Какие взаимодействия называют магнитными перечислите основные свойства

Подобно тому, как в пространстве, окружающем электрические заряды, возникает электрическое поле, так и в пространстве окружающем токи, возникает особого вида поле, называемое магнитным полем.
Магнитное поле проявляется по силам, действующим на проводники с током, на движущиеся заряды или постоянные магниты.
Неподвижные электрические заряды не создают магнитное поле и постоянное магнитное поле не действует на неподвижные электрические заряды.
Опыт показывает, что неподвижный заряд и магнитная стрелка не влияют друг на друга.
При прохождении электрического тока по проводнику вокруг него возникает магнитное поле, действующее на магнитную стрелку, которая стремится занять положение поперек проводника при взгляде сверху.
Опыт Эрстеда (1820 г.), показывающий действие магнитного поля проводника с током на магнитную стрелку.
Характеристики магнитного поля
I. Вектор магнитной индукции (В) – совпадает по направлению с силой, действующей на северный полюс магнитной стрелки.
II. Линии магнитной индукции – кривые, в каждой точке которых, вектор магнитной индукции В направлен по касательной.
Свойства линий магнитной индукции
1. Линии магнитной индукции всегда замкнуты и охватывают проводники стоком.
2. Вблизи проводника линии магнитной индукции лежат в плоскости перпендикулярной проводнику с током.
3. Направление линий магнитной индукции определяется по правилу буравчика: если ввинчивать буравчик по направлению тока, то направление вращения его рукоятки укажет направление линий магнитной индукции.
Магнитное поле прямолинейного проводника с током.
Правило буравчика обратимо и для круговых токов его удобно применять в следующей формулировке: если вращать рукоятку буравчика по направлению кругового тока, то поступательное движение острия буравчика укажет направление линий магнитной индукции.
Линии магнитной индукции полей постоянного магнита, прямого тока, кругового тока и катушки с током.
Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.
III. Вектор напряженности магнитного поля H.
Согласно предположению французского физика А. Ампера, в любом теле существуют микроскопические (молекулярные) токи, обусловленные движением электронов в атомах и молекулах. Эти токи создают свое магнитное поле и могут поворачиваться в магнитных полях макроскопических токов (токов, текущих в проводниках). Так, если вблизи какого-то тела (среды) поместить проводник с током, то под действием его магнитного поля микротоки в атомах тела определенным образом ориентируются, создавая тем самым дополнительное магнитное поле. Поэтому вектор магнитной индукции B характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же токе I и прочих равных условиях вектор B в различных средах будет иметь разные значения.
Магнитное поле, создаваемое макротоками, характеризуется вектором напряженности H. Для однородной изотропной среды связь между векторами индукции B и напряженности H магнитного поля определяется выражением
В =μ₀μН, где
магнитная постоянная, μ — магнитная проницаемость среды (безразмерная величина), показывающая, во сколько раз магнитное поле макротоков усиливается за счет поля микротоков данной среды.
Единица напряженности магнитного поля: 1 А/м — напряженность такого поля, магнитная индукция которого в вакууме равна 4π·10-7 Тл.
Глава 1. Магнитное поле
Продолжим изучение электродинамики. Ознакомимся с магнитными полями, не изменяющимися с течением времени, и магнитными и электрическими полями, изменяющимися со временем. С электрическими полями, не изменяющимися с течением времени, вы ознакомились в 10 классе.
Неподвижные электрические заряды создают вокруг себя электрическое поле. Движущиеся заряды создают, кроме того, магнитное поле.
Между неподвижными электрическими зарядами действуют силы, определяемые законом Кулона. Согласно теории близкодействия это взаимодействие осуществляется так: каждый из зарядов создает электрическое поле, которое действует на другой заряд.
Однако между электрическими зарядами могут существовать силы и иной природы. Их можно обнаружить с помощью следующего опыта.
Возьмем два гибких проводника, укрепим их вертикально, а затем присоединим нижними концами к полюсам источника тока (рис. 1.1). Притяжения или отталкивания проводников при этом не обнаружится1.
1 Проводники заряжаются от источника тока, но заряды проводников при разности потенциалов между ними в несколько вольт ничтожно малы. Поэтому кулоновские силы никак не проявляются.
Если теперь другие концы проводников замкнуть проволокой так, чтобы в проводниках возникли токи противоположного направления, то проводники начнут отталкиваться друг от друга (рис. 1.2). В случае же токов одного направления проводники притягиваются (рис. 1.3).
Взаимодействия между проводниками с током, т. е. взаимодействия между направленно движущимися электрическими зарядами, называют магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.
Магнитное поле. Согласно теории близкодействия, подобно тому как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем токи, возникает поле, называемое магнитным.
Электрический ток в проводнике создает вокруг себя магнитное поле, которое действует на ток в другом проводнике. А поле, созданное электрическим током второго проводника, действует на первый.
Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.
Перечислим основные свойства магнитного поля, которые установлены экспериментально.
1. Магнитное поле порождается электрическим током (направленно движущимися зарядами).
2. Магнитное поле обнаруживается по действию на электрический ток (на движущиеся заряды).
Подобно электрическому полю, магнитное поле существует реально, независимо от нас, от наших знаний о нем.
Экспериментальным доказательством реальности магнитного поля, как и реальности электрического поля, может служить факт существования электромагнитных волн.
Замкнутый контур с током в магнитном поле. Для изучения магнитного поля можно взять замкнутый контур малых (по сравнению с расстояниями, на которых магнитное поле заметно изменяется) размеров. Например, можно взять маленькую плоскую проволочную рамку произвольной формы (рис. 1.4). Подводящие ток проводники нужно расположить близко друг к другу (рис. 1.4, а) или сплести их вместе (рис. 1.4, б). Тогда результирующая сила, действующая со стороны магнитного поля на эти проводники, будет равна нулю.
Выяснить характер действия магнитного поля на контур с током можно с помощью следующего опыта.
Подвесим на тонких гибких проводниках, сплетенных вместе, маленькую плоскую рамку, состоящую из нескольких витков проволоки. На расстоянии, значительно большем размеров рамки, вертикально расположим провод (рис. 1.5, а). Рамка при пропускании электрического тока через нее и через провод поворачивается и располагается так, что провод оказывается в плоскости рамки (рис. 1.5, б). При изменении направления тока в проводе рамка поворачивается на 180°.
Опыт показывает, что магнитное поле создается не только токами в проводниках. Любое направленное движение электрических зарядов вызывает появление магнитного поля. Так, например, токи в газах, полупроводниках вызывают возникновение в окружающем их пространстве магнитного поля. Смещение связанных электрических зарядов в диэлектрике, помещенном в переменное электрическое поле, также вызывает появление магнитного поля.
Из курса физики вам известно, что магнитное поле создается не только электрическим током, но и постоянными магнитами. Если мы подвесим на гибких проводах плоскую рамку с током между полюсами магнита, то рамка будет поворачиваться до тех пор, пока ее плоскость не установится перпендикулярно линии, соединяющей полюсы магнита (рис. 1.6). Таким образом, магнитное поле оказывает на рамку с током ориентирующее действие2.
2 Однородное магнитное поле оказывает на рамку, как показывает опыт, лишь ориентирующее действие. В неоднородном магнитном поле рамка, кроме того, будет двигаться поступательно, притягиваясь к проводнику с током или отталкиваясь от него.
Движущиеся заряды (электрический ток) создают магнитное поле.
Вокруг любых направленно движущихся зарядов возникает магнитное поле. Оно также появляется в случае, если в пространстве существует электрическое поле, изменяющееся со временем.
Обнаруживается магнитное поле по действию на электрический ток.
Вопросы к параграфу
1. Какие взаимодействия называют магнитными?
2. Перечислите основные свойства магнитного поля.
Магнитное поле это материя, которая возникает вокруг источников электрического тока, а также вокруг постоянных магнитов. В пространстве магнитное поле отображается как совокупление сил, которые способны оказать воздействие на намагниченные тела. Это действие объясняется наличием движущих разрядов на молекулярном уровне.
Магнитное поле формируется только вокруг электрических зарядов, которые находятся в движении. Именно поэтому магнитное и электрическое поле являются, неотъемлемыми и вместе формируют электромагнитное поле. Компоненты магнитного поля взаимосвязаны и воздействуют друг на друга, изменяя свои свойства.
Свойства магнитного поля:
1. Магнитное поле возникает под воздействие движущих зарядов электрического тока.
2. В любой своей точке магнитное поле характеризуется вектором физической величины под названием магнитная индукция, которая является силовой характеристикой магнитного поля.
3. Магнитное поле может воздействовать только на магниты, на токопроводящие проводники и движущиеся заряды.
4. Магнитное поле может быть постоянного и переменного типа
5. Магнитное поле измеряется только специальными приборами и не может быть воспринятым органами чувств человека.
6. Магнитное поля является электродинамическим, так как порождается только при движении заряженных частиц и оказывает влияние только на заряды, которые находятся в движении.
7. Заряженные частицы двигаются по перпендикулярной траектории.
Размер магнитного поля зависит от скорости изменения магнитного поля. Соответственно этому признаку существуют два вида магнитного поля: динамичное магнитное поле и гравитационное магнитное поле. Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей строения этих частиц.
Магнитный момент возникает в том случае, когда магнитное поле воздействует на токопроводящую раму. Другими словами, магнитный момент это вектор, который расположен на ту линию, которая идет перпендикулярно раме.
Магнитное поле можно изобразить графически с помощью магнитных силовых линий. Эти линии проводятся в таком направлении, так чтобы направление сил поля совпало с направлением самой силовой линии. Магнитные силовые линии являются непрерывными и замкнутыми одновременно.
Направление магнитного поля определяется с помощью магнитной стрелки. Силовые линии определяют также полярность магнита, конец с выходом силовых линий это северный полюс, а конец, с входом этих линий, это южный полюс.
Очень удобно наглядно оценить магнитное поле с помощью обычных железных опилок и листка бумаги.
Если мы на постоянный магнит положим лист бумаги, а сверху насыпим опилок, то частички железа выстроятся соответственно силовым линиям магнитного поля.
Направление силовых линий для проводника удобно определять по знаменитому правилу буравчика или правилу правой руки. Если мы обхватим проводник рукой так, чтобы большой палец смотрел по направлению тока(от плюса к минусу), то 4 оставшиеся пальцы покажут нам направление силовых линий магнитного поля.
А направление силы Лоренца — силы, с которой действует магнитное поле на заряженную частицу или проводник с током, по правилу левой руки.
Если мы расположим левую руку в магнитном поле так, что 4 пальца смотрели по направлению тока в проводнике , а силовые линии входили в ладонь, то большой палец укажет направление силы Лоренца, силы действующей на проводник помещенный в магнитное поле.
На этом собственно всё. Появившиеся вопросы обязательно задавайте в комментариях.
Заметка: учите инглиш? — рейтинг школ английского языка (https://www.schoolrate.ru/) будет вам полезен при выборе.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 сентября 2016;
проверки требуют 14 правок.
Магнитные материалы, Магнетики — материалы, вступающие во взаимодействие с магнитным полем, выражающееся в его изменении, а также в других физических явлениях — изменение физических размеров, температуры, проводимости, возникновению электрического потенциала и т. д. В этом смысле к магнетикам относятся практически все вещества (поскольку ни у какого из них магнитная восприимчивость не равна нулю), большинство из них относится к классам диамагнетиков (имеющие небольшую отрицательную магнитную восприимчивость — и несколько ослабляющие магнитное поле) или парамагнетиков (имеющие небольшую положительную магнитную восприимчивость — и несколько усиливающие магнитное поле); более редко встречаются ферромагнетики (имеющие большую положительную магнитную восприимчивость — и намного усиливающие магнитное поле), о ещё более редких классах веществ по отношению к действию на них магнитного поля — см. ниже.
Магнитными материалами могут быть различные сплавы, химические соединения, жидкости.
Ферромагнетики делятся на две большие группы — Магнитотвёрдые материалы и Магнитомягкие материалы.
Также существуют другие типы магнитных материалов: магнитострикционные материалы, магнитооптические материалы, термомагнитные материалы.
Природа и строение магнитных материалов[править | править код]
Известно два различных механизма магнетизма:
- зонный магнетизм;
- молекулярный магнетизм.
Выделяют несколько основных типов магнетиков, различимых по конфигурации их магнитных структур:
- диамагнетики
- парамагнетики
- ферромагнетики,
- неколлинеарные ферромагнетики,
- антиферромагнетики,
- ферримагнетики,
- аромагнетики[1],
- гелимагнетики,
- спиновые стёкла,
- сперомагнетики,
- асперомагнетики,
- миктомагнетики,
- сперимагнетики,
- пьезомагнетики,
- спиновая жидкость.
Области применения магнитных материалов[править | править код]
Некоторые области применения полимерных магнитов:
- Акустические системы, реле и бесконтактные датчики
- Электромашины, магнитные сепараторы, холодильники
- Магнитные элементы кодовых замков и охранной сигнализации
- Тахогенераторы, датчики положения, электроизмерительные приборы
- Медицина ( магнитотерапия, магнитные матрацы)
- Автоматизированное шоссе, где в США предусматривается разместить до полутонны ферритовых магнитопластов на одну милю шоссе для автоматического управления движением автомобиля, оснащенного специальным компьютером и системой слежения
- Магнитное покрытие для полов офисов и промышленных помещений
- Магнитные компоненты для глушителей автомобилей (в Европе на эти цели уходит 23000 тонн магнитопластов)
- Периферийные устройства компьютеров, мобильные телефоны, фотоаппараты, кинокамеры
- Магнитные устройства для обработки воды, углеводородного топлива, масел; магнитные фильтры
- Магнитные устройства для использования в рекламе, торговле, при оснащении выставок, конференций, спортивных мероприятий и так далее
- Неразрушающие методы контроля ( Магнитопорошковый контроль)
Примечания[править | править код]
Литература[править | править код]
- Магнитомягкие материалы для современной силовой электроники
- Наиболее часто задаваемые вопросы по магнитомягким магнитным материалам
Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуется магнитное поле. Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34). Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.
Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,— южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36) (силовые линии, проходящие внутри магнита, не показаны).
Рис. 34. Схемы действия магнитного поля на движущиеся электрические заряды: положительный ион (а) и электрон (б).
Рис. 35. Магнитное поле, созданное постоянным магнитом.
Рис. 36. Однородное магнитное поле между полюсами постоянного магнита.
Рис. 37. Магнитный поток, пронизывающий катушку при перпендикулярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.
Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное роле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,— дальше друг от друга. Силовые линии нигде не пересекаются.
Во многих случаях удобно рассматривать магнитные силовые линии как некоторые упругие растянутые нити, которые стремятся сократиться, а также взаимно отталкиваются друг от друга (имеют взаимный боковой распор). Такое механическое представление о силовых линиях позволяет наглядно объяснить возникновение электромагнитных сил при взаимодействии магнитного поля и Проводника с током, а также двух магнитных полей.
Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.
Магнитная индукция и магнитный поток. Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитноe поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м2 или 1 см2, расположенную перпендикулярно магнитному полю. Различают однородные и неоднородные магнитные поля. В однородном магнитном поле магнитная индукция в каждой точке поля имеет одинаковое значение и направление. Однородным может считаться поле в воздушном зазоре между разноименными полюсами магнита или электромагнита (см.рис.36) при некотором удалении от его краев. Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку 1 (рис. 37, а), следовательно, в однородном магнитном поле
Ф = BS (40)
где S — площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна потоку, поделенному на площадь S поперечного сечения:
B = Ф/S (41)
Если какая-либо поверхность расположена наклонно по отношению к направлению магнитных силовых линий (рис. 37, б), то пронизывающий ее поток будет меньше, чем при перпендикулярном ее положении, т. е. Ф2 будет меньше Ф1.
В системе единиц СИ магнитный поток измеряется в веберах (Вб), эта единица имеет размерность В*с (вольт-секунда). Магнитная индукция в системе единиц СИ измеряется в теслах (Тл); 1 Тл = 1 Вб/м2.
Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по прямолинейному проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость ?а. Единицей ее измерения является генри на метр (1 Гн/м = 1 Ом*с/м).
В среде с большей магнитной проницаемостью электрический ток определенной силы создает магнитное поле с большей индукцией. Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов (см. § 18), имеет примерно то же значение, – что и магнитная проницаемость вакуума. Абсолютную магнитную проницаемость вакуума называют магнитной постоянной, ?о = 4?*10-7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ. Отношение магнитной проницаемости ?а какого-либо вещества к магнитной проницаемости вакуума ?о называют относительной магнитной проницаемостью:
? = ?а/?о (42)
Напряженность магнитного поля. Напряженность И не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением
H = B/?а = B/(??о) (43)
Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
Напряженность магнитного поля измеряется в амперах на метр (А/м) или амперах на сантиметр (А/см).