Какие вещества могут проявлять как окислительные так и востановительные свойства

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 декабря 2017;
проверки требуют 30 правок.
Окисли́тельно-восстанови́тельные реа́кции (ОВР), также редокс (сокр. англ. redox, от reduction-oxidation — восстановление-окисление) — встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ (или ионов веществ), реализующимся путём перераспределения электронов между атомом-окислителем (акцептором) и атомом-восстановителем (донором) .
Историческая справка[править | править код]
Издавна учёные полагали, что окисление — потеря флогистона (особого невидимого горючего вещества, термин которого ввел Иоганн Бехер), а восстановление — его приобретение. Но, после создания А. Лавуазье в 1777 году кислородной теории горения, к началу XIX века химики стали считать окислением взаимодействие веществ с кислородом, а восстановлением их превращения под действием водорода. Тем не менее в качестве окислителя могут выступать и другие элементы, например
В этой реакции окислитель — ион водорода[1] — H+, а железо выступает в роли восстановителя.
В соответствии с электронно-ионной теорией окисления-восстановления, разработанной Л. В. Писаржевским в 1914 г., окисление — процесс отщепления электронов от атомов или ионов элемента, который окисляется; Восстановлением называется процесс присоединения электронов к атомам или ионам элемента, каковой восстанавливается. Например, в реакции
атом цинка теряет два электрона, то есть окисляется, а молекула хлора присоединяет их, то есть восстанавливается.
Описание[править | править код]
В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого.[2]
Окисление[править | править код]
Окисление — процесс отдачи электронов с увеличением степени окисления.
При окисле́нии у веществ в результате отдачи электронов увеличивается степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.
В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.
Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель (сам процесс называется окислением):
восстановитель — e− ↔ сопряжённый окислитель.
Несвязанный, свободный электрон является сильнейшим восстановителем.
Восстановление[править | править код]
Восстановле́ние — процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.
При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.
Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель (сам процесс называют восстановлением):
окислитель + e− ↔ сопряжённый восстановитель.
Окислительно-восстановительная пара[править | править код]
Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару, а их взаимопревращения являются окислительно-восстановительными полуреакциями.
В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, то есть восстановлением, другая — с отдачей электронов, то есть окислением.
Виды окислительно-восстановительных реакций[править | править код]
Межмолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных
веществ, например:
Внутримолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:
Диспропорционирование (самоокисление-самовосстановление) — реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:
Репропорционирование (конпропорционирование) — реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления:
Примеры[править | править код]
Окислительно-восстановительная реакция между водородом и фтором
Разделяется на две полу-реакции:
1) Окисление:
2) Восстановление:
Процесс присоединения электронов — восстановление. При восстановлении степень окисления понижается:
Атомы или ионы, которые в данной реакции присоединяют электроны являются окислителями, а атомы или ионы, которые отдают электроны — восстановителями.
Для нахождения пропорции веществ, вступающих в химическую реакцию, часто требуется уравнять ОВР. Уравнивание ОВР сводится к нахождению стехиометрических коэффициентов (то есть, количества молей каждого соединения). Стехиометрические коэффициенты могут принимать только значения целых величин от 1 и выше, дробные стехиометрические коэффициенты допускаются лишь в некоторых случаях записи термохимических уравнениях из курса физической химии. Различают два методы уравнивания ОВР: метод полуреакций и метод электронного баланса. Метод электронного баланса более прост и используется в случае протекания реакции в газообразной среде (например, процессы горения или термического разложения соединений). Метод полуреакций более сложен и используется в случае протекания реакции в жидкой среде. Метод полуреакций оперирует не свободными атомами и одноатомными ионами, а реально существующими в растворе частицами, образовавшимися в результате процессов растворения и/или диссоциации реагирующих веществ. Оба метода занимают важное место в базовом курсе общей и неорганической химии, изучаемом студентами различных учебных заведений[3].
Примечания[править | править код]
- ↑ В этом, как и во многих других случаях водород рассматривают как помещённый в VII группе периодической системы химических элементов над галогенами-окислителями.
- ↑ Несущественно, переходят ли электроны с одного атома на другой вполне (ионная связь) или же только более или менее оттягиваются (полярная ковалентная связь). Поэтому в данном случае мы будем говорить об отдаче или присоединении электронов независимо от действительного типа валентной связи. В общем, окислительно-восстановительные процессы можно определить как реакции, связанные с переходом электронов от одних атомов к другим. То есть валентности [ковалентных молекулярных соединений] в этих реакциях выступают как степени окисления. Более строго, в узком смысле под степенью окисления имеется в виду в том числе и валентности.
- ↑ ОВР методом полуреакций (недоступная ссылка). Химия и химическая технология в жизни (10.07.2013). Дата обращения 19 января 2015. Архивировано 19 января 2015 года.
Литература[править | править код]
- Хомченко Г. П., Севастьянова К. И., Окислительно-восстановительные реакции, 2 изд., М., 1980;
- Кери Ф., Сандберг Р., Углублённый курс органической химии, пер. с англ., кн. 2, М., 1981, с. 119-41, 308-43;
- Марч Дж., Органическая химия, пер. с англ., т. 4, М., 1988, с. 259—341;
- Турьяи Я. И., Окислительно-восстановительные реакции и потенциалы в аналитической химии, М., 1989;
- Тодрес 3. В., Электронный перенос в органической и металлоорганической химии, в сб.: Итоги науки и техники. Сер. Органическая химия, т. 12, М., 1989. С. И. Дракин, З. В. Тодрес.
См. также[править | править код]
- Кислотно-основные реакции
Ñîåäèíåíèÿ ìàêñèìàëüíîé ñòåïåíè îêèñëåíèÿ, êîòîðîé îáëàäàåò äàííûé ýëåìåíò, ìîãóò â îêèñëèòåëüíî-âîññòàíîâèòåëüíûõ ðåàêöèÿõ ÿâëÿòüñÿ òîëüêî îêèñëèòåëÿìè, à ñòåïåíü îêèñëåíèÿ ýëåìåíòà â äàííîì ñëó÷àå áóäåò òîëüêî ïîíèæàòüñÿ. Àòîìû ýëåìåíòîâ îòäàëè ñâîè âàëåíòíûå ýëåêòðîíû è ïîýòîìó ìîãóò òîëüêî ïðèíèìàòü ýëåêòðîíû.
Ìàêñèìàëüíàÿ ñòåïåíü îêèñëåíèÿ ýëåìåíòà ðàâíà íîìåðó ãðóïïû ïåðèîäè÷åñêîé ñèñòåìû.
Ñîåäèíåíèÿ ìàêñèìàëüíîé ñòåïåíè îêèñëåíèÿ ìîãóò áûòü òîëüêî âîññòàíîâèòåëÿìè, à ñòåïåíü îêèñëåíèÿ ýëåìåíòà áóäåò ïîâûøàòüñÿ.
 ñëó÷àå, åñëè ýëåìåíò íàõîäèòñÿ â ïðîìåæóòî÷íîé ñòåïåíè îêèñëåíèÿ, òî åãî àòîìû ìîãóò êàê ïðèíèìàòü, òàê è îòäàâàòü ýëåêòðîíû. Ýòî çàâèñèò îò óñëîâèé ðåàêöèè è âåùåñòâà, ñ êîòîðûì ïðîèñõîäèò âçàèìîäåéñòâèå.
Ñïîñîáíîñòü âñòóïàòü â ðåàêöèè, êàê ñ îêèñëèòåëÿìè, òàê è ñ âîññòàíîâèòåëÿìè íàçûâàåòñÿ îêèñëèòåëüíî-âîññòàíîâèòåëüíîé äâîéñòâåííîñòüþ.
Âåùåñòâà, îáëàäàþùèå îêèñëèòåëüíî-âîññòàíîâèòåëüíîé äâîéñòâåííîñòüþ ñïîñîáíû ê ðåàêöèè ñàìîîêèñëåíèÿ-ñàìîâîññòàíîâëåíèÿ. Ïðè ýòîì ÷àñòü àòîìîâ ýëåìåíòà ñ ïðîìåæóòî÷íîé ñòåïåíüþ îêèñëåíèÿ îòäàåò ýëåêòðîíû, à äðóãàÿ ÷àñòü èõ ïðèíèìàåò.
Ïðèìåð ðåàêöèè ñàìîîêèñëåíèÿ-ñàìîâîññòàíîâëåíèÿ:
Cl20 + 2NaOH = Na+1Cl-1 + Na+1Cl+1O-2 + H20O-2,
 äàííîì ñëó÷àå õëîð ÿâëÿåòñÿ è îêèñëèòåëåì è âîññòàíîâèòåëåì.
Ðåàêöèþ ñàìîîêèñëåíèÿ-ñàìîâîññòàíîâëåíèÿ íàçûâàþò ðåàêöèåé äèñïðîïîðöèîíèðîâàíèÿ.
Êàëüêóëÿòîðû ïî õèìèè | |
Õèìèÿ îíëàéí íà íàøåì ñàéòå äëÿ ðåøåíèÿ çàäà÷ è óðàâíåíèé. | |
Êàëüêóëÿòîðû ïî õèìèè |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó õèìèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Îêèñëåíèå. | |
Îêèñëåíèå − ýòî ïðîöåññ ïåðåäà÷è ýëåêòðîíîâ âåùåñòâîì, êîòîðûé ñîïðîâîæäàåòñÿ ïîâûøåíèåì ñòåïåíè îêèñëåíèÿ ýëåìåíòà. | |
Îêèñëåíèå. |
Ðåàêöèè ñ èçìåíåíèåì ñòåïåíè îêèñëåíèÿ. | |
Õèìè÷åñêèå ðåàêöèè, ïðîòåêàþùèå ñ èçìåíåíèÿ ñòåïåíè îêèñëåíèÿ , ò.å. ðåàêöèÿ ïðîèñõîäèò ñ èçìåíåíèåì ÷èñëà ýëåêòðîíîâ, ïåðåìåùåííûõ îò îäíîãî àòîìà âçàèìîäåéñòâóþùåãî ýëåìåíòà. | |
Ðåàêöèè ñ èçìåíåíèåì ñòåïåíè îêèñëåíèÿ. |
Определение
Окислительно -восстановительные реакции (ОВР) — реакции, протекающие с изменением степени окисления одного или нескольких элементов.
Окислительно-восстановительные реакции играют важную роль в природе и технике. Фотосинтез, дыхание, брожение, накопление энергии в клетках сопровождаются переносом электронов. Разделяя процессы окисления и восстановления, удается превращать энергию химических реакций в электрическую. Этот принцип лежит в основе работы гальванических элементов и аккумуляторов.
К числу ОВР принадлежат все реакции между простыми и сложными веществами, между двумя простыми веществами, а также некоторые случаи взаимодействия сложных веществ:
$overset{0}{Fe} + overset{+2}{Cu}overset{+6}{S} overset{-2}{O_4} = overset{+2}{Fe}overset{+6}{S} overset{-2}{O_4} +overset{0}{Cu}$
$2overset{0}{Mg} + overset{0}{O_2} = 2overset{+2}{Mg}overset{-2}{O}$
$2overset{+1}{K} overset{-1}{I} + 4overset{+1}{H}overset{+5}{N}overset{-2}{O_3} = overset{0}{I_2} + 2overset{+4}{N}overset{-2}{O_2} + 2overset{+1}{K} overset{+5}{N}overset{-2}{ O_3} + 2overset{+1}{H_2}overset{-2}{O}$
При окислительно-восстановительных реакциях происходит переход электронов от одних атомов к другим.
Определение
Атом, отдающий электрон, то есть повышающий свою степень окисления, называют восстановителем, а атом, принимающий электрон (его степень окисления понижается) – окислителем.
Часто термины окислитель и восстановитель переносят и на вещества, в состав которых входят соответствующие атомы. В результате реакции окислитель восстанавливается, а восстановитель окисляется.
Определение
Процесс отдачи атомом электронов называется окислением, а процесс принятия атомом электронов — восстановлением.
Запомни! Нельзя путать название процесса передачи электронов с функцией атома, которую он проявляет в этом процессе.
Восстановителем может быть атом элемента, а восстановление — это процесс принятия электронов.
$underline{O}$кислитель | $underline{textrm{В}}$осстановитель |
---|---|
$underline{textrm{В}}$зял электроны | $underline{O}$тдал электроны |
$underline{textrm{В}}$осстановился | $underline{O}$кислился |
$S^{+6} + 2bar{e} rightarrow S^{+4}$ | $S^{-2} -2bar{e} rightarrow S^{0}$ |
степень окисления $downarrow$ | степень окисления $uparrow$ |
процесс восстановления | процесс окисления |
Типичные окислители: | Типичные восстановители: |
|
|
Есть ряд мнемонических правил, которые позволяют лучше запомнить разницу между этими понятиями:
По первым буквам слов можно составить следующие сокращения:
ОВВ: окислитель — взял $bar{e}$ — восстановился
ВОО: восстановитель — отдал — окислился
2. Или использовать словосочетание «окислитель-грабитель».
3. Запомнить стихотворение:
Восстановитель — это тот, кто электроны отдает.
Сам отдает грабителю, злодею-окислителю.
Отдает — окисляется, сам восстановителем является.
КЛАССИФИКАЦИЯ ОВР
Определение
Окислительно-восстановительные реакции в которых окислитель и восстановитель входят в состав разных соединений называют межмолекулярными, а ОВР, в которых и окислитель, и восстановитель входят в состав одного и того же соединения — внутримолекулярными.
К числу внутримолекулярных принадлежат реакции термического разложения некоторых веществ, например, сульфата меди(II):
$2CuSO_4 stackrel{700^circ C}{=} 2CuO + 2SO_2 + O_2$
$mathrm{S^{+6} + 2e^– rightarrow S^{+4}}$ |2 2 окислитель, процесс восстановления
$mathrm{2O^{–2} – 4e^– rightarrow O_2^0}$ |4 1 восстановитель, процесс окисления
__________________________________________________________________________________________
$mathrm{2S^{+6} + 2O^{–2} rightarrow 2S^{+4} + O_2^0}$
Внутримолекулярные ОВР, в свою очередь, также делятся на два типа: реакции диспропорционирования и сопропорционирования.
Определение
Внутримолекулярные окислительно-восстановительные реакции, в которых окислителем и восстановителем является один и тот же элемент, который в начале реакции находится в одной степени окисления, называют диспропорционированием.
К числу таких реакций принадлежит, например, разложение пероксида водорода на воду и кислород.
$2H_2overset{-1}{O_2} rightarrow 2H_2overset{-2}{O} + overset{0}{O_2}$.
Определение
Внутримолекулярные окислительно-восстановительные реакции, в результате которых атомы одного и того же элемента, находящиеся в разных степенях окисления, приобретают одну промежуточную, называют сопропорционированием.
Примером служит взаимодействие сернистого газа с сероводородом, приводящее к образованию серы:
$2H_2overset{-2}{S} + overset{+4}{S}O_2 = 3overset{0}{S} + 2H_2O$.
Если степень окисления некоторого атома в химическом соединении промежуточная, то этот атом может как принимать электроны (т.е. быть окислителем), так и отдавать их (т.е. быть восстановителем). Такое поведение, в частности, характерно для пероксида водорода, поскольку в состав молекулы Н2O2 входят атомы кислорода в промежуточной степени окисления минус 1:
(окислитель) ® Н2O–2 (2O–1 + 2e– ® 2O–2)
(восстановитель) ® O20 (2O–1 – 2e– ® O20).
При прогнозировании поведения пероксида водорода и других веществ, характеризующихся окислительно-восстановительной двойственностью, необходимо учитывать следующее. Если, например, для пероксида водорода партнёром по реакции является вещество, способное быть только окислителем (KMnO4, K2Cr2O7), то H2O2 будет вести себя как восстановитель и окисляться до O2. Если же пероксид водорода взаимодействует с веществом, способным проявлять только восстановительные свойства (KI), то молекулы H2O2 будут выполнять функцию окислителя, восстанавливаясь до молекул H2O.
Окислительно-восстановительная двойственность характерна также для азотистой кислоты и нитритов:
(окислитель) ® , или , или ;
(восстановитель) ® .
Активные неметаллы, например, галогены в щелочных растворах подвергаются реакциям самоокисления-самовосстановления (диспропорционирования); в этих реакциях одна часть атомов простого вещества является окислителем, а другая – восстановителем:
Cl20 ® 2Cl–1 Cl20 ® 2Cl–1
Cl20 ® 2 Cl20 ® 2
Несмотря на то, что вещества, в состав которых входит атом в промежуточной степени окисления, теоретически могут быть как окислителями, так и восстановителями, на практике часто преимущественно проявляются либо окислительные, либо восстановительные свойства. Например, атомы Mn+4, Cu+2, Fe+2, S+4 в соединениях MnO2, CuSO4, Fe(OH)2, Na2SO3, в принципе, могут проявлять как окислительные, так и восстановительные свойства, однако оксид марганца (IV) в кислых растворах – сильный окислитель, восстанавливающийся в соответствии со схемой:
MnO2 ® Mn2+;
соединения двухвалентной меди проявляют окислительные свойства, восстанавливаясь до соединений одновалентной меди:
Cu2+ ® Cu+1;
соединения железа (II) легко окисляются до соединений железа (III):
Fe2+ ® Fe3+; Fe(OH)2 ® Fe(OH)3;
растворимые соли железа (III) проявляют окислительные свойства, восстанавливаясь до соединений железа (II):
Fe3+ ® Fe2+;
сульфиты – сильные восстановители и легко окисляются до сульфатов:
SO32– ® SO42–.
Некоторые неметаллы (C, S, P, As) окисляются концентрированной азотной кислотой до высшей степени окисления:
С ® CO2; S ® SO42– P ® H3PO4 As ® H3AsO4
Йод окисляется азотной кислотой до степени окисления +5: I2 ® HIO3.
Сама HNO3 в этих реакциях может восстанавливаться как до NO2, так и до NO.
Неметаллы могут также окисляться концентрированной серной кислотой:
С ® CO2; S ® SO2 H2 ® H2O P ® H3PO4
При этом H2SO4 восстанавливается до SO2.
Далее рассматриваются примеры, иллюстрирующие использование приведённого выше теоретического материала при прогнозировании продуктов окислительно-восстановительных реакций.
Пример 4.1Спрогнозируйте продукты следующей окислительно-восста-новительной реакции и составьте уравнение реакции ионно-электронным методом (т.е. методом полуреакций): K2Cr2O7 + N2H4 + H2SO4 ® … .
При выполнении данного задания следует учитывать, что запись H2SO4 в условии подразумевает разбавленную серную кислоту; если в реакции участвует концентрированная серная кислота – будет применяться запись H2SO4 (конц.).
Разбавленная серная кислота в подавляющем большинстве окислительно-восстановительных реакций (исключение – реакции с активными металлами) не проявляет себя ни как окислитель, ни как восстановитель и применяется для создания кислой среды. Следовательно, окислитель и восстановитель нужно искать среди двух оставшихся веществ. Атом хрома в K2Cr2O7 находится в высшей степени окисления +6. Поэтому в любой окислительно-восстановительной реакции K2Cr2O7 ведёт себя как окислитель. В кислой среде дихромат-ионы восстанавливаются до ионов Cr3+: Cr2O72– ® 2Cr3+.
В молекуле N2H4 атом азота находится в промежуточной степени окисления минус 2. Теоретически атом в промежуточной степени окисления может быть как окислителем, так и восстановителем. Но в данной реакции функцию окислителя выполняет K2Cr2O7. Поэтому гидразин (N2H4) – восстановитель. Как уже было ранее сказано, атомы-восстановители в отрицательной степени окисления обычно окисляются до нулевой степени окисления. Поэтому, даже не зная химии гидразина, можно предположить, что продуктом его окисления в данной реакции будет азот: N2H4 ® N2.
Исходные схемы превращений: Cr2O72– ® 2Cr3+
N2H4 ® N2
Процедура составления ионно-электронных уравнений подробно рассмотрена в методических указаниях по общей химии [2]. Напомним кратко важнейшие правила уравнивания атомов кислорода и водорода при составлении полуреакций.
В ту часть составляемого ионно-электронного уравнения реакции, протекающей в кислой среде, где имеется недостаток атомов кислорода, следует записать на каждый недостающий атом О одну молекулу Н2О, а в другую часть уравнения – два иона Н+.
В ту часть составляемого ионно-электронного уравнения реакции, протекающей в кислой среде, где не хватает атомов водорода следует записать нужное количество ионов Н+.
Cr2O72– + 14H+ + 6e– ® 2Cr3+ + 7H2O 2
N2H4 ® N2 + 4H+ + 4e– 3
2Cr2O72– + 3N2H4 + 28H+ ® 4Cr3+ + 3N2 + 12H+ + 14H2O
2Cr2O72– + 3N2H4 + 16H+ ® 4Cr3+ + 3N2 + 14H2O
2K2Cr2O7 + 3N2H4 + 8H2SO4 ® 3N2 + 2Cr2(SO4)3 + 2K2SO4 + 14H2O
Пример 4.2 Спрогнозируйте продукты следующей окислительно-восстановительной реакции и составьте уравнение реакции ионно-электронным методом (т.е. методом полуреакций): Cl2 + KOH ® … .
Щёлочи (LiOH, NaOH, KOH, Ca(OH)2, Ba(OH)2) в водных растворах не проявляют ни окислительных, ни восстановительных свойств. При проведении окислительно-восстановительных реакций эти вещества используются для создания щелочной среды. Следовательно, и окислителем, и восстановителем в данной реакции являются атомы хлора; это реакция самоокисления-самовосстановления (реакция диспропорционирования).
Атомы хлора (нулевая степень окисления), являющиеся окислителем, принимают электроны; их степень окисления становится равной минус 1: Cl2 ® 2Cl–.
Другая часть атомов хлора отдают электроны и приобретают положительную степень окисления; обычно, в реакциях диспропорционирования галогенов это или степень окисления +1 (например, HClO, KClO) или +5 (например, HClO3, KClO3). Очевидно, что в щелочной среде продуктом реакции не может быть кислота. Следовательно, при окислении хлора в щелочной среде может получиться соль (KClO или KClO3). Рассмотрим, например превращение Cl2 ® 2ClO3–.
Исходные схемы превращений: Cl2 ® 2Cl–
Cl2 ® 2ClO3–
В ту часть составляемого ионно-электронного уравнения реакции, протекающей в щелочной среде, где недостаёт атомов кислорода, следует записать на каждый недостающий атом кислорода два иона OH–, а в другую часть уравнения – одну молекулу H2O.
Cl2 + 2e– ® 2Cl– 5
Cl2 + 12OH– ® 2ClO3– + 6H2O + 10e– 1
6Cl2 + 12OH– ® 10Cl– + 2ClO3– + 6H2O
3Cl2 + 6OH– ® 5Cl– + ClO3– + 3H2O
3Cl2 + 6KOH ® 5KCl + KClO3 + 3H2O
Пример 4.3. Спрогнозируйте продукты следующей окислительно-восста-новительной реакции и составьте уравнение реакции ионно-электронным методом (т.е. методом полуреакций): KMnO4 + H2O2 + KOH ® … .
Атом марганца в KMnO4 находится в высшей степени окисления +7. Поэтому в любой окислительно-восстановительной реакции KMnO4 проявляет свойства окислителя. В щелочной среде атом Mn+7 в составе перманганат-иона восстанавливается до Mn+6 (образуется манганат-ион): MnO4– ® MnO42–.
KOH обеспечивает щелочную среду и не проявляет окислительно-восстановительную активность (см. пример 4.2). Следовательно, восстановителем являются атомы кислорода в молекуле H2O2, степень окисления которых равна минус 1 (промежуточная). Атомы кислорода O–1 окисляются до нулевой степени окисления (типичное поведение восстановителя в отрицательной степени окисления): H2O2 ® O2.
Исходные схемы превращений: MnO4– ® MnO42–
H2O2 ® O2
Составление полуреакции превращения H2O2 ® O2 требует уравнивания атомов водорода: если в какой-либо части составляемого ионно-электронного уравнения реакции, протекающей в щелочной среде, имеется избыток атомов водорода, то в эту часть уравнения на каждый избыточный атом водорода следует записать один ион OH–, а в другую часть уравнения – одну молекулу Н2О.
MnO4– + e– ® MnO42– 2
H2O2 + 2OH– ® O2 + 2H2O + 2e– 1
2MnO4– + H2O2 + 2OH– ® 2MnO42– + O2 + 2H2O
2KMnO4 + H2O2 + 2KOH ® 2K2MnO4 + O2 + H2O
Пример 4.4. Спрогнозируйте продукты следующей окислительно-восста-новительной реакции и составьте уравнение реакции ионно-электронным методом (т.е. методом полуреакций): KMnO4 + NaNO2 + H2O ® … .
Атом марганца в KMnO4 находится в высшей степени окисления +7 (окислитель). В нейтральной среде (в левой части уравнения – молекулы воды) KMnO4 (Mn+7) восстанавливается до MnO2 (Mn+4): MnO4– ® MnO2¯.
Атом азота в NaNO2 находится в промежуточной степени окисления +3 и поэтому нитрит натрия выступает в качестве восстановителя, окисляясь до нитрата: NO2– ® NO3–.
Исходные схемы превращений: MnO4– ® MnO2¯
NO2– ® NO3–
Следует иметь в виду, что в ходе реакции, которая начинается в нейтральной среде, может происходить либо подкисление раствора, либо подщелачивание, либо среда раствора останется без изменений.
Таким образом, в рассматриваемом примере при составлении полуреакций нужно определиться, как уравнивать атомы кислорода: с помощью ионов H+ и молекул H2O (кислая среда) или же с помощью ионов OH– и молекул H2O (щелочная среда).
Если предпринять попытку уравнять атомы кислорода по правилу для кислой среды, то получится следующий результат:
MnO4– + 4H+ + 3e– ® MnO2¯ + 4H2O 2
NO2– + H2O ® NO3– + 2H+ + 2e– 3
2MnO4– + 3NO2– + 8H+ + 3H2O ® 2MnO2¯ + 3NO3– + 6H+ + 4H2O
2MnO4– + 3NO2– + 2H+ ® 2MnO2¯ + 3 NO3– + H2O
Этот результат противоречит условию: в левой части ионно-молекулярного уравнения оказались ионы Н+, хотя по условию реакция должна начинаться в нейтральной среде. Следовательно, уравнивание атомов кислорода лучше выполнить с помощью ионов OH– и молекул H2O.
MnO4– + 2H2O + 3e– ® MnO2¯ + 4OH– 2
NO2– + 2OH– ® NO3– + H2O + 2e– 3
2MnO4– + 3NO2– + 6OH– + 4H2O ® 2MnO2¯ + 3NO3– + 8OH– + 3H2O
2MnO4– + 3NO2– + H2O ® 2MnO2¯ + 3NO3– + 2OH–
2KMnO4 + 3NaNO2 + H2O ® 2MnO2¯ + 3NaNO3 + 2KOH
Варианты заданий по теме прогнозирование продуктов окислительно-восстановительных реакций представлены в таблице 4.1