Каким общим свойством обладают органические

Каким общим свойством обладают органические thumbnail

Метан, CH4; одно из простейших органических веществ

Органи́ческие соединения, органические вещества́ — вещества, относящиеся к углеводородам или их производным, то есть это класс химических соединений, объединяющий почти все химические соединения, в состав которых входит углерод[1] (за исключением карбидов, угольной кислоты, карбонатов, некоторых оксидов углерода, роданидов, цианидов).

Органические соединения редки в земной коре, но обладают большой важностью, потому что все известные формы жизни основаны на органических соединениях. Такие вещества часто включены в дальнейший круговорот жизни, как например органические вещества почвы (к слову, годовая продукция биосферы составляет 380 млрд.т)[2]. Основные дистилляты нефти считаются строительными блоками органических соединений[3]. Органические соединения, кроме углерода (C), чаще всего содержат водород (H), кислород (O), азот (N), значительно реже — серу (S), фосфор (P), галогены (F, Cl, Br, I), бор (B) и некоторые металлы (порознь или в различных комбинациях)[4].

История[править | править код]

Название органические вещества появилось на ранней стадии развития химии во времена господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. В 1807 году шведский химик Якоб Берцелиус предложил назвать вещества, получаемые из организмов, органическими, а науку, изучающую их, — органической химией. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером, учеником Берцелиуса, в 1829 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.

Количество известных органических соединений составляет почти 27 млн.
Таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной — двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).

Классификация[править | править код]

Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу — несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.

Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.

Характерные свойства[править | править код]

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.

  • Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твёрдые вещества, в отличие от неорганических соединений, которые в большинстве своём представляют собой твёрдые вещества с высокой температурой плавления.
  • Органические соединения большей частью построены ковалентно, а неорганические соединения — ионно.
  • Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
  • Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу — гомологическую разницу CH2. Целый ряд физико-химических свойств в первом приближении изменяется симбатно (мера схожести зависимостей в математическом анализе) по ходу гомологического ряда. Это важное свойство используется в материаловедении при поиске веществ с заранее заданными свойствами.
  • Горючесть. [источник не указан 1359 дней]

Номенклатура[править | править код]

Органическая номенклатура — это система классификации и наименований органических веществ.
В настоящее время распространена номенклатура ИЮПАК.

Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами.

В зависимости от природы углеродного скелета органические соединения можно разделить на ациклические и циклические. Среди ациклических соединений различают предельные и непредельные. Циклические соединения разделяются на карбоциклические (алициклические и ароматические) и гетероциклические.

  • Органические соединения
    • Углеводороды
      • Ациклические соединения
        • Предельные углеводороды (алканы)
        • Непредельные углеводороды
          • Алкены
          • Алкины
          • Алкадиены (диеновые углеводороды)
      • Циклические углеводороды
        • Карбоциклические соединения
          • Алициклические соединения
          • Ароматические соединения
        • Гетероциклические соединения
    • Функциональные производные углеводородов:
      • Спирты, Фенолы
      • Простые эфиры
      • Альдегиды, Кетоны
      • Карбоновые кислоты
      • Сложные эфиры
      • Жиры
      • Углеводы
        • Моносахариды
        • Олигосахариды
        • Полисахариды
        • Мукополисахариды
      • Амины
      • Аминокислоты
      • Белки
      • Нуклеиновые кислоты

Алифатические соединения[править | править код]

Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.

Углеводороды — Алканы — Алкены — Диены или Алкадиены — Алкины — Галогенуглеводороды — Спирты — Тиолы — Простые эфиры — Альдегиды — Кетоны — Карбоновые кислоты — Сложные эфиры — Углеводы или сахара — Нафтены — Амиды — Амины — Липиды — Нитрилы

Ароматические соединения[править | править код]

Ароматические соединения, или арены, — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация).

Бензол-Толуол-Ксилол-Анилин-Фенол-Ацетофенон-Бензонитрил-
Галогенарены-Нафталин-Антрацен-Фенантрен-Бензпирен-Коронен-Азулен-Бифенил-Ионол.

Гетероциклические соединения[править | править код]

Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом.

Пиррол-Тиофен-Фуран-Пиридин

Полимеры[править | править код]

Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты (соединения) меньшего размера. Эти сегменты могут быть идентичны, и тогда речь идёт о гомополимере. Полимеры относятся к макромолекулам — классу веществ, состоящих из молекул очень большого размера и массы.
Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид) или природными (целлюлоза, крахмал).

Читайте также:  Какие свойства человека обусловлены биологическими факторами

Структурный анализ[править | править код]

В настоящее время существует несколько методов характеристики органических соединений:

  • Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.
  • Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.
  • Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определённых функциональных групп.
  • Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.
  • Спектроскопия ядерного магнитного резонанса ЯМР.
  • Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе.

См. также[править | править код]

  • Неорганические вещества
  • Органическая химия

Примечания[править | править код]

Источник

Задумайтесь! Мы с вами состоит из миллиардов атомов. Все атомы находятся в круговороте, и
все атомы, которыми мы обладаем, в ком-то и где-то находились те 4,5 млрд. лет, которые существует Земля. Они были частями
животных, растений, грибов и бактерий — а сейчас принадлежат нам на короткое время.

Круговорот атомов

С химической точки зрения ответ на вопрос «Жив ли изучаемый объект?» — не представляется возможным. Понятию «жизнь» дано
колоссальное количество определений. Жизнь — это самовоспроизведение с изменением, способ существования белковых тел,
постоянный обмен веществ с внешней средой.

Мы приступаем к изучению неорганических и органических веществ клетки. Начнем с неотъемлемого компонента клетки,
благодаря которому жизнь на Земле в принципе стала возможна — вода.

Вода

Составляет 60-80% массы клетки. Молекула воды обладает уникальным свойством — полярностью, которое возникает из-за
разницы в электроотрицательности (ЭО) между атомами кислорода и водорода (у кислорода ЭО больше).

Вода полярная молекула

Поскольку молекула воды полярна, ее называют диполь. Между молекулами воды возникают непрочные водородные связи:
водородная связь начинается от отрицательно заряженного атома кислорода (2δ-) одной молекулы воды и
тянется до положительно заряженного атома водорода другой молекулы воды (δ+)

По отношению к воде все вещества можно подразделить на два типа:

  • Гидрофильные (греч. hydro — вода и philéo — люблю) — вещества, которые хорошо растворяются в воде. Гидрофильными
    веществами являются сахара, соли, альдегиды, спирты, аминокислоты.
  • Гидрофобные (греч. hydro — вода и phobos — страх) — вещества, которые не растворяются в воде. Гидрофобными
    веществами являются жиры.

Роль воды в клетке трудно переоценить. Ее функции и свойства крайне важны:

  • Вода — универсальный растворитель
  • Большинство реакций, которые протекают в клетке, идут в растворе (водной среде). Полярность молекулы воды позволяет
    ей быть отличным растворителем для других гидрофильных (полярных) веществ.

  • Вода — терморегулятор
  • Вода может поглощать теплоту при минимальном изменении температуры. Это настоящее «спасение» для клеток: чуть только
    температура меняется, вода начинает поглощать избыток тепла, защищая клетку от перегревания. Выделяясь на поверхность
    кожи с потом, вода испаряется, поверхность кожи при этом охлаждается.

  • Вода — реагент
  • Она не только создает среду для реакций в клетке, но и сама активно участвует во многих из них. Расщепление питательных
    веществ, попавших в клетку, происходит за счет реакции гидролиза (греч. hydro — вода и lysis — расщепление).

  • Транспортная функция
  • Питательные вещества, газы перемещаются по организму с током крови. Вода составляет 90-92% плазмы крови, является ее основным
    компонентом. С помощью воды происходит не только доставка веществ к клеткам, но и удаление из организма побочных продуктов
    обмена веществ.

    Транспортная функция воды

  • Структурная функция
  • Вода придает тканям тургор (лат. turgor — наполнение) — внутреннее осмотическое давление в живой клетке, создающее
    напряжение оболочек клеток. Вода составляет от 60 до 95% цитоплазмы, придает клеткам форму. Изменение тургора клеток растений
    приводит к перемещениям их частей, раскрытию устьиц, цветков.

    Осмотическое давление — избыточное гидростатическое давление на раствор, отделенный от чистого растворителя с
    помощью полупроницаемой мембраны.

    Главное — понимать суть: если мы поместим живую клетку в гипертонический раствор, то
    вода (растворитель) устремится из клетки в раствор (в сторону большей концентрации соли) — это приведет к сморщиванию
    клеток.

    Если же клетка окажется
    в гипотоническом растворе, то вода извне устремится внутрь клетки (опять-таки в сторону большей концентрации солей),
    приводя при этом к разбуханию (и возможному разрыву) клетки.

    Эритроциты в гипер- и гипотоническом растворе

Элементы

Живая клетка — кладезь элементов таблицы Менделеева. Процент содержания различных элементов отличается, в связи с чем все они делятся на
3 группы:

  • Биогенные (основные) — C, H, O, N. Входят в состав органических соединений, составляют основную часть клетки
  • Макроэлементы (греч. makrós — большой) — составляют десятые и сотые доли в клетке: K, Na, Ca, Mg, Cl, P, S, Fe
  • Микроэлементы (греч. mikrós — маленький) — составляют тысячные доли в клетке: Zn, Cu, I, Co, Mn

Процентное содержание элемента не коррелирует с его важностью и биологической значимостью. Так, к примеру, микроэлемент
I играет важную роль в синтезе гормонов щитовидной железы: тироксина, трийодтиронина. За нормальные рост и развитие
организмов отвечают Zn, Mn, Cu.

Благоприятно влияют на сперматозоиды Zn, Ca, Mg, защищая их от оксидативного стресса (окисления). Невозможным становится
нормальное образование эритроцитов без должного уровня Fe и Cu.

Читайте также:  В каких статьях конституции юридические свойства

Микроэлементы

Соли

В водной среде клетки соли диссоциируют (распадаются) на положительно заряженные ионы — катионы (Na+, K+,
Ca2+, Mg2+) и отрицательно заряженные — анионы (Cl-, SO42-,
HPO42-, H2PO4-).

Для процессов возбуждения клетки (нейрона, миоцита — мышечной клетки) внутри клетки должна поддерживаться низкая концентрация ионов Na+ и высокая концентрация ионов K+. В окружающей клетку среде все наоборот: много Na и мало K. В мембране существует
специальный натрий-калиевый насос, который поддерживает необходимое равновесие. Если это
соотношение нарушится, то нейрон не сможет сгенерировать нервный импульс, а клетка мышцы — сократиться.

Натрий-калиевый насос

Соли в клетке и организме выполняют ряд важных функций:

  • Участвуют в активации ферментов
  • Создают буферные системы (бикарбонтаную, фосфатную, белковую)
  • Поддерживают кислотно-щелочное состояние (КЩС)
  • Создают осмотическое давление клетки
  • Создают мембранный потенциал клеток (натрий-калиевый насос)
  • Являются основным минеральным составляющим скелета внутреннего и наружного (у моллюсков)

Функции солей в клетке

Мы переходим к органическим компонентам клетки, к которым относятся: жиры, углеводы, белки и нуклеиновые кислоты.

Белки, или пептиды (греч. πεπτος — питательный)

Белки — полимеры, мономерами которых являются аминокислоты. Белки представляют линейную структуру, образованную из
длинной цепи аминокислот, между которыми возникают пептидные связи. Пептидная связь образуется между карбоксильной
группой (COOH) одной аминокислоты и аминогруппой другой аминокислоты (NH2).

Образование пептидной связи

Между понятиями пептиды и белки существует определенная разница. Белки состоят из сотен тысяч аминокислот. Пептидами
называют небольшие белки, содержащие до 10 аминокислот. Ими являются некоторые гормоны: окситоцин,
вазопрессин, тиреолиберин — эти пептиды выполняют регуляторную функцию.

Выделяется несколько уровней пространственной организации белка:

  • Первичная — полипептидная цепь, в которой аминокислоты расположены линейно
  • Вторичная — полипептидная цепь закручивается в спираль, формируется α или β структура
  • Третичная — спирали скручиваются в глобулу (лат. globulus — шарик)
  • Четвертичная — образуется у сложных белков путем соединения нескольких глобул

Структуры белка

При резком изменении оптимальных для белка условий он подвергается денатурации: при этом происходит переход от
высших структур организации к низшим, или «раскручивание белка». Важно заметить, что аминокислотная последовательность (первичная структура белка) при этом не меняется, однако свойства белка меняются кардинально (теряется его гидрофильность).

Осмелюсь сделать заявление: вы часто начинаете свой день с денатурации белка. Простейший способ провести такой
эксперимент — пожарить яичницу. Заметьте, что изначально яичный белок прозрачный и текучий, но по итогу жарки эти свойства
утрачиваются: он становится непрозрачным и вязким.

Денатурация белка

Завершаем тему о белках изучением их функций:

  • Каталитическая (греч. katalysis — разрушение)
  • Белки — природные катализаторы, ускоряющие реакции в организме в десятки и сотни тысяч раз. Эту роль главным образом
    выполняют белки-ферменты (энзимы).

    Иногда в состав белков входят так называемые ко-факторы — небелковые соединения,
    которые необходимы ферменту для его биологической активности (в роли ко-факторов могут выступать Zn2+,
    Mg2+).

  • Строительная
  • Белки входят в состав клеточных мембран. Сложные белки: коллаген, эластин — входят в состав соединительных тканей организма,
    придавая им некоторую прочность и эластичность.

  • Регуляторная
  • Некоторые гормоны, регулирующие обменные процессы в организме, имеют белковое происхождение: инсулин, глюкагон,
    адренокортикотропный гормон (АКТГ).

  • Защитная
  • Говоря об этой функции, прежде всего, стоит вспомнить об антителах — иммуноглобулинах, которые синтезируют B-лимфоциты.
    Антитела нейтрализуют чужеродные организму антигены (разрушают бактерии).

    Антитела иммуноглобулины

    Помимо антител, защитную функцию выполняют
    также белки свертывающей системы крови (тромбин и фибриноген): они предохраняют организм от кровопотери.

    Фибриноген и фибрин

  • Энергетическая
  • При недостаточном питании в организме начинают окисляться молекулы белков. При расщеплении 1 г белков выделяется 17,6 кДж энергии.

  • Транспортная
  • Некоторые белки крови способны присоединять к себе и переносить различные молекулы. Альбумины участвуют в транспорте
    жирных кислот, глобулины — гормонов и некоторых ионов (Fe, Cu). Основной белок эритроцитов — гемоглобин — способен
    переносить кислород, углекислый и угарный газы (угарный конечно нежелательно ему переносить, будет отравление)

  • Сократительная
  • Двигательные белки, актин и миозин, на уровне саркомера обеспечивают сокращение мышц. При возбуждении мышечной
    ткани тонкие нити актина начинают тереться о толстые нити миозина, приводя к сокращению.

    Двигательные белки

  • Рецепторная
  • На поверхности мембраны белки образуют многочисленные рецепторы, которые, соединяясь с гормонами, приводят к
    изменению обмена веществ в клетке. Таким образом, гормоны реализуют воздействие на клетки органов-мишеней.

Жиры, или липиды (греч. lipos — жир)

С химической точки зрения жиры являются сложными эфирами, образованными трехатомным спиртом глицерином и высшими
карбоновыми кислотами (жирными кислотами). Среди их свойств надо выделить то, что они практически нерастворимы
в воде. Вспомните, как тяжело смыть жир с рук водой.

Почему именно мыло смывает жир с рук? Дело в том, что молекула мыла повторяет свойства жира: одна часть ее гидрофобна,
а другая гидрофильна. Мыло соединяется с молекулой жира гидрофобной частью, и вместе они легко смываются водой.

Моющее действие мыла

Приступим к изучению функций жиров:

  • Энергетическая
  • При окислении жиров выделяется много энергии: 1 г — 38,9 кДж. Это вдвое больше выделяющейся энергии при расщеплении
    1г углеводов.

  • Запасающая
  • Жиры имеют способность накапливаться в клетках, расположенных в подкожно-жировой клетчатке, внутренних органах.
    Эти запасы являются резервом организма на случай голодания или при недостаточном питании.

    В жирах также запасается вода: в 100 г жира содержится 107 мл воды. Многим пустынным животным (верблюдам)
    жировые запасы помогают длительное время обходиться без воды.

  • Структурная
  • Жиры входят в состав биологических мембран клеток человека вместе с белками. Из фосфолипидов построены мембраны всех
    клеток органов и тканей!

    Так, к примеру, холестерин — обязательный компонент мембраны, придает ей определенную жесткость и совершенно необходим
    для нормальной жизнедеятельности (заболевания возникают только при нарушении липидного обмена).

    Строение мембраны

  • Терморегуляция
  • Жиры обладают плохой теплопроводностью. Располагаясь в подкожно-жировой клетчатке, они образуют термоизолирующий слой.
    Особенно хорошо он развит у ластоногих (моржи и тюлени), китов, защищает их от переохлаждения.

  • Гормональная
  • Некоторые гормоны по строению относятся к жирам: половые (андрогены — мужские и эстрогены — женские), гормон
    беременности (прогестерон), кортикостероиды.

  • Участие в обмене веществ (метаболизме)
  • Производное жира — витамин D — принимает важное участие в обмене кальция и фосфора в организме. Он образуется
    в коже под действием ультрафиолетового излучения (солнечного света). При недостатке витамина D возникает заболевание —
    рахит.

    Рахит

Читайте также:  Какие свойства общественного прогресса отражают следующие
Углеводы

Представляют собой органические соединения, состоящие из одной или нескольких молекул простых сахаров. Выделяется три основных
класса углеводов:

  • Моносахариды (греч. monos — единственный)
  • Простые сахара, легко растворяющиеся в воде и имеющие сладкий вкус. Моносахариды подразделяются на гексозы (имеют 6 атомов углерода)
    — глюкоза, фруктоза, и пентозы (имеют 5 атомов углерода) — рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот.

  • Олигосахариды (греч. ὀλίγος — немногий)
  • При гидролизе олигосахариды распадаются на моносахариды. В состав олигосахаридов может входить от 2 до 10 моносахаридных остатков.
    Если в состав олигосахарида входят 2 остатка моносахарида, то его называют дисахарид. К дисахаридам относятся сахароза, лактоза,
    мальтоза. При гидролизе сахароза распадается на глюкозу и фруктозу.

    Олигосахариды

  • Полисахариды
  • Это биополимеры, в состав которых входят сотни тысяч моносахаридов. Они обладают высокой молекулярной массой,
    нерастворимы в воде, на вкус несладкие.

    Крахмал, целлюлоза, гликоген, хитин и муреин — все это биополимеры. Давайте вспомним, где они находятся.

    Клеточная стенка образована: у растений — целлюлозой, у грибов — хитином, у бактерий — муреином. Запасным питательным
    веществом растений является крахмал, животных — гликоген.

Целлюлоза

Перечислим функции, которые выполняют углеводы:

  • Энергетическая
  • В результате расщепления 1 г углеводов высвобождается 17,6 кДж энергии.

  • Запасающая
  • Запасным питательным веществом растений и животных соответственно являются крахмал и гликоген. Расщепление гликогена позволяет
    нам оставаться в сознании и быть активными между приемами пищи.

    Гликоген представляет собой разветвленную молекулу, состоящую
    из остатков глюкозы. За счет больших размеров такая молекула хорошо удерживается в клетке, а ее разветвленность позволяет ферментам
    быстро отщеплять множество молекул глюкозы одновременно.

    Гликоген

    Существуют заболевания, при которых распад
    гликогена нарушается: в результате нейроны не получают глюкозы (источника энергии, соответственно не синтезируются и молекулы АТФ). Из-за этого становятся возможны частые потери сознания.

  • Структурная (опорная)
  • Целлюлоза входит в состав клеточных стенок растений, придавая им необходимую твердость. Хитин образует клеточную стенку
    грибов и наружный скелет членистоногих.

Классификация углеводов

Нуклеиновые кислоты (от лат. nucleus — ядро)

Высокомолекулярные органические соединения, представленные двумя видами: ДНК (дезоксирибонуклеиновые кислоты) и РНК
(рибонуклеиновые кислоты). ДНК и РНК — биополимеры, мономером которых является нуклеотид. Запомните, что нуклеотид
состоит из 3 компонентов:

  • Азотистое основание
  • Для ДНК характерны следующие азотистые основания: аденин — тимин, гуанин — цитозин; для РНК: аденин — урацил,
    гуанин — цитозин. Исходя из принципа комплементарности, данные основания соответствуют друг другу, в результате
    чего между ними образуются связи.

    Между аденином и тимином образуется 2 водородные связи, а между гуанином и цитозином — 3.

    Азотистые основания

    Именно по этой причине количество аденина в молекуле ДНК всегда совпадает с количеством тимина. К примеру, если
    в ДНК 20% аденина, то с уверенностью можно сказать, что в ней 20% тимина. Выходит на оставшиеся основания — цитозин
    и гуанин — остается 60%, значит, цитозин и гуанин составляют в ДНК 30% каждый. Таким нехитрым образом, зная процент
    содержания одного основания, можно подсчитать все остальные.

  • Остаток сахара
  • В ДНК остаток сахара — дезоксирибоза, в РНК — рибоза.

  • Остаток фосфорной кислоты — фосфат
  • Строение ДНК

Мы подробно изучили структуру ДНК (дезоксирибонуклеиновой кислоты) — двойной правозакрученной спиральной молекулы. Теперь
настало время детально поговорить об РНК (рибонуклеиновой кислоте). Все виды РНК синтезируются на матрице — ДНК, различают
три вида РНК:

  • Рибосомальная РНК (рРНК)
  • Синтезируется в ядрышке. рРНК входит в состав
    малых и больших субъединиц рибосом. В процентном отношении рРНК составляет 80-90% всей РНК клетки.

  • Информационная РНК (иРНК, син. — матричная РНК, мРНК)
  • Синтезируется в ядре в ходе процесса транскрипции (лат. transcriptio — переписывание).
    Фермент РНК-полимераза строит цепь иРНК по принципу комплементарности с ДНК. Исходя из данного принципа,
    гуанин (Г) в молекуле ДНК соединяется с цитозином (Ц) в РНК. Далее соответственно: цитозин (Ц) — гуанин (Г),
    аденин (А) — урацил (У), тимин (Т) — аденин (А).

    Комплементарность ДНК и РНК

  • Транспортная РНК (тРНК)
  • Обеспечивает транспорт аминокислоты к рибосоме во время синтеза белка. Благодаря этому становится возможным
    соединение аминокислот друг с другом, образуется белок. тРНК имеет характерную форму клеверного листа.

    тРНК

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник