Какие виды двигательной единицы бывают и их свойства кратко
Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт – нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных их в сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:
I. Медленные неутомляемые. Они образованы «красными» мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращений таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример – камбаловидная мышца.
IIВ. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются «белыми». Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.
IIA. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.
30)(Виды и режимы сокращений скелетных мышц. Одиночное мышечное сокращение. Тетанус, его виды, механизм)
У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение, или тетанус. Одиночное сокращение это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы. После короткого скрытого периода (латентный период) начинается процесс сокращения. При регистрации сократительной активности в изометрических условиях (два конца неподвижно закреплены) в первую фазу происходит нарастание напряжения (силы), а во вторую ее падение до исходной величины. Соответственно эти фазы называют фазой напряжения и фазой расслабления. При регистрации сократительной активности в изотоническом режиме (например, в условиях обычной миографической записи) эти фазы будут называться соответственно фазой укорочения и фазой удлинения. В среднем сократительный цикл длится около 200 мс (мышцы лягушки) или 30-80 мс (у теплокровных). Если на мышцу действует серия прямых раздражении (минуя нерв) или непрямых раздражении (через нерв), но с большим интервалом, при котором всякое следующее раздражение попадает в период после окончания 2-й фазы, то мышца будет на каждый из этих раздражителей отвечать одиночным сокращением. Суммированные сокращения возникают в том случае, если на мышцу наносятся 2 и более раздражения, причем всякое последующее раздражение (после предыдущего) наносится либо во время 2-й фазы (расслабления или удлинения), либо во время 1-й фазы (укорочения или напряжения).
(Режимы сокращения мышц)
Для скелетной мышцы характерны два основных режима сокращения изометрический и изотонический. Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз) она не укорачивается. Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом мышца укорачивается меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза. Так как изотоническое сокращение не является «чисто» изотоническим (элементы изометрического сокращения имеют место в самом начале сокращения мышцы), а изометрическое сокращение тоже не является «чисто» изотоническим (элементы смещения все-таки есть, несомненно), то предложено употреблять термин «ауксотоническое сокращение» смешанное по характеру. Понятия «изотонический», «изометрический» важны для анализа сократительной активности изолированных мышц и для понимания биомеханики сердца. Режимы сокращения гладких мышц. Целесообразно выделить изометрический и изотонический режимы (и, как промежуточный ауксотонический). Например,когда мышечная стенка полого органа начинает сокращаться, а орган содержит жидкость, выход для которой перекрыт сфинктером, то возникает ситуация изометрического режима: давление внутри полого органа растет, а размеры ГМК не меняются (жидкость не сжимается). Если это давление станет высоким и приведет к открытию сфинктера, то ГМК переходит в изотонический режим функционирования происходит изгнание жидкости, т.е. размеры ГМК уменьшаются, а напряжение или сила сохраняется постоянной и достаточной для изгнания жидкости.
(Одиночное сокращение)
Механический ответ отдельного мышечного волокна на одиночный потенциал действия называется одиночным сокращением. Основные характеристики одиночного изометрического сокращения показаны на , а. Начало мышечного напряжения запаздывает на несколько миллисекунд по отношению к потенциалу действия. В течение этого латентного периода проходят все этапы электромеханического сопряжения .
Интервал от начала развития напряжения до момента его максимума — это время сокращения . Оно различно для разных типов волокон скелетных мышц. Время сокращения быстрых волокон не превышает 10 мс, тогда как для более медленных волокон оно не меньше 100 мс. Длительность сокращения определяется тем, как долго цитоплазматическая концентрация Са2+ остается повышенной, обеспечивая продолжение циклической активности поперечных мостиков . Время сокращения обусловлено активностью Са2+-АТФ фазы саркоплазматического ретикулума , которая в быстрых волокнах выше, чем в медленных.
Сравнение одиночных сокращений одного и того же мышечного волокна при разных режимах его деятельности показывает, что латентный период больше для изотонического сокращения , чем для изометрического , тогда как длительность механического процесса меньше в случае изотонического сокращения (т.е. при укорочении), чем изометрического (т.е. при генерировании силы).
Характеристики изотонического сокращения зависят также от веса поднимаемой нагрузки). А именно, при более тяжелой нагрузке:
— латентный период продолжительнее;
— скорость укорочения (величина укорочения мышцы в единицу времени), длительность сокращения и величина укорочения мышцы меньше.
Рассмотрим подробнее последовательность явлений во время изотонического одиночного сокращения. При возбуждении мышечного волокна поперечные мостики начинают развивать силу, однако укорочение не начнется, пока мышечное напряжение не превысит нагрузку на волокно. Таким образом, укорочению предшествует период изометрического сокращения , в течение которого возрастает напряжение. Чем тяжелее нагрузка, тем больше потребуется времени, чтобы оно сравнялось с величиной нагрузки и началось укорочение. Если нагрузку повышать, то в конце концов мышечное волокно не сможет ее поднять, скорость и степень укорочения будут равны нулю и сокращение станет чисто изометрическим.
Моторная или двигательная единица представляет собой группу волокон, которые иннервируются одним мотонейроном. Количество волокон, входящих в одну единицу, может варьироваться в зависимости от функции мышцы. Чем более мелкие движения она обеспечивает, тем меньше моторная единица и меньше усилий надо для ее возбуждения.
Двигательные единицы: их классификация.
В изучении данной темы есть важный момент. Существуют критерии, по которым может быть охарактеризована любая двигательная единица. Физиология как наука, выделяет два критерия:
- скорость сокращения в ответ на проведение импульса;
- скорость утомления.
Соответственно, исходя из этих показателей, можно выделить три типа двигательных единиц.
- Медленные, не утомляющиеся. Их мотонейроны содержат много миоглобина, который имеет высокое сродство к кислороду. Мышцы, имеющие в большом количестве медленные мотонейроны, называются красными из-за их специфического цвета. Они необходимы для поддержания позы человека и удержания его в равновесии.
- Быстрые, утомляемые. Такие мышцы способны выполнять большое количество сокращений за короткий промежуток времени. Волокна их содержат много энергетического материала, из которого при помощи окислительного фосфорилирования можно получить молекулы АТФ.
- Быстрые, устойчивые к утомлению. В этих волокнах содержится мало митохондрий, а АТФ образуется за счет расщепления молекул глюкозы. Эти мышцы именуются белыми, поскольку в них отсутствует миоглобин.
Единицы первого типа
Двигательная единица первого типа или медленная неутомляемая, встречается чаще всего в крупных мышцах. Такие мотонейроны имеют низкий порог возбуждения и скорость проведения нервного импульса. Центральный отросток нервной клетки в своем терминальном отделе разветвляется и иннервирует небольшую группу волокон. Частота разрядов, поступающих к медленным двигательным единицам — от шести до десяти импульсов в секунду. Мотонейрон может поддерживать такой ритм в течение нескольких десятков минут.
Сила и скорость сокращения двигательных единиц первого типа в полтора раза меньше, чем у других типов моторных единиц. Причина этого — низкая скорость образования АТФ и медленных выходов ионов кальция на наружную мембрану клетки для связывания с тропонином.
Единицы второго типа
Двигательная единица этого типа имеет крупный мотонейрон с толстым и длинным аксоном, который иннервирует большой пучок мышечных волокон. Эти нервные клетки имеют наиболее высокий порог возбуждения и высокую скорость проведения нервных импульсов.
При максимальном напряжении мышцы, частота нервных импульсов может достигать пятидесяти в секунду. Но мотонейрон не способен длительно поддерживать такую скорость проведения, поэтому быстро устает. Сила и скорость сокращения мышечного волокна второго типа выше, чем у предыдущего, так как количество миофибрилл в нем больше. В волокнах содержится много ферментов, расщепляющих глюкозу, но меньше митохондрий, белка миоглобина и кровеносных сосудов.
Единицы третьего типа
Двигательная единица третьего типа относится быстрым, но устойчивым к утомлению мышечным волокнам. По своим характеристикам она должна занимать промежуточное значение между первым типом двигательных единиц и вторым. Мышечные волокна таких мышц сильные, быстрые и выносливые. Для добычи энергии она могут использовать как аэробный, так и анаэробный пути.
Соотношение быстрых и медленных волокон генетически детерминировано и может отличаться у разных людей. Именно поэтому кто-то хорош в беге на длинные дистанции, кто-то с легкостью преодолевает спринтерскую стометровку, а кому-то больше подходит тяжелая атлетика.
Рефлекс на растяжение и мотонейронный пул
При растягивании любой мышцы первыми реагируют медленные волокна. Их нейроны генерируют разряды до десяти импульсов в секунду. Если мышцу продолжать растягивать, то частота генерируемых импульсов возрастет до пятидесяти. Это приведет к сокращению двигательных единиц третьего типа и увеличит силу мышцы в десять раз. При дальнейшем растяжении подключатся моторные волокна второго типа. Это преумножит силу мышцы еще в четыре-пять раз.
Двигательная мышечная единица управляется мотонейроном. Совокупность нервных клеток, входящих в состав одной мышцы, называется мотонейронный пул. В одном пуле могут одновременно находиться нейроны из разных, по качественным и количественным проявлениям, двигательных единиц. Из-за этого участки мышечных волокон включаются в работу не одновременно, а по мере того, как увеличивается напряжение и скорость нервных импульсов.
«Принцип величины»
Двигательная единица мышцы, в зависимости от ее типа, сокращается только при достижении определенной пороговой нагрузки. Порядок возбуждения моторных единиц стереотипный: сначала сокращаются мелкие мотонейроны, затем нервные импульсы постепенно добираются до крупных. Эту закономерность в середине двадцатого века заметил Эдвуд Хеннеман. Он назвал ее «принцип величины».
Броун и Бронк за полвека до этого публиковали свои труды по исследованию принципа работы мышечных единиц разных типов. Они выдвинули предположение, что существует два способа управления сокращениями мышечных волокон. Первый из них – это увеличить частоту нервных импульсов, а второй – вовлечь в процесс как можно большее количество мотонейронов.
Сила и работа мышечного волокна. Двигательные единицы.
Величина сокращения (сила мышцы) зависит от морфологических свойств и физиологического состояния мышцы:
1. Исходной длины мышцы (длинны покоя). Сила мышечного сокращения зависит от исходной длины мышцы или длины покоя. Чем сильнее мышца растянута в покое, тем сильнее сокращение (закон Франка-Старлинга).
2. Диаметра мышцы или поперечного сечения. Выделяют два диаметра:
а) анатомический диаметр – поперечное сечение мышц.
б) физиологический диаметр – перпендикулярное сечение каждого мышечного волокна. Чем больше физиологическое сечение, тем большей силой обладает мышца.
Сила мышцы измеряется весом максимального груза поднятого на высоту или максимальным напряжением, которое она способна развить в условиях изометрического сокращения. Измеряется в килограммах или ньютонах. Методика измерения силы мышцы называется динамометрия.
Выделяют два вида силы мышцы:
1. Абсолютная сила – отношение максимальной силы к физиологическому диаметру.
2. Относительная сила – отношение максимальной силы к анатомическому диаметру.
При сокращении мышца способна выполнять работу. Работа мышцы измеряется произведением поднятого груза на величину укорочения.
Работа мышцы характеризуется мощностью. Мощность мышцы определяется величиной работы в единицу времени и измеряется в ваттах.
Наибольшая работа и мощность достигается при средних нагрузках.
Мотонейрон с группой иннервируемых им мышечных волокон составляет двигательную единицу. Аксон мотонейронов может ветвиться и иннервировать группу мышечных волокон. Так, один аксон может иннервировать от 10 до 3000 мышечных волокон.
Различают двигательные единицы по строению и функциям.
По строению двигательные единицы делятся на:
1. Малые двигательные единицы, которые имеют малый мотонейрон и тонкий аксон, способный иннервировать 10-12 мышечных волокон. Например, мышцы лица, мышцы пальцев рук.
2. Большие двигательные единицы представлены крупным телом мотонейрона, толстым аксоном, который способен иннервировать более 1000 мышечных волокон. Например, четырехглавая мышца.
По функциональному значению двигательные единицы делятся на:
1. Медленные двигательные единицы. Они включают малые двигательные единицы, являются легко возбудимыми, характеризуются невысокой скоростью распространения возбуждения, в работу включаются первыми, но при этом они практически не утомляемы.
2. Быстрые двигательные единицы. Они состоят из больших двигательных единиц, плохо возбудимы, обладают большой скоростью проведения возбуждения. Обладают высокой силой и скоростью ответа. Например, мышцы боксера.
Эти особенности двигательных единиц обусловлены рядом свойств.
Мышечные волокна, которые входят в двигательные единицы, имеют сходные свойства и различия. Так, медленные мышечные волокна обладают:
1. Богатой капиллярной сетью.
2. Содержат много миофибрилл.
3. Содержит много миоглобина (т.е. способны связывать большое количество кислорода).
4. В них содержится много жиров.
Благодаря этим особенностям эти мышечные волокна обладают высокой выносливостью, способны к небольшим по силе сокращениям, но длительным по времени.
Отличительные особенности быстрых мышечных волокон:
1. Содержат большее, чем медленные волокна, миофибрилл.
2. Обладают большей скоростью и силой сокращения.
3. Содержат мало капилляров.
4. Содержат мало миоглобина.
5. Содержат мало жиров.
В связи с этими особенностями быстрые мышечные волокна быстро утомляемы, но обладают большой силой и высокой скоростью ответа.
Движение — необходимое условие развития и существования организма, его приспособления к окружающей среде. Именно движение является основой целенаправленного поведения, что раскрывается словами Н.А.Бернштейна: «Очевидная огромная биологическая значимость двигательной деятельности организмов — почти единственной формы осуществления не только взаимодействия с окружающей средой, но и активного воздействия на эту среду, изменяющего ее с небезразличными для особи результатами…». Еще одним проявлением значимости движений является то, что в основе любой профессиональной деятельности лежит работа мышц.
Все многообразие двигательной деятельности осуществляется с помощью опорно-двигательного аппарата. Его составляют специализированные анатомические образования: мышцы, скелет и центральная нервная система.
В опорно-двигательном аппарате с определенной степенью условности выделяют пассивную часть — скелет и активную часть — мышцы.
К скелету относятся кости и их соединения (например, суставы).
Скелет служит опорой внутренним органам, местом прикрепления мышц, защищает внутренние органы от внешних механических повреждений. В костях скелета расположен костный мозг — орган кроветворения. В состав костей входит большое количество минеральных веществ (в наибольшей степени представлены кальций, натрий, магний, фосфор, хлор). Кость представляет собой динамичную живую ткань с высокой чувствительностью к различным регуляторным механизмам, к эндо — и экзогенным влияниям. Кость — не только орган опоры, но и важнейший участник минерального обмена (подробнее — в разделе Обмен веществ). Интегральным показателем метаболической активности костной ткани служат продолжающиеся в течение всей жизни процессы активной перестройки и обновления костных структур. Эти процессы, с одной стороны, являются важным механизмом поддержания минерального гомеостаза, с другой — обеспечивают структурную адаптацию кости к меняющимся условиям функционирования, что особо значимо в связи с регулярными занятиями физической культурой и спортом. В основе постоянно протекающих процессов костной перестройки лежит активность костных клеток — остеобластов и остеокластов.
Мышцы за счет способности сокращаться приводят в движение отдельные части тела, а также обеспечивают поддержание заданной позы. Мышечное сокращение сопровождается выработкой большого количества тепла, а значит, работающие мышцы участвуют в теплообразовании. Хорошо развитые мышцы являются прекрасной защитой внутренних органов, сосудов и нервов.
Кости и мышцы, как по массе, так и по объему составляют значительную часть всего организма, в их соотношении имеются существенные половые различия. Мышечная масса взрослого мужчины — от 35 до 50 % (в зависимости от того, насколько развиты мышцы) от общей массы тела, женщины — примерно 32-36 %. У спортсменов, специализирующихся в силовых видах спорта, мышечная масса может достигать 50-55%, а у культуристов – 60-70% общей массы тела. На долю костей приходится 18 % от массы тела у мужчин и 16 % у женщин.
У человека различают три вида мышц:
• поперечнополосатые скелетные мышцы;
• поперечнополосатая сердечная мышца;
• гладкие мышцы внутренних органов, кожи, сосудов.
Гладкие мышцыделятся на тонические(не способны развивать «быстрые» сокращения, в сфинктерах полых органов) и фазно-тонические (которые делятся на обладающие автоматией, т.е. способностью к спонтанной генерации фазных сокращений. Примером могут быть мышцы органов ЖКТ и мочеточников, и не обладающие этим свойством – мышечный слой артерий, семенных протоков, мышца радужки глаза, они сокращаются под влиянием импульсов вегетативной нервной системы. Двигательная иннервация гладких мышц осуществляется отростками клеток вегетативной нервной системы, чувствительная — отростками клеток спинальных ганглиев. Как правило, сокращение гладкой мускулатуры не может быть вызвано произвольно, в регуляции ее сокращений не участвует кора мозга. Функция гладких мышц заключается в том, чтобы поддерживать длительное напряжение, при этом они затрачивают в 5 — 10 раз меньше АТФ, чем понадобилось бы для выполнения такой же задачи скелетной мышце.
Гладкие мышцы обеспечивают функцию полых органов, стенки которых они образуют. Благодаря гладким мышцам осуществляется изгнание содержимого из мочевого пузыря, кишок, желудка, желчного пузыря, матки. Гладкие мышцы обеспечивают сфинктерную функцию – создают условия для хранения определенного содержимого в полом органе (мочи в мочевом пузыре, плода в матке). Изменяя просвет кровеносных сосудов, гладкие мышцы адаптируют регионарный кровоток к местным потребностям в кислороде и питательных веществ, участвуют в регуляции дыхания за счет изменения просвета бронхиального дерева.
Скелетные мышцы являются активной частью опорно-двигательного аппарата, обеспечивая целенаправленную деятельность, в первую очередь за счет произвольных движений (подробнее особенности их строения и принципов работы рассмотрены ниже).
Виды мышечных волокон
Мышцы состоят из мышечных волокон, обладающих разной силой, скоростью и длительностью сокращения, а также утомляемостью. Ферменты в них обладают разной активностью и представлены в различных изомерных формах. Заметно различие в них содержания дыхательных ферментов – гликолитических и окислительных. По соотношению миофибрилл, митохондрий и миоглобина различают так называемые белые, красные и промежуточные волокна. По функциональным особенностям мышечные волокна делят на быстрые, медленные и промежуточные. Если по активности АТФазы мышечные волокна различаются довольно резко, то степень активности дыхательных ферментов варьирует весьма значительно, поэтому наряду с белыми и красными существуют и промежуточные волокна.
Наиболее явно мышечные волокна различаются особенностями молекулярной организации миозина. Среди различных его изоформ существуют две основных – «быстрая» и «медленная». При постановке гистохимических реакций их различают по АТФазной активности. С этими свойствами коррелирует и активность дыхательных ферментов. Обычно в быстрых волокнах (FF-волокна — быстро сокращающиеся,fast twitch fibres), преобладают гликолитические процессы, они более богаты гликогеном, в них меньше миоглобина, поэтому их называют также белыми. В медленных волокнах, обозначаемых как S (ST) волокна (slow twitch fibres), напротив, выше активность окислительных ферментов, они богаче миоглобином, выглядят более красными. Они включаются при нагрузках в пределах 20-25% от максимальной силы и отличаются хорошей выносливостью.
FT — волокна, обладающие по сравнению с красными волокнами небольшим содержанием миоглобина, характеризуются высокой сократительной скоростью и возможностью развивать большую силу. По сравнению с медленными волокнами они могут вдвое быстрее сокращаться и развить в 10 раз большую силу. FT-волокна, в свою очередь, подразделяются на FTO-и FTG-волокна. Существенные различия между перечисленными типами мышечных волокон определяется способом получения энергии (рис.2.1).
Рис. 2.1Различия энергообеспечения у мышечных волокон разных типов (по https://medi.ru/doc/g740203.htm).
Получение энергии в FTO-волокнах происходит так же, как и в ST-волокнах, преимущественно путем окислительного фосфорилирования. В связи с тем, что этот процесс разложения протекает относительно экономично (на каждую молекулу глюкозы при разложении мышечного гликогена для получения энергии накапливается 39 энергетических фосфатных соединений), FTO-волокна имеют также относительно высокую сопротивляемость утомляемости. Накопление энергии в FTG-волокнах происходит преимущественно путем гликолиза, т. е. глюкоза в отсутствии кислорода распадается до еще относительно богатого энергией лактата. В связи с тем, что этот процесс распада неэкономичен (на каждую молекулу глюкозы для получения энергии накапливается всего лишь 3 энергетических фосфатных соединения), FTG-волокна относительно быстро утомляются, но, тем не менее они способны развить большую силу и, как правило, включаются при субмаксимальных и максимальных мышечных сокращениях.
Двигательные единицы
Основным морфофункциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица – ДЕ(рис.2.2.).
Рис 2.2. Двигательная единица
ДЕ включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт – нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. ДЕ мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных мышцах их в сотни раз больше.
ДЕ активизируются по закону „все или ничего». Таким образом, если от тела мотонейрона переднего рога спинного мозга посылается по нервным путям импульс, то на него реагируют или все мышечные волокна ДЕ, или ни одного. Для бицепса это означает следующее: при нервном импульсе необходимой силы укорачиваются все сократительные элементы (миофибриллы) всех (примерно 1500) мышечных волокон соответствующей ДЕ.
Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:
I. Медленные неутомляемые. Они образованы «красными» мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы, поэтому эти волокна относят к тоническим. Регуляция сокращений таких, волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример – камбаловидная мышца.
II В. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются «белыми». Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Напр., мышцы глаза.
II А. Быстрые, устойчивые к утомлению (промежуточные).
Все мышечные волокна одной ДЕ относятся к одному и тому же типу волокон (FT- или ST-волокна).
Мышцы, задействованные в выполнении очень точных и дифференцированных движений (например, мышцы глаз или пальцев руки), состоят обычно из большого количества ДЕ (от 1500 до 3000). Такие ДЕ имеют небольшое количество мышечных волокон (от 8 до 50). Мышцы, выполняющие относительно менее точные движения (например, большие мышцы конечностей), обладают существенно меньшим количеством ДЕ, но в их состав включено большое число волокон (от 600 до 2000).
В среднем человек имеет примерно 40% медленных и 60 % быстрых волокон. Но это средняя величина (по всей скелетной мускулатуре), мышцы же выполняют различные функции. Количественный и качественный состав мышц неоднороден, в них входит различное число двигательных единиц, соотношение типов которых также различно (композиция мышц). В связи с этим сократительные способности разных мышц неодинаковы. Наружные мышцы глаза, которые вращают глазное яблоко, развивают максимальное напряжение за одно сокращение длительностью всего 7.5 мс, камбалообразная – антигравитационная мышца нижней конечности, очень медленно развивает максимальное напряжение в течение 100 мс. Мышцы, выполняющие большую статическую работу (камбаловидная мышца), часто обладают большим количеством медленных ST-волокон, а мышцы, совершающие преимущественно динамические движения (бицепс), имеют большое количество FT-волокон.
Основные свойства мышечных волокон (следовательно, и двигательных единиц – ДЕ, в состав которых они входят), определяемые также свойствами мотонейронов, представлены в таблице 1.
Таблица 2.1