Каким образом и как изменяется внутренняя энергия продуктов

Каким образом и как изменяется внутренняя энергия продуктов thumbnail

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: внутренняя энергия, теплопередача, виды теплопередачи.

Частицы любого тела — атомы или молекулы — совершают хаотическое непрекращающееся движение (так называемое тепловое движение). Поэтому каждая частица обладает некоторой кинетической энергией.

Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

Внутренняя энергия тела — это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом.

Внутренняя энергия термодинамической системы — это сумма внутренних энергий тел, входящих в систему.

Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

1. Кинетическая энергия непрерывного хаотического движения частиц тела.
2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.
3. Энергия электронов в атомах.
4. Внутриядерная энергия.

В случае простейшей модели вещества — идеального газа — для внутренней энергии можно получить явную формулу.

Внутренняя энергия одноатомного идеального газа

Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов. Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

или

Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма — ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

Функция состояния

Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы. А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от «предыстории» системы, т.е. от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

• совершение механической работы;
• теплопередача.

Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь 🙂 Рассмотрим эти способы подробнее.

Изменение внутренней энергии: совершение работы

Если работа совершается над телом, то внутренняя энергия тела возрастает.

Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура — это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы — работу совершили молоток и сила трения о доску.

Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным. Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики). В ходе такого процесса воздух будет охлаждаться — его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

Изменение внутренней энергии: теплопередача

Теплопередача — это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы. Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом.

Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

Сейчас мы рассмотрим их более подробно.

Теплопроводность

Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню — от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 1)(Изображение с сайта educationalelectronicsusa.com).

Каким образом и как изменяется внутренняя энергия продуктов

Рис. 1. Теплопроводность

Теплопроводность — это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела.

Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

Плохими проводниками тепла являются поэтому пористые тела — такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

Происходит это вследствие другого вида теплопередачи — конвекции.

Конвекция

Конвекция — это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества.

Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

В результате устанавливается циркуляция воздуха, которая и служит примером конвекции — распространение тепла в комнате осуществляется воздушными потоками.

Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).

Каким образом и как изменяется внутренняя энергия продуктов

Рис. 2. Конвекция

В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать. Если радиатор установить под потолком, то никакая циркуляция не возникнет — тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

Тепловое излучение

Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

Здесь работает третий вид теплопередачи — тепловое излучение. Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию). В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле…

В результате развития этого процесса в пространстве распространяется электромагнитная волна —«зацепленные» друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой — в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет — частный случай электромагнитных волн.

Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет — это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше — частоты ультрафиолетового излучения.

Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называются тепловым излучением — в напоминание о том, что их источником служит тепловое движение частиц вещества.

Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы «светимся»). При нагревании тела его атомы начинают излучать волны более высоких частот. Железный гвоздь можно раскалить докрасна — довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона. А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока , что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

Давайте ещё раз взглянем на три вида теплопередачи (рис. 3)(изображения с сайта beodom.com).

Каким образом и как изменяется внутренняя энергия продуктов

Рис. 3. Три вида теплопередачи: теплопроводность, конвекция и излучение

Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.

Источник

Анонимный вопрос  ·  17 мая 2018

9,4 K

Существует два способа изменить внутреннюю энергию тела или системы тел. Первый способ – это совершение работы. Второй способ – теплопередача.

Если работу совершает само тело, то его внутренняя энергия уменьшается. Если работу совершают над телом, то внутренняя энергия тела увеличивается. При этом происходит превращение механической энергии во внутреннюю, или, наоборот, внутренней в механическую.

Если в результате теплопередачи тело остывает, то его внутренняя энергия уменьшается. Если же телу передается тепло, то его внутренняя энергия увеличивается.

Пример увеличения внутренней энергии тела за счет работы: сжатие газа (при этом он нагревается).

Пример уменьшения внутренней энергии тела за счет работы: расширение газа (при этом газ охлаждается).

Теплопередача представляет собой способ изменения внутренней энергии тела без совершения работы. При этом передающуюся энергию называют количеством теплоты (Q, Дж). Тело получает ровно то количество теплоты, которое ему отдает другое тело, т. е. теплопередача подчиняется закону сохранения энергии.

В любом случае изменение внутренней энергии тела отражается в изменении его температуры.

Изменение внутренней энергии тела за счет работы и теплопередачи может происходить в один и тот же момент времени, т. е. эти два способа работают совместно.

Как восстановить женскую энергию?

Здравствуйте! Если вы чувствуете нехватку энергии у себя, и вы при этом женщина, то не стоит наверняка говорить о том, что её нет. Бывает такое, что через нас проходит жизненная энергия, также есть энергия Земли, которая питает наше тело и порой помогает справляться с болячками или травмами. Восстанавливать не надо в том плане, как вы подразумеваете. Скорее надо её восполнять, а возможно просто прогонять, чтобы у вас не было блоков в теле, тем самым не было упадческого состояния. Элементарную зарядку попробуйте делать на монотонной работе.

Прочитать ещё 2 ответа

Как происходит изменение агрегатных состояний вещества?

При переходе агрегатного состояния изменяется внутренняя энергия вещества так, что молекулы или атомы больше не могут находиться в прежней структуре и изменяют ее. Например, при нагревании воды увеличивается внутренняя энергия атомов, которая заставляет их двигаться активнее и быстрее отталкиваться друг о друга. Именно поэтому происходит разуплотнение до состояния пара.

Что происходит с внутренней энергией тела при нагревании?

Профессиональный прокрастинатор. Два раза учился в МИРЭА 🙂 Люблю фантастику и…

При нагревании внутренняя энергия тела увеличивается.
Изменение внутренней энергии прямо пропорционально изменению температуры (по шкале Кельвина). Количественное значение изменения пропорционально теплоёмкости тела.
При абсолютном нуле внутренняя энергия становится равной нулю.

Объясните для чайника, что такое энергия, откуда она появляется у человека и откуда она вообще берется?

Сусанна Казарян, США, Физик

Совет опытного чайника чайнику-новичку. Энергия это мера работы раба на галерах, которую он (в том числе чайник) может выполнить. Но есть ужасный закон природы — закон сохранения энергии. Для чайников он формулируется так: «Можно выполнить максимум столько работы, сколько энергии было запасено». Сколь угодно меньше — можно всегда, но тогда и денег будет меньше. 

Энергия (работа) измеряется в Джоулях. Был такой ученый. Но можно и в других единицах. Например в единицах работы раба на галерах —  Путинах (Пу). Просто надо знать коэффициенты перехода из одних единиц измерения в другие. Например 1 Пу = 1 ккал = 4184 Дж, это столько работы, сколько Путин выполняет в среднем за один день, работая как раб на галерах в Кремле для народа. Это количество энергии повысит температуру 1 кг воды на 1 градус.

Где энергия хранится. В еде, которую мы поглощаем. Но этого мало. Человек должен быть живым, т.е. дышать, пить воду и ходить на работу. При выполнении всех этих условий химическая энергия, заключенная в еде, трансформируется в организме человека (желудочно-кишечным трактом) в тепло, запуская при этом огромное число биохимических реакций в организме (метаболизм). В процессе эволюции, люди (и чайники, которых было много во все времена) научились запасать неиспользованную энергию в виде подкожного жира и расщеплять его при дефиците еды. Это та же химическая энергия, только в более компактном и удобном виде (буквально — всегда под рукой).

Как это работает. Есть такие химические реакции, называемые экзотермическими, которые сопровождаются выделением теплоты. Основным источником экзотермических реакций являются жиры, белки и углеводы, поступающие с пищей. Вместе с пищей поступает также огромное число минеральных веществ и витаминов, являющиеся строительным материалом для роста организма и воспроизведения новых клеток. В большинстве своём в этом участвуют уже эндотермические биохимические реакции, требующие тепло. 

Сколько энергии (калорий, Джоулей, Пу) тратит человек (в том числе и чайник) в день можно найти здесь. Практически столько же энергии и должно содержаться в еде. 

Думаю, это всё (и ещё чуть чуть), что должен знать каждый уважающий себя чайник.

Прочитать ещё 3 ответа

Как именно один вид энергии преобразовывается в другой?

физик-теоретик в прошлом, дауншифтер и журналист в настоящем, живу в Германии

Конкретные физические процессы, сопровождающие переход одного вида энергии в другой (или ведущие к такому переходу), зависят от обстоятельств (о какого рода энергиях речь, каких физических объектах или процессах). Поэтому здесь нет какого-то общего ответа. Что общего у механизмов перехода механической энергии при трении в тепловую и, скажем, части массы в энергию при распаде ядра урана? Ровным счетом ничего, кроме самого факта сохранения энергии в обоих случаях. То есть, конкретные механизмы «как именно» в разных случаях будут разные. 

С фундаментальной же точки зрения, сохранение энергии — это прямое следствие того, что все физические законы не зависят от времени (не меняются). Это позволяет для любой замкнутой физической системы указать некую скалярную величину, чья полная производная по времени будет равна нулю. Эту величину мы и называем «энергией», а разные «виды энергии» — это всего лишь ее отдельные слагаемые, или частные суммы таких слагаемых. Поскольку от времени, в общем случае, не зависит только полная сумма всех этих слагаемых, то любой «вид энергии» может меняться со временем, но само такое изменение непременно сопровождается изменением суммы всех прочих «видов энергии»: равным по величине, но противоположным по знаку (ведь полная энергия остается постоянной до тех пор, пока не начнут меняться сами физические законы). В таком случае мы и говорим о «переходе» одного «вида энергии» в другой. А сопутствующие физические процессы, как уже сказано, могут быть самыми разными.

Прочитать ещё 2 ответа

Источник