Какие закономерности наблюдаются в изменении свойства

Какие закономерности наблюдаются в изменении свойства thumbnail

По каким закономерностям изменяются свойства элементов в таблице Менделеева?

Анонимный вопрос  ·  30 октября 2018

252,2 K

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  ·  vk.com/mendo_him

При движении по группе главной подгруппы сверху вниз⬇️

????Радиус атома увеличтвается

????Электроотрицательность уменьшается

????Окислительные свойства ослабевают

????Восстановительные свойства усиливаются

????Неметаллические ослабевают

????Металлические усиливаются

По периоду слева направо всё наоброт????

????Радиус уменьшается

????ЭО возрастает

????Окислительные свойства усиливаются

????Восстановительные ослабевают

????Неметаллические увеличиваются

????Металлические свойства ослабевают

Педагог, музыкант, начинающий путешественник и немножко психолог

В периодах (слева направо): увеличивается заряд ядра, число электронов на внешнем уровне, уменьшается радиус атомов, в связи с этим увеличивается прочность связи электронов с ядром и электроотрицательность, что в свою очередь ведет к усилению окислительных свойств (неметаличности) и ослаблению восстановительных (металличности).

В группах (сверху вниз): увеличивается… Читать далее

Можете зайти на этот форум и найти нужный вам ответ!!Осень будем рады вас там видеть!♥️https://blog.pachca.com/post… Читать дальше

Как построена периодическая система химических элементов?

Интересы часто менялись, поэтому во многих областях знаний что-то знаю:)

В периодической системе отражаются сходства свойств различных элементов.

Выделяют:

  • группы (столбцы таблицы), в рамках которых элементы обыкновенно имеют одинаковые электронные конфигурации на их валентных оболочках.
  • периоды (строки таблицы), в рамках которых элементы демонстрируют определённые закономерности в атомном радиусе, энергии ионизации и электроотрицательности, а также в энергии сродства к электрону.
  • блоки, элементы в которых объединены тем, на какой оболочке находится последний электрон. Блоковая структура выглядит так:

Подробнее почитать обо всех закономерностях периодической системы можно здесь

Почему высшая валентность изменяется периодически?

TutorOnline — одна из крупнейших онлайн-школ. Мы преподаем более 150 предметов. Наша цель…  ·  tutoronline.ru

С увеличением порядкового номера элемента в периоде увеличивается количество электронов на внешнем энергетическом поле, которые могут создавать химические связи. Больше электронов — выше валентность! В малых периодах с увеличением зарядов ядер радиус атомов уменьшается, а число электронов на внешнем уровне увеличивается. Они всё сильнее притягиваются к ядру и труднее отрываются от атома. Легче всего отрываются электроны от атомов щелочного металла франция. В периоде с увеличением заряда ядра радиус атома уменьшается, число валентных электронов и их притяжение к ядру растёт, и атомам всё легче присоединять дополнительные электроны на внешний уровень. Наиболее активно принимают электроны атомы галогена фтора.

Если есть, то какая вероятность того, что во вселенной есть еще не открытые химические элементы?

Есть, стопроцентная. 

Менделеев, когда открыл периодическую таблицу химических элементов, расположил в ней все известные на тот момент элементы. Гениальность его открытия в том и состояла, что с помощью этой таблицы можно было предсказать свойства еще неоткрытых химических элементов. 

И эта блестящая теория на сто процентов оправдала себя. С момента составления таблицы было открыто множество химических элементов и все они укладывадись в прогнозы.

На данный момент остались неоткрытыми 8 элементов: 

  • Унбибий
  • Унбигексий
  • Унбиквадий
  • Унбинилий
  • Унбипентий
  • Унбитрий
  • Унбиуний
  • Унуненний
    Сложность в том, что их место и предполагаемые свойства известны, а вот условия, в которых они появляются — нет. Но они явно далеки от земных и моделирование таких условий в научных лабораториях — дело не столь отдаленного будущего

Источник

Периодический закон изменения свойств химических элементов был открыт в 1869 году великим русским ученым Д.И. Менделеевым и в первоначальной формулировке звучал следующим образом:

«… свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Атомным весом в те времена называли атомную массу химического элемента. Следует отметить, что в то время не было ничего известно о реальном строении атома и господствовала идея о его неделимости, в связи с чем Д.И. Менделеев сформулировал свой закон периодичного изменения свойств химических элементов и образованных ими соединений исходя из массы атомов. Позже после установления строения атома закон был сформулирован в следующей формулировке актуальной и в настоящий момент.

Свойства атомов химических элементов и образованных ими простых веществ находятся в периодической зависимости от зарядов ядер их атомов.

Графическим изображением периодического закона Д.И. Менделеева можно считать периодическую таблицу химических элементов, впервые построенную самим великим химиком, но несколько усовершенствованную и доработанную последующими исследователями. Фактически используемый в настоящее время вариант таблицы Д.И. Менделеева отражает современные представления и конкретные знания о строении атомов разных химических элементов.

Рассмотрим более детально современный вариант периодической системы химических элементов:

таблица Менделеева ЕГЭ

В таблице Д.И. Менделеева можно видеть строки, называемые периодами; всего их насчитывается семь. Фактически номер периода отражает число энергетических уровней, на которых расположены электроны в атоме химического элемента. Например, такие элементы, как фосфор, сера и хлор, обозначаемые символами P, S, и Cl, находятся в третьем периоде. Это говорит о том, что электроны в этих атомах расположены на трех энергетических уровнях или, если говорить более упрощенно, образуют трехслойную электронную оболочку вокруг ядер.

Каждый период таблицы, кроме первого, начинается щелочным металлом и заканчивается благородным (инертным) газом.

Все щелочные металлы имеют электронную конфигурацию внешнего электронного слоя ns1, а благородные газы — ns2np6, где n – номер периода, в котором находится конкретный элемент. Исключением из благородных газов является гелий (He) с электронной конфигурацией 1s2 .

Также можно заметить, что помимо периодов таблица делится на вертикальные столбцы — группы, которых насчитывается восемь. Большинство химических элементов имеет равное номеру группы количество валентных электронов. Напомним, что валентными электронами в атоме называются те электроны, которые принимают участие в образовании химических связей.

В свою очередь, каждая группа в таблице делится на две подгруппы – главную и побочную.

Для элементов главных групп количество валентных электронов всегда равно номеру группы. Например, у атома хлора, расположенного в третьем периоде в главной подгруппе VII группы, количество валентных электронов равно семи:

17Cl 1s22s22p63s23p5 pravl

Элементы побочных групп имеют в качестве валентных электроны внешнего уровня или нередко электроны d-подуровня предыдущего уровня. Так, например, хром, находящийся в побочной подгруппе VI группы, имеет шесть валентных электронов – 1 электрон на 4s-подуровне и 5 электронов на 3d-подуровне:

24Cr 1s22s22p63s23p64s13d5

Общее количество электронов в атоме химического элемента равно его порядковому номеру. Другими словами, общее количество электронов в атоме с номером элемента возрастает. Тем не менее, количество валентных электронов в атоме изменяется не монотонно, а периодически – от 1-го у атомов щелочных металлов до 8-ми для благородных газов.

Читайте также:  Какие свойства воды человек использует

Иными словами, причина периодического изменения каких-либо свойств химических элементов связана с периодическими изменениями в строении электронных оболочек.

При движении вниз по подгруппе атомные радиусы химических элементов возрастают ввиду увеличения количества электронных слоев. Тем не менее, при движении по одному ряду слева направо, то есть с ростом количества электронов для элементов, расположенных в одном ряду, происходит уменьшение радиуса атома. Данный эффект объясняется тем, что при последовательном заполнении одной электронной оболочки атома ее заряд, как и заряд ядра, увеличивается, что приводит к усилению взаимного притяжения электронов, в результате чего электронная оболочка «поджимается» к ядру:

периодический закон Менделеева изменение размера атома

Вместе с тем, внутри одного периода с ростом количества электронов происходит уменьшение радиуса атома, а также возрастает энергия связи каждого электрона внешнего уровня с ядром. Это означает, что, например, ядро атома хлора будет удерживать электроны своего внешнего уровня намного сильнее, чем ядро атома натрия единственный электрон внешнего электронного уровня. Более того, при столкновении атома натрия и хлора хлор «отберет» единственный электрон у атома натрия, то есть электронная оболочка хлора станет такой же, как у благородного газа аргона, а у натрия — такой же, как у благородного газа неона. Способность атома какого-либо химического элемента оттягивать на себя «чужие» электроны при столкновении с атомами другого химического элемента называется электроотрицательностью. Более подробно про электроотрицательность будет рассказано в главе, посвященной химическим связям, но нужно отметить, что, электроотрицательность, как и многие другие параметры химических элементов, также подчиняется периодическому закону Д.И. Менделеева. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает.

Следует усвоить один полезный мнемонический прием, позволяющий восстановить в памяти то, как меняются те или иные свойства химического элемента. Заключается он в следующем. Представим себе циферблат обычных круглых часов. Если его центр поместить в правый нижний угол таблицы Д.И. Менделеева, то свойства химических элементов будут однообразно изменяться при движении по ней вверх и вправо (по часовой стрелке) и противоположно вниз и влево (против часовой стрелки):

Tablica Mendeleeva plus ciffeblat

Попробуем применить данный прием к размеру атома. Допустим, что вы точно помните, что при движении вниз по подгруппе в таблице Д.И. Менделеева радиус атома увеличивается, поскольку растет число электронных оболочек, но напрочь забыли, как изменяется радиус при движении влево и вправо.

Тогда нужно действовать следующим образом. Поставьте большой палец правой руки в правый нижний угол таблицы. Движение вниз по подгруппе будет совпадать с движением указательного пальца против часовой стрелки, как и движение влево по периоду, то есть радиус атома при движении влево по периоду, как и при движении вниз по подгруппе, увеличивается.

Аналогично и для других свойств химических элементов. Точно зная, как изменяется то или иное свойство элемента при движении вверх-вниз, благодаря данному методу вы сможете восстановить в памяти то, как меняется это же свойство при движении влево или вправо по таблице.

Источник

Видеоурок: Изменение свойств элементов и их соединений по периодам и группам

Лекция: Закономерности изменения свойств элементов и их соединений по периодам и группам

Какие закономерности наблюдаются в изменении свойстваЗакон Д.И. Менделеева

Какие закономерности наблюдаются в изменении свойстваРусский ученый Д. И. Менделеев успешно работал во многих областях науки. Однако наибольшую известность ему принесло уникальное открытие периодического закона химических элементов в 1869 г. Изначально, он звучал таким образом: «Свойства всех элементов, а вследствие и качества образуемых ими простых, а также сложных веществ, стоят в периодической зависимости от их атомного веса». 

В настоящее время формулировка закона иная. Дело в том, что во времена открытия закона ученые не имели представления о строении атома, а за атомный вес принимался вес химического элемента. Впоследствии активного изучения атома и получения новых сведений о его строении, был выведен закон, имеющий актуальность в наши дни: «Свойства атомов хим. элементов и образованных ими простых веществ в периодической зависимости от зарядов ядер их атомов».

Закон так же выражен графически. Наглядно его изображает таблица:

Какие закономерности наблюдаются в изменении свойства

Какие закономерности наблюдаются в изменении свойстваПериодическая таблица Д.И. Менделеева

На данном уроке мы научимся извлекать из неё важную и нужную для постижения науки информацию. В ней вы видите строки. Это периоды. Всего их семь. Вспомните из предыдущего урока, что номер каждого периода демонстрирует количество энергетических уровней, на которых размещаются электроны атома химического элемента. Например, натрий (Na) и магний (Mg) находятся в третьем периоде, значит их электроны размещены на трех энергетических уровнях. Все периоды, за исключением 1 – го берут начало со щелочного металла, и завершаются благородным газом.

Электронная конфигурация:

  • щелочного металла — ns1,

  • благородного газа — ns2p6, за исключением гелия (Не) — 1s2.

Где n — является номером периода.  

Еще мы видим в таблице вертикальные столбцы – это группы. В одних таблицах вы можете увидеть 18 групп, нумерованных арабскими цифрами. Такая форма таблица называется длинной, она появилась после обнаружения отличий d-элементов от s- и p-элементов. Но традиционной, созданной Менделеевым является короткая форма, где элементы сгруппированы в 8 групп, нумерованных римскими цифрами:

Какие закономерности наблюдаются в изменении свойстваВ дальнейшем мы будем пользоваться уже знакомой и привычной для вас короткой таблицей.

Итак, какую информацию нам дают номера групп? Из номера мы узнаем число электронов, образующих химические связи. Они называются

валентными

. 8 групп подразделены на две подгруппы: главная и побочная. 

  • В главную входят электроны s- и p-подуровней. Это подгруппы IА, IIА, IIIА, IVА, VА, VIА, VIIА и VIIIА. Например, аллюминий (Al) – элемент главной подгруппы III группы имеет … 3s2 3p1  валентных электрона. 

  • Элементы, располагающиеся в побочных подгруппах, содержат электроны d — подуровня. Побочными являются группы IБ, IIБ, IIIБ, IVБ, VБ, VIБ, VIIБ и VIIIБ. Например, марганец (Mn) – элемент главной подгруппы VII группы имеет …3d5 4s2 валентных электрона.

  • В короткой таблице s- элементы обозначены красным, p-элементы желтым, d-элементы синим и f-элементы белым цветами.

  • Какую еще информацию мы можем извлечь из таблицы? Вы видите, что каждому элементу присвоен порядковый номер. Тоже не случайно. Судя по номеру элемента, мы можем судить о количестве электронов в атоме данного элемента. К примеру, кальций (Ca) находится под номером 20, значит электронов в его атоме 20.
Читайте также:  Эпитет слово определяющее предмет или явление и подчеркивающее какие либо его свойства

Но следует помнить, что численность валентных электронов периодически меняется. Связанно это с периодическими изменениями электронных оболочек. Так, при перемещении вниз по подгруппе атомные радиусы всех химических элементов начинают расти. Потому что растет количество электронных слоев. Если же перемещаться горизонтально по одному ряду радиус атома уменьшается. Почему так происходит? А связанно это с тем, что при заполнении одной электронной оболочки атома, происходящем поочередно, ее заряд возрастает. Это приводит к увеличению взаимопритяжения электронов и их сжиманию вокруг ядра.Какие закономерности наблюдаются в изменении свойства

Еще из таблицы можно сделать и такой вывод, чем выше порядковый номер элемента, тем меньше радиус атома. Почему? Дело в том, что при увеличении общего количества электронов, происходит уменьшение радиуса атома. Чем больше электронов, тем выше энергия их связи с ядром. Например, ядро атома фосфора (Р) намного сильнее удерживает электроны своего внешнего уровня, чем ядро атома натрия (Na), имеющего один электрон на внешнем уровне. И если атомы фосфора и натрия вступят в реакцию, фосфор отберет этот электрон у натрия, потому что фосфор более электроотрицательный. Этот процесс называется электроотрицательностью. Запомните, при движении вправо по одному ряду элементов таблицы их электроотрицательность возрастает, а внутри одной подгруппы она уменьшается. О данном свойстве элементов мы подробнее скажем на следующих уроках.   

Запомните:

1. В периодах с увеличением порядкового номера мы можем наблюдать:

  • увеличение ядерного заряда и уменьшение атомного радиуса;
  • увеличение числа внешних электронов;
  • увеличение ионизации и электроотрицательности;
  • возрастание неметаллических окислительных свойств и убывание металлических восстановительных свойств;
  • возрастание кислотности и ослабевание основности гидроксидов и оксидов.

2. В А-группах с увеличением порядкового номера мы можем наблюдать:

  • увеличение ядерного заряда и увеличение атомного радиуса;
  • уменьшение ионизации и электроотрицательности;
  • убывание неметаллических окислительных свойств и возрастание металлических восстановительных свойств;
  • возрастание основности и ослабевание кислотности гидроксидов и оксидов.

Вспомним химическую терминологию:

Ионизация — это процесс превращения атомов в ионы (положительно заряженные катионы или отрицательно заряженные анионы) во время химической реакции.

Электроотрицательность — это способность атома к притягиванию электрона другого атома во время химических реакций.

Окисление — процесс передачи электрона атома восстановителя (донора электрона)  атому окислителя (акцептору электрона) и увеличение степени окисления атома вещества. 

Существуют три значения степени окисления:

  • при высокой электроотрицательности элемента, он сильнее притягивает к себе электроны и его атомы приобретают отрицательную степень окисления (к примеру, фтор всегда имеет степень окисления — 1); 
  • при низкой электроотрицательности, элемент отдает электроны и приобретает положительную степень окисления (все металлы имеют +степень, к примеру, калий +1, кальций +2, алюминий +3);  
  • атомы простых веществ, состоящих из одного элемента у атомов с высокими и свободные атому имеют нулевую степень. 

Степень окисления ставится над символом элемента:
Какие закономерности наблюдаются в изменении свойства

Восстановление — встречный окислению процесс приема электрона атома окислителя (акцептора электрона) атомом восстановителя (донором электрона) и уменьшение степени окисления атома вещества.

Кислотность — способность вещества (органического соединения) отдавать протон другим атомам, т. е. быть донором протона.

Основность — способность вещества (органического соединения) принимать протон другого атома, т. е. быть акцептором протона.

Источник

    В главных подгруппах II—VI групп содержатся также элементы, оксиды которых обладают амфотерными свойствами. Закономерности изменения свойств оксидов и гидроксидов для элементов главных подгрупп показаны ниже [c.57]

    Кислотно-основные свойства. Изменение химической активности проявляется, в частности, и в изменении кислотно-основных свойств. Для иллюстрации рассмотрим закономерность изменения значений AG ge для оксидов элементов подгруппы бериллия в процессах [c.261]

    Свойства оксидов и гидроксидов различных элементов изменяются внутри периода. Покажите закономерности этих изменений на примере третьего периода. [c.59]

    Закономерности изменения свойств низших оксидов и соответствующих амфолитов и кислот аналогичны закономерностям, свойственным высшим оксидам и их производным. Основный характер амфолитов в подгруппах возрастает с номером периода, сила кислот уменьшается в том же порядке. У одного и того же элемента низшие оксиды являются менее кислотными, чем высший оксид. [c.463]

    Закономерности изменения свойств оксидов [c.5]

    Все характеристические оксиды, как известно, относятся к оснбвным й кислотным. Первые являются оксидами металлов, вторые генетически связаны с неметаллами. Поскольку нет четкой границы между металлами и неметаллами, существует большая группа амфотерных оксидов. Амфотерность определяется не только положением элемента в Периодической системе, но и зависит от его степени окисления. Ориентируясь на разность ОЭО, можно утверждать, что оксиды металлов должны быть преимущественно ионными, а оксиды неметаллов — преимущественно ковалентными. Поскольку для одного и того же элемента с увеличением степени окисления его электроотрицательность растет, то в этом направлении — от низших к высшим оксидам — растет ковалентный вклад. Вследствие этого наблюдается изменение свойств оксидов от основных к кислотным, например ОЭО (Сг2+) = 1,4, ОЭО (СгЗ ) = 1,6, ОЭО (Сгв ) = 2,4, и свойства оксидов закономерно изменяются  [c.267]

    К настоящему времени установлены многочисленные закономерности в изменении свойств элементов и их соединений в связи с периодической системой. Это относится к кислотно-основным, окислительно-восстановительным и многим другим свойствам, имеющим химико-аналитическое значение. Четко выражено, например, нарастание основного характера оксидов в вертикальных рядах сверху вниз. Периодический закон Д. И.Менделеева позволяет, например, систематизировать обширный материал по устойчивости комплексных соединений, предвидеть существование новых комплексов и оценивать их стабильность. [c.15]

    Закономерности в изменении свойств оксидов и гидроксидов с увеличением атомной массы элемента 1УА группы аналогичны закономерностям, наблюдаемым у оксидов и гидрооксидов элементов УА группы. [c.455]

    Классификация оксидов и закономерности изменения химических свойств [c.4]

    Какие закономерности наблюдаются в изменении свойств кислотных оксидов в периодах и группах  [c.140]

    Выявленная нами закономерность изменения хемс сорбционных и каталитических свойств основных окси дов позволяет надеяться, что и для других каталити ческих систем может быть важен предлагаемый крите рий. Таким образом, на основании полученных резуль та шв и имеющихся В. .литсратурб СБеденки можно сдс лать заключение о двух областях каталитической ак тивности основных оксидов. [c.88]

    Чаще всего чтение текста учебника в целях обобщения завершается оформлением какой-л1 бо схемы или таблицы, в которой сводятся воедино сведения из разных параграфов, показываются взаимосвязи или принципы классификации веществ, сг.ойства которых обобщаются. Например, так проводят обобщение свойств соединений азота в IX классе, в процессе которого прослеживается закономерное изменение степени окисле-иия элемента от —3 до +5 и особенности поведения веществ как восстановителей и окислителей. При этом также обобщаются типичные свойства важнейших соединений азота аммиака, оксидов, кислот, солей активных и неактивных ме-тал.яов. [c.46]

Читайте также:  У какого элемента сильнее выражены металлические свойства у натрия или у магния

    Укажите закономерность изменения полярности связи элемент—кислород в молекулах ЭО2 (Э = халькоген). Какой тип кристаллической решетки должно иметь вещество Р0О2 Как изменяются кислотно-основные свойства ЭО2 при переходе от S к Ро Приведите уравнения кислотно-основных реакций с участием оксидов ЭО2. [c.106]

    Внутренняя, или горизонтальная , периодичность — дополнительная периодичность в горизонтальных рядах р-, (1- и /-элементов. Она обусловлена двухэтапным заполнением электронами р-, й- и /-орбиталей (сначала неспаренными, а затем спаренными, в соответствии с правилом Хунда см. табл. 5.2). Это ведет к повторению валентностей у лантаноидов, а также к закономерным двухэтапным изменениям размеров радиусов атомов и ионов, теплот атомизации, энтальпий образования соединений, а также изменения изобарно-изотермического потенциала образования оксидов -элементов и других свойств (см. рис. 14.4, 14.15—14.19, 14.22, 14.29, 14.31 — 14.69). [c.98]

    Снизу вверх (или обратно) по каждой подгруппе периодической системы свойства характеристичных оксидов и гидроксидов изменяются, в общем, весьма закономерно. При этом уже из приводимого ниже сопоставления теплот образования (в кДж на связь) видно, что аналогами элементов малых периодов являются в данном случае именно члены 1—7 рядов аналогов, тогда как соответствующие представители 11 —17 рядов отклоняются от общего хода изменения рассматриваемых величин  [c.485]

    Промышленный синтез метанола из оксидов углерода и водорода при низких температурах (200—300 °С) может быть проведен при разных давлениях. Естественно, при изменении давления меняются и физико-химические свойства реагируюш,их компонентов (плотность, вязкость, скорость диффузии, способность к адсорбции и т. п.). И хотя общие закономерности процесса образования метанола сохраняются, влияние отдельных технологических факторов на его выход (производительность катализатора), содержание и состав примесей будет различен, С повышением давления при прочих равных условиях увеличивается также равновесное содержание метанола в газе. [c.83]

    Физические свойства оксидов изменяются закономерно и соответственно изменению свойств элементов по периодам и группам. На рис. 80 представлена зависимость температуры плавления оксидов от порядкового номера элемента. При обычной температуре оксиды металлов — твердые кристаллические вещества, оксиды неметаллов могут быть в газообразном (SO2, СО и др.), в жидком (Н2О и др.) и твердом (Р2О3, Р2О5, Si02 и др.) агрегатных состояниях. [c.239]

    Таким образом, из рассмотрения характеристических соединений следуют общие выводы о закономерностях изменения кислотно-основных, окислительно-восстановительных свойств и стабильности соответствующих степеней окисления. Так, для железа из известных степеней окисления +2, +3 и +6 наиболее стабильна в обычных условиях степень окисления +3. При переходе к кобальту и никелю повышается стабильность низшей степени окисления, в то время как высшая степень окисления +6 для них не свойственна вовсе. Для первых двух элементов триады (Ре и Со), для которых сгабильности степеней окисления +2 и -НЗ сопоставимы, существуют смешанные оксиды Э3О4 шпинельного типа, в то время как для никеля подобный оксид неизвестен, что свидетельствует о меньшей стабильности степени окисления -Ь3 для этого элемента. [c.405]

    Описание свойств элементов и их соединений следует всегда проводить, используя периодическую систему элементов Д. И. Менделеева. Она дает возможность изучать их во взаимосвязи. Такой прием мы уже использовали при рассмотрении изменения свойств атомов в пределах периода и группы ( 25). Закономерно изменяются свойства в пределах подгруппы с увеличением положительного заряда ядра металлические свойства возрастают. Так, например, характер оксидов типа КаОз, образуемых элементами главной подгруппы V группы, изменяется в такой последовательности МаОз—кислотный оксид РаОз — слабокислотный оксид АзаОз— амфотерный оксид с преобладанием кислотных свойств ЗЬаОз— амфотерный оксид с преобладанием основных свойств В120з— основной оксид. [c.95]

    Изучение указанных аспектов на ряде оксидов бы проведено с целью выяснения общих закономерност механизма реакций, знание которых необходимо д дальнейшего развития теории предвидения каталит ческого действия. Поэтому значительное внимание работе уделялось исследованию изменения хемосорбщ онно-каталитических свойств оксидов в зависимости с положения металла в периодической системе, услов предварительной тренировки и проведения опыта. [c.58]

    Оксиды пделочноземельных металлов. Активность оксидов щелочноземельных металлов обычно не так высока, как активность редкоземельных оксидов, но селективность может быть высокой. Все эти оксиды являются твердыми основаниями. По этой причине многие авторы пытались коррелировать их каталитические свойства с основностью [89, 90]. Селективность окисления метана в С2-углеводороды возрастает от 22% для ВеО при 740°С до 72% для ВаО. Подобное же закономерное изменение селективности с основностью отмечено для соединений кальция СаО (селективность 43%) > СаЗЮз (18%) > Сар2 (14%) > Саз(Р04)2 (11,2%) [90]. [c.232]

    В соответствии с изменением химической природы элемента закономерно изменяются и химические свойства соединений, в частности их основно-кислотная активность. Так. в случае оксидов в ряду — ВеО — В2О3 — СО2 — N,05 по мере уменьшения степени полярности связи (уменьшения отрицательного эффективного заряда атома кислорода б) ослабляются основные и нарастают кислотные свойства Ы О — сильно основный оксид, ВеО — амфотерный, а В2О3, СО и ЫзОй — кислотные. [c.250]

    Общая характеристика. Эти элементы редкие, за исключением алюминия, на долю которого приходится 8,8% массы земной коры (третье место — за кислородом и кремнием). Во внешнем электронном уровне их атомов по три электрона а в возбужденном состоянии Проявляют высшую валентность 111 Э2О3, Э(ОН)з, ЭС1з и т. д. Связи с тремя соседними атомами в соединениях типа ЭХд осуществляются за счет перекрывания трех гибридных облаков поэтому молекулы имеют плоское трехугольное строение, дипольный момент нуль. Из-за того, что в атомах галлия, индия и таллия предпоследний уровень содержит по 18 электронов, алюминия 8 и бора 2, нарушаются закономерные различия некоторых свойств при переходе от алюминия к галлию температур плавления элементарных веществ, радиусов атомов, энтальпий и свободных энергий образования оксидов, свойств гидроксидов и пр. (табл. 23). Таков же характер изменения различий при переходе от магния к цинку. [c.279]

    Изменение химического характера оксидов и гидроксидов. Оксиды II гидроксиды различных элементов при максимальной валентности последних ,югут обладать основн.ыми, кислотными и амфотерными свойствами. Свойства кх закономерно изменяются как в периодах, так к в группах. В периоде слева направо основной характер оксидов и [c.93]

Источник