тока в цепи, состоящей из трёх последовательно соединённых проводников, обладающих разным удельным сопротивлением: медного, стального и никелинового. Ток во всех последовательно соединённых проводниках одинаков. Количество теплоты в проводниках разное. С помощью вольтметра учащиеся измеряют напряжение на концах каждого проводника и, используя закон Ома для участка цепи, рассчитывают сопротивление проводников. Из опыта делается вывод: нагревание проводников зависит от их сопротивления. Чем больше сопротивление проводника, тем больше он нагревается.
Учитель обращает внимание учащихся на тот факт, что длины и площади поперечного сечения проводников одинаковые. Значит, единственное отличие этих проводников – разные удельные сопротивления. Учащиеся делают вывод: чтобы проводник нагрелся сильней, он должен обладать большим удельным сопротивлением.
Используя данные таблицы 8 учебника, учащиеся предлагают вещество, подходящее для изготовления нагревательного элемента.
Постановка проблемных вопросов:
1.Удельное сопротивление вольфрама в два раза меньше, чем железа. Почему же именно вольфрам используется в качестве нити накала в электрических лампочках? именно поэтому предпочтение отдают именно ему.) Внимание учащихся заостряется на практическом применении материалов, обладающих большим удельным сопротивлением.
2. Почему нагревательные элементы не изготавливают из фарфора, у которого удельное сопротивление в миллиарды раз больше всех веществ, приведённых в таблице?
Учащиеся обобщают полученную информацию и отвечают на вопрос: «Какими свойствами должно обладать вещество, используемое для изготовления нагревательных элементов?»
Вывод: нагревательный элемент представляет собой проводник, обладающий большим удельным сопротивлением и высокой температурой плавления.
Учащимся предлагается на некоторое время стать изобретателями и предложить свой способ изготовления небольшого нагревательного элемента.
1. Рассмотрите электрическую лампу накаливания (рисунок).
Прочитав текст, пользуясь материалом §54 и рисунком 83 учебника, выделите основные элементы лампы накаливания.
Ответы учащихся:
а) Основными элементами электрической лампочки являются: стеклянная колба, нить накала (спираль), два проводка, цоколь с винтовой нарезкой.
б)
- Стеклянная колба.
- Спираль из вольфрама.
- Молибденовые держатели.
- Стеклянный или металлический штенгель.
- Вводы.
- Стеклянная лопатка.
- Цоколь.
- Носик.
Один из вариантов устройства лампочки:
Чтобы лампочку создать,
Нужно колбочку вам взять,
Выкачать оттуда воздух,
Поместить туда спираль.
Пользуясь материалом §54 и рисунками 84 и 85 учебника, ответьте на вопросы:
- Каково на ваш взгляд назначение каждой составляющей нагревательного элемента, обозначенной цифрами 1 – 3 на карточке для вашей группы?
- Какова роль элемента, обозначенного цифрой 4?
- Почему нагревательный элемент имеет такое сложное строение?
(Прямого ответа на этот вопрос в учебнике нет. Рассматривается случай, когда проводник в виде проволоки или ленты наматывается на пластинку из жароустойчивого материала (слюды, керамики). Учащимся предлагается более «усовершенствованный» нагревательный элемент, который большинство учащихся никогда не видели «изнутри» (рисунок)).
:
Нагревательный элемент электрического чайника состоит из трёх частей: внутреннего проводника 1, играющего роль нагревателя, слоя изолятора 2 и внешнего металлического корпуса 3. Цифрой 4 обозначен проводник для подвода электроэнергии.
Комментарий учителя:
Любой электронагреватель состоит из пары проводников с низким сопротивлением (для подвода энергии), соединенных проводником с высоким сопротивлением (собственно нагревателем), а в остальных местах разделенных изолятором. (Учащиеся записывают в тетрадь, схему зарисовывают.) При этом вся конструкция (по крайней мере в зоне нагрева) должна выдерживать рабочую температуру нагревателя. Такое сложное строение нагревательного элемента объясняется соблюдением безопасности использования электрических нагревательных приборов. Совсем недавно использовались электрические плитки с открытой спиралью. В случае выгибания спирали могло произойти соприкосновение спирали, например, с кастрюлей. В результате чего под напряжение мог попасть человек, дотронувшийся до такой кастрюли.
Учащимся предлагается рассмотреть рисунок и ответить на вопрос: почему утюг «чернеет» всегда в одном и том же месте?
Учащиеся могут предположить, что утюг «чернеет» в местах, где нагревательный элемент расположен наиболее близко.
Им предлагается обнаружить этот нагревательный элемент. Оказывается, в большинстве случаев это сделать не так-то просто. Убрав верхнюю часть утюга, учащиеся приходят к выводу, что он почти пустой. А нагревательный элемент скрыт в нижней части утюга (подошве) и имеет такую же особенность, как и нагревательный элемент электрического чайника – состоит из трёх слоёв (рисунок).
Короткое замыкание
4. Закрепление и обобщение изученного материала.
Учитель предлагает учащимся сформулировать основные выводы урока отмечает тот факт, что наука постоянно развивается, появляются новые материалы с совершенно уникальными, как нам кажется сегодня, свойствами. Работа с учебником §55.
5. Контроль знаний
Приведите примеры использования теплового действия тока на практике.
- Что представляет собой нагревательный элемент электронагревательного прибора?
- Какими свойствами должен обладать металл, из которого изготовляют спирали и ленты нагревательного элемента?
- Какие известные вам материалы обладают необходимыми для нагревательного элемента свойствами?
- Расскажите, как устроена современная лампа накаливания.
- Зачем баллоны современных ламп накаливания наполняют инертным газом?
- Вопросы к §55.
6. Запись домашнего задания. §54, §55, задание 8
7. Подведение итогов урока