Какие вещества являются конечными продуктами подготовительного этапа

Какие вещества являются конечными продуктами подготовительного этапа thumbnail

Универсальным источником энергии во всех клетках служит АТФ (аденозинтрифосфат, или аденозинтрифосфорная кислота).

Все энергетические затраты любой клетки обеспечиваются за счёт универсального энергетического вещества — АТФ.

АТФ синтезируется в результате реакции фосфорилирования, то есть присоединения одного остатка фосфорной кислоты к молекуле АДФ (аденозиндифосфата):

АДФ + H3PO4+ 40 кДж = АТФ + H2O.

Энергия запасается в форме энергии химических связей АТФ.  Химические связи АТФ, при разрыве которых выделяется много энергии, называются макроэргическими.

При распаде АТФ до АДФ клетка за счёт разрыва макроэргической связи получит приблизительно (40) кДж энергии.

Энергия для синтеза АТФ из АДФ  выделяется в процессе диссимиляции.

Энергетический обмен (диссимиляция, катаболизм) — это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.

В зависимости от среды обитания организма, диссимиляция может проходить в два или в три этапа.

Процессы расщепления органических соединений у аэробных организмов происходят в три этапа: подготовительныйбескислородный и кислородный.

В результате этого органические вещества распадаются до простейших неорганических соединений.

 

У анаэробных организмов, обитающих в бескислородной среде и не нуждающихся в кислороде (а также у аэробных организмов при недостатке кислорода), диссимиляция происходит в два этапа: подготовительный и бескислородный.

В двухэтапном энергетическом обмене энергии запасается гораздо меньше, чем в трёхэтапном.

Первый этап — подготовительный

Подготовительный этап заключается в распаде крупных органических молекул до более простых: полисахаридов — до моносахаридов, липидов — до глицерина и жирных кислот, белков — до аминокислот.

Этот процесс называется пищеварением. У многоклеточных организмов он осуществляется в желудочно-кишечном тракте с помощью пищеварительных ферментов. У одноклеточных организмов — происходит под действием ферментов лизосом.

В ходе биохимических реакций, происходящих на этом этапе, энергии выделяется мало, она рассеивается в виде тепла, и АТФ  не образуется.

Второй этап — бескислородный (гликолиз)

Второй (бескислородный) этап заключается в ферментативном расщеплении органических веществ, которые были получены в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует.

Биологический смысл второго этапа заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде (2) молекул АТФ.

Процесс бескислородного расщепления глюкозы называется гликолиз.

Гликолиз происходит в цитоплазме клеток.

Он состоит из нескольких последовательных реакций превращения молекулы глюкозы C6H12O6 в две молекулы пировиноградной кислоты — ПВК C3H4O3 и две молекулы АТФ (в виде которой запасается примерно (40) % энергии, выделившейся при гликолизе). Остальная энергия (около (60) %) рассеивается в виде тепла.

C6H12O6+2H3PO4+2АДФ=2C3H4O3+2АТФ +2H2O.

Получившаяся пировиноградная кислота при недостатке кислорода в клетках животных, а также клетках многих грибов и микроорганизмов, превращается в молочную кислоту C3H6O3.

HOOC−CO−CH3пировиноградная кислота→НАД⋅H+H+лактатдегидрогеназаHOOC−CHOH−CH3молочная кислота.

В мышцах человека при больших нагрузках и нехватке кислорода образуется молочная кислота и появляется боль. У нетренированных людей это происходит быстрее, чем у людей тренированных.

При недостатке кислорода в клетках растений, а также в клетках некоторых грибов (например, дрожжей), вместо гликолиза происходит спиртовое брожение: пировиноградная кислота распадается на этиловый спирт C2H5OH и углекислый газ CO2:

C6H12O6+2H3PO4+2АДФ=2C2H5OH+2CO2+2АТФ+2H2O.

Третий этап — кислородный

В результате гликолиза глюкоза распадается не до конечных продуктов (CO2 и H2O), а до богатых энергией соединений (молочная кислота, этиловый спирт) которые, окисляясь дальше, могут дать её в больших количествах. Поэтому у аэробных организмов после гликолиза (или спиртового брожения) следует третий, завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание.

Этот этап происходит на кристах митохондрий.

Третий этап, так же как и гликолиз, является многостадийным и состоит из двух последовательных процессов — цикла Кребса и окислительного фосфорилирования.

Третий (кислородный) этап заключается в том, что при кислородном дыхании ПВК окисляется до окончательных продуктов — углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде  (36) молекул АТФ  ((2) молекулы в цикле Кребса и (34) молекулы в ходе окислительного фосфорилирования).

Этот этап можно представить себе в следующем виде:

2C3H4O3+6O2+36H3PO4+36АДФ=6CO2+42H2O+36АТФ.

Вспомним, что ещё две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы (на втором, бескислородном, этапе). Таким образом, в результате полного расщепления одной молекулы глюкозы образуется (38) молекул АТФ.

Суммарная реакция энергетического обмена:

C6H12O6+6O2=6CO2+6H2O+38АТФ.

Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

Источник

1 ЭТАП: На подготовительном этапе крупные молекулы органических веществ под воздействием ферментов расщепляются на более простые: углеводы — на моносахариды, жиры — на глицерин и жирные кислоты, белки — на аминокислоты. Освобождаемая энергия рассеивается в виде тепла.

2 ЭТАП: На бескислородном этапе вещества, полученные на первом этапе, подвергаются дальнейшему расщеплению на мембранах клетки, в цитоплазме. Расщепление глюкозы до молекулы пировиноградной кислоты — это 13 ферментативных реакций, в которых также образуются две молекулы АТФ:

C6H12O6 + 2H3PO4 + 2АДФ = 2C3H4O3(ПВК) + 2АТФ +2H2O

Глюкоза в этом процессе не только расщепляется, но и окисляется (теряет атомы водорода) . В мышцах человека и животных две молекулы ПВК, приобретая атомы водорода, восстанавливаются в молочную кислоту С3Н6О3. Этим же продуктом заканчивается гликолиз у молочнокислых бактерий и грибков, применяемый для приготовления кислого молока, простокваши, кефира, а также при силосовании кормов в животноводстве.

Главным результатом анаэробного гликолиза во всех организмах является образование двух молекул АТФ. Высвобождающаяся при расщеплении глюкозы энергия относительно невелика — 200 кДж/моль. 40% энергии, освободившейся в результате этого распада, запасаются в виде макроэргических связей в молекулах АТФ, остальные 60% рассеиваются во внешнюю среду.

Основной выход энергии и молекул АТФ происходит на третьем, кислородном этапе гликолиза, называемом еще аэробным дыханием.

3 ЭТАП — Кислородный гликолиз. При наличии достаточного количества кислорода дальнейший процесс расщепления ПВК происходит уже не в цитоплазме, а в митохондриях, и включает несколько десятков последовательных реакций, каждая из которых обслуживается своим комплексом ферментов.

Молекулы ПВК под действием ферментов (и кофермента НАД — никотинамидадениндинуклеотида) поэтапно окисляются сначала до уксусной кислоты, а затем, в так называемом цикле Кребса (или трикарбоновых кислот) , до углекислого газа и воды (медленное горение) . В процессе окисления образуются сложные молекулярные соединения с присоединенными к ним атомами водорода. Молекулы-переносчики подхватывают и перемещают электроны этих атомов по длинной цепи ферментов от одного к другому. На каждом шаге электроны вступают в окислительно-восстановительные реакции и отдают свою энергию, которая идет на перемещение протонов на внешнюю сторону внутренней мембраны митохондрии.

В результате оставшиеся протоны и перемещенные электроны оказываются на разных сторонах внутренней мембраны. На мембране создается разность потенциалов.

Фермент, синтезирующий АТФ (АТФ-синтетаза) , встроен во внутреннюю мембрану по всей ее толщине. Этот фермент имеет характерную особенность: небольшой каналец в молекулярной структуре. При накоплении на мембране разности потенциалов примерно в 200 мВ ионы Н+ начинают протискиваться через каналец в молекуле АТФ-синтетазы. В процессе энергичного продвижения ионов через фермент происходит синтез АТФ из АДФ с участием фосфорной кислоты.

В химических реакциях кислородного гликолиза освобождается большое количество энергии — 2600 кДж/моль. Существенная ее часть (55%) запасается в высокоэнергетичных связях образующихся молекул АТФ и по каналам эндоплазматической сети отправляется в другие участки клетки, где требуется энергия. . Остальные 45% рассеиваются в виде.

Итоговое уравнение кислородной стадии выглядит следующим образом:

2С3Н6О3(молочн. кислота) + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

Источник

Какие вещества являются конечными продуктами подготовительного этапа

Какие вещества являются конечными продуктами подготовительного этапа

СТАДИИ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Энергетический обмен (катаболизм, диссимиляция) — это процессы расщепления ве­ ществ с высвобождением энергии. Высвобожденная энергия преобразуется в энергию АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Какие вещества являются конечными продуктами подготовительного этапа

Энер­ге­ти­че­ский обмен – это со­во­куп­ность хи­ми­че­ских ре­ак­ций по­сте­пен­но­го рас­па­да ор­га­ни­че­ских со­еди­не­ний, со­про­вож­да­ю­щих­ся вы­сво­бож­де­ни­ем энер­гии, часть ко­то­рой рас­хо­ду­ет­ся на син­тез АТФ. Син­те­зи­ро­ван­ная АТФ ста­но­вит­ся уни­вер­саль­ным ис­точ­ни­ком энер­гии для жиз­не­де­я­тель­но­сти ор­га­низ­мов. Она об­ра­зу­ет­ся в ре­зуль­та­те ре­ак­ции фос­фо­ри­ли­ро­ва­ния – при­со­еди­не­ния остат­ков фос­фор­ной кис­ло­ты к мо­ле­ку­ле АДФ. На эту ре­ак­цию рас­хо­ду­ет­ся энер­гия, ко­то­рая затем на­кап­ли­ва­ет­ся в мак­ро­эр­ги­че­ских свя­зях мо­ле­ку­лы АТФ, при рас­па­де мо­ле­ку­лы АТФ или при ее гид­ро­ли­зе до АДФ клет­ка по­лу­ча­ет около 40 кДж энер­гии.

АТФ – по­сто­ян­ный ис­точ­ник энер­гии для клет­ки, она мо­биль­но может до­став­лять хи­ми­че­скую энер­гию в любую часть клет­ки. Когда клет­ке необ­хо­ди­ма энер­гия – до­ста­точ­но гид­ро­ли­зо­вать мо­ле­ку­лу АТФ. Энер­гия вы­де­ля­ет­ся в ре­зуль­та­те ре­ак­ции дис­си­ми­ля­ции (рас­щеп­ле­ния ор­га­ни­че­ских ве­ществ), в за­ви­си­мо­сти от спе­ци­фи­ки ор­га­низ­ма и усло­вий его оби­та­ния энер­ге­ти­че­ский обмен про­хо­дит в два или три этапа. Боль­шин­ство живых ор­га­низ­мов от­но­сят­ся к аэро­бам, ис­поль­зу­ю­щим для об­ме­на ве­ществ кис­ло­род, ко­то­рый по­сту­па­ет из окру­жа­ю­щей среды. Для аэро­бов энер­ге­ти­че­ский обмен про­хо­дит в три этапа:

— под­го­то­ви­тель­ный;

— бес­кис­ло­род­ный;

— кис­ло­род­ный.

В ор­га­низ­мах, ко­то­рые оби­та­ют в бес­кис­ло­род­ной среде и не нуж­да­ют­ся в кис­ло­ро­де для энер­ге­ти­че­ско­го об­ме­на – анаэ­ро­бах и аэро­бах, при недо­стат­ке кис­ло­ро­да про­хо­дят энер­ге­ти­че­ский обмен в два этапа:

— под­го­то­ви­тель­ный;

— бес­кис­ло­род­ный.

Ко­ли­че­ство энер­гии, ко­то­рое вы­де­ля­ет­ся при двух­этап­ном ва­ри­ан­те на­мно­го мень­ше, чем в трех­этап­ном.

ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Под­го­то­ви­тель­ный этап – во время него круп­ные пи­ще­вые по­ли­мер­ные мо­ле­ку­лы рас­па­да­ют­ся на более мел­кие фраг­мен­ты. В же­лу­доч­но-ки­шеч­ном трак­те мно­го­кле­точ­ных ор­га­низ­мов он осу­ществ­ля­ет­ся пи­ще­ва­ри­тель­ны­ми фер­мен­та­ми, у од­но­кле­точ­ных – фер­мен­та­ми ли­зо­сом. По­ли­са­ха­ри­ды рас­па­да­ют­ся на ди- и мо­но­са­ха­ри­ды, белки – до ами­но­кис­лот, жиры – до гли­це­ри­на и жир­ных кис­лот. В ходе этих пре­вра­ще­ний энер­гии вы­де­ля­ет­ся мало, она рас­се­и­ва­ет­ся в виде тепла, и АТФ не об­ра­зу­ет­ся. Об­ра­зу­ю­щи­е­ся в ходе под­го­то­ви­тель­но­го этапа со­еди­не­ния-мо­но­ме­ры могут участ­во­вать в ре­ак­ци­ях пла­сти­че­ско­го об­ме­на (в даль­ней­шем из них син­те­зи­ру­ют­ся ве­ще­ства, необ­хо­ди­мые для клет­ки) или под­вер­гать­ся даль­ней­ше­му рас­щеп­ле­нию с целью по­лу­че­ния энер­гии.

Боль­шин­ство кле­ток в первую оче­редь ис­поль­зу­ют уг­ле­во­ды, жиры оста­ют­ся в пер­вом ре­зер­ве и ис­поль­зу­ют­ся по окон­ча­ния за­па­са уг­ле­во­дов. Хотя есть и ис­клю­че­ния: в клет­ках ске­лет­ных мышц при на­ли­чии жир­ных кис­лот и глю­ко­зы пред­по­чте­ние от­да­ет­ся жир­ным кис­ло­там. Белки рас­хо­ду­ют­ся в по­след­нюю оче­редь, когда запас уг­ле­во­дов и жиров будет ис­чер­пан – при дли­тель­ном го­ло­да­нии.

Бес­кис­ло­род­ный этап (гли­ко­лиз) – про­ис­хо­дит в ци­то­плаз­ме кле­ток. Глав­ным ис­точ­ни­ком энер­гии в клет­ке яв­ля­ет­ся глю­ко­за. Ее бес­кис­ло­род­ное рас­щеп­ле­ние на­зы­ва­ют анаэ­роб­ным гли­ко­ли­зом. Он со­сто­ит из ряда по­сле­до­ва­тель­ных ре­ак­ций по пре­вра­ще­нию глю­ко­зы в лак­тат. Его при­сут­ствие в мыш­цах хо­ро­шо из­вест­но устав­шим спортс­ме­нам. Этот этап за­клю­ча­ет­ся в фер­мен­та­тив­ном рас­щеп­ле­нии ор­га­ни­че­ских ве­ществ, по­лу­чен­ных в ходе пер­во­го этапа. Так как глю­ко­за яв­ля­ет­ся наи­бо­лее до­ступ­ным суб­стра­том для клет­ки как про­дукт рас­щеп­ле­ния по­ли­са­ха­ри­дов, то вто­рой этап можно рас­смот­реть на при­ме­ре ее бес­кис­ло­род­но­го рас­щеп­ле­ния – гли­ко­ли­за (Рис. 1).

Рис. 1. Бес­кис­ло­род­ный этап 

Гли­ко­лиз – мно­го­сту­пен­ча­тый про­цесс бес­кис­ло­род­но­го рас­щеп­ле­ния мо­ле­ку­лы глю­ко­зы, со­дер­жа­щей шесть ато­мов уг­ле­ро­да, до двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты (пи­ру­ват). Ре­ак­ция гли­ко­ли­за ка­та­ли­зи­ру­ет­ся мно­ги­ми фер­мен­та­ми и про­те­ка­ет в ци­то­плаз­ме клет­ки. В ходе гли­ко­ли­за при рас­щеп­ле­нии од­но­го моля глю­ко­зы вы­де­ля­ет­ся около 200 кДж энер­гии, 60 % ее рас­се­и­ва­ет­ся в виде тепла, 40 % – для син­те­зи­ро­ва­ния двух мо­ле­кул АТФ из двух мо­ле­кул АДФ. При на­ли­чии кис­ло­ро­да в среде пи­ро­ви­но­град­ная кис­ло­та из ци­то­плаз­мы пе­ре­хо­дит в ми­то­хон­дрии и участ­ву­ет в тре­тьем этапе энер­ге­ти­че­ско­го об­ме­на. Если кис­ло­ро­да в клет­ке нет, то пи­ро­ви­но­град­ная кис­ло­та пре­об­ра­зу­ет­ся в жи­вот­ных клет­ках или пре­вра­ща­ет­ся в мо­лоч­ную кис­ло­ту.

В мик­ро­ор­га­низ­мах, ко­то­рые су­ще­ству­ют без до­сту­па кис­ло­ро­да – по­лу­ча­ют энер­гию в про­цес­се бро­же­ния, на­чаль­ный этап ана­ло­ги­чен гли­ко­ли­зу: рас­пад глю­ко­зы до двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты, и далее она за­ви­сит от фер­мен­тов, ко­то­рые на­хо­дят­ся в клет­ке – пи­ро­ви­но­град­ная кис­ло­та может пре­об­ра­зо­вы­вать­ся в спирт, ук­сус­ную кис­ло­ту, про­пи­о­но­вую и мо­лоч­ную кис­ло­ту. В от­ли­чие от того, что про­ис­хо­дит в жи­вот­ных тка­нях, у мик­ро­ор­га­низ­мов этот про­цесс носит на­зва­ние мо­лоч­но­кис­ло­го бро­же­ния. Все про­дук­ты бро­же­ния ши­ро­ко ис­поль­зу­ют­ся в прак­ти­че­ской де­я­тель­но­сти че­ло­ве­ка: это вино, квас, пиво, спирт, кис­ло­мо­лоч­ные про­дук­ты. При бро­же­нии, так же как и при гли­ко­ли­зе, вы­де­ля­ет­ся всего две мо­ле­ку­лы АТФ.

Кис­ло­род­ный этап стал воз­мо­жен после на­коп­ле­ния в ат­мо­сфе­ре до­ста­точ­но­го ко­ли­че­ства мо­ле­ку­ляр­но­го кис­ло­ро­да, он про­ис­хо­дит в ми­то­хон­дри­ях кле­ток. Он очень сло­жен по срав­не­нию с гли­ко­ли­зом, это про­цесс мно­го­ста­дий­ный и идет при уча­стии боль­шо­го ко­ли­че­ства фер­мен­тов. В ре­зуль­та­те тре­тье­го этапа энер­ге­ти­че­ско­го об­ме­на из двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты фор­ми­ру­ет­ся уг­ле­кис­лый газ, вода и 36 мо­ле­кул АТФ (Рис. 2).

Рис. 2. Ми­то­хон­дрия  

Две мо­ле­ку­лы АТФ за­па­са­ют­ся в ходе бес­кис­ло­род­но­го рас­щеп­ле­ния мо­ле­ку­ла­ми глю­ко­зы, по­это­му сум­мар­ный энер­ге­ти­че­ский обмен в клет­ке в слу­чае рас­па­да глю­ко­зы можно пред­ста­вить как:

С6Н12О6  + 6О2 + 38АДФ + 38Н3РО4 = 6СО2 + 44Н2О + 38АТФ

В ре­зуль­та­те окис­ле­ния одной мо­ле­ку­лы глю­ко­зы ше­стью мо­ле­ку­ла­ми кис­ло­ро­да об­ра­зу­ет­ся шесть мо­ле­кул уг­ле­кис­ло­го газа и вы­де­ля­ет­ся трид­цать во­семь мо­ле­кул АТФ.

Мы видим, что в трех­этап­ном ва­ри­ан­те энер­ге­ти­че­ско­го об­ме­на вы­де­ля­ет­ся го­раз­до боль­ше энер­гии, чем в двух­этап­ном ва­ри­ан­те – 38 мо­ле­кул АТФ про­тив 2.

Какие вещества являются конечными продуктами подготовительного этапа

Какие вещества являются конечными продуктами подготовительного этапа

БРОЖЕНИЕ

Какие вещества являются конечными продуктами подготовительного этапа

В отсутствие кислорода или при его недостатке про­ исходит брожение. Брожение является эволюционно бо­ лее ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку ко­ нечными продуктами брожения являются органические вещества, богатые энергией. Существует несколько видов брожения, названия которых определяются конечными продуктами: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода  протекает молочнокислое брожение, в ходе которого пировиноградная кислота восстанавли­ вается до молочной кислоты. При этом восстановленные ранее коферменты НАДН расходу­ ются на восстановление пирувата:

Какие вещества являются конечными продуктами подготовительного этапа

Энергетическая эффективность молочнокислого брожения составляет две молекулыАТФ, образованные в процессе окисления глюкозы до пирувата.

Для многих микроорганизмов брожение является единственным способом ассимиля­ции энергии. Большинство таких организмов живет в анаэробных условиях и погибает в присутствии кислорода, но есть и такие, которые нормально существуют и в присутствии кислорода, и без него. Например, дрожжевые грибы при спиртовом брожении окисляют пировиноградную кислоту до этилового спирта и оксида углерода (IV):

Какие вещества являются конечными продуктами подготовительного этапа

Какие вещества являются конечными продуктами подготовительного этапа

ВИДЕО ДОМА

 Вопросы части с

Какие вещества являются конечными продуктами подготовительного этапа

Источник

Alexey Khoroshev

Высший разум

(1625270)

9 лет назад

Этапы энергетического обмена : Единый процесс энергетического обмена можно условно разделить на три последовательных этапа :

Первый из них — подготовительный. На этом этапе высокомолекулярные органические вещества в цитоплазме под действием соответствующих ферментов расщепляются на мелкие молекулы: белки — на аминокислоты, полисахариды (крахмал, гликоген) — на моносахариды (глюкозу) , жиры — на глицерин и жирные кислоты, нуклеиновые кислоты — на нуклеотиды и т. д. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде тепла.

Второй этап —бескислородный, или неполный. Образовавшиеся на подготовительном этапе вещества — глюкоза, аминокислоты и др. — подвергаются дальнейшему ферментативному распаду без доступа кислорода. Примером может служить ферментативное окисление глюкозы (гликолиз) , которая является одним из основных источников энергии для всех живых клеток. Гликолиз — многоступенчатый процесс расщепления глюкозы в анаэробных (бескислородных) условиях до пировиноградной кислоты (ПВК) , а затем до молочной, уксусной, масляной кислот или этилового спирта, происходящий в цитоплазме клетки. Переносчиком электронов и протонов в этих окислительно-восстановительных реакциях служит никотинамидаденин-динуклеотид (НАД) и его восстановленная форма НАД *Н. Продуктами гликолиза являются пировиноградная кислота, водород в форме НАД • Н и энергия в форме АТФ.
При разных видах брожения дальнейшая судьба продуктов гликолиза различна. В клетках животных и многочисленных бактерий ПВК восстанавливается до молочной кислоты. Известное всем молочнокислое брожение (при списании молока, образовании сметаны, кефира и т. д. ) вызывается молочнокислыми грибками и бактериями.
При спиртовом брожении продуктами гликолиза являются этиловый спирт и СО2. У других микроорганизмов продуктами брожения могут быть бутиловый спирт, ацетон, уксусная кислота и т. д.
В ходе бескислородного расщепления часть выделяемой энергии рассеивается в виде тепла, а часть аккумулируется в молекулах АТФ.

Третий этап энергетического обмена — стадия кислородного расщепления, или аэробного дыхания, происходит в митохондриях. На этом этапе в процессе окисления важную роль играют ферменты, способные переносить электроны. Структуры, обеспечивающие прохождение третьего этапа, называют цепью переноса электронов. В цепь переноса электронов поступают молекулы — носители энергии, которые получили энергетический заряд на втором этапе окисления глюкозы. Электроны от молекул — носителей энергии, как по ступеням, перемещаются по звеньям цепи с более высокого энергетического уровня на менее высокий. Освобождающаяся энергия расходуется на зарядку молекул АТФ. Электроны молекул — носителей энергии, отдавшие энергию на «зарядку» АТФ, соединяются в конечном итоге с кислородом. В результате этого образуется вода. В цепи переноса электронов кислород — конечный приемник электронов. Таким образом, кислород нужен всем живым существам в качестве конечного приемника электронов. Кислород обеспечивает разность потенциалов в цепи переноса электронов и как бы притягивает электроны с высоких энергетических уровней молекул — носителей энергии на свой низкоэнергетический уровень. По пути происходит синтез богатых энергией молекул АТФ.

Que sigue el sol

Профи

(663)

4 года назад

В организме энергия существует в 6 типах -химическая, механическая, тепло, свет, электрическая и ядерная. Каждая из которых, чаще производится в процессе синтеза другой.
Основным источником энергии в организме является пища ( в твердой, жидкой и газообразной форме)
Процесс распада пищи подразделяется на несколько этапов в зависимости от структуры попадающего в организм вещества. Каждый этап соправождается выделением или поглащением одного или нескольких видов энергии.
Основным источником энергии клетки является АТФ.
Есть 3 способа ресинтеза АТФ в организме:
-за счет запасов КФ
-Анаэробное дыхание в клеточной цитоплазме
-Аэробное дыхание митохондрий
ВАЖНО ЧТО АТФ НЕ МОЖЕТ СВОБОДНО СУЩЕСТВОВАТЬ В ОРГАНИЗМЕ, ПОТОМУ ЕГО ПОЯВЛЕНИЕ НАПРЯМУЮ СВЗАНО С РАБОТОЙ

Система КФ обычно доминирует до 10 сек, но хватает ее 30-40 сек, параллельно с ней существует лактатная система (гликолиз) ее хватает на время до 2 мин, а доминирует он с 1 по 2-ю мин. После второй минуты на полную катушку включается аэробное энергообеспечение. Гликолитичекийого ресинтеза АТФ обычно хватает на время от 15 до 30 мин. После 30 минут работы в клетке непосредственно в митохондриях включется метоходриальное окисление.

Итак кратно подведем итог:
Существект 3 оесинтеза АТФ:
АТФ-КФ (исключительно Анаэробный) до 40 сек
Гликолиз (глюкоза, гликоген Анаэробный и аэробный) до 3 мин
Окислительный (глюкоза жиры, углеводы) более 30 мин

1.Распад сложных структур на более простые — энергия не всегда положительная, полученная энергия не всегда соответствует затратам. 2. Анаэробное энергообеспечение-преимущественно в клетке

Zom-_-Zom

Знаток

(356)

4 года назад

а поменьше можно вот такИтак кратно подведем итог:
Существект 3 оесинтеза АТФ:
АТФ-КФ (исключительно Анаэробный) до 40 сек
Гликолиз (глюкоза, гликоген Анаэробный и аэробный) до 3 мин
Окислительный (глюкоза жиры, углеводы) более 30 мин

1.Распад сложных структур на более простые — энергия не всегда положительная, полученная энергия не всегда соответствует затратам. 2. Анаэробное энергообеспечение-преимущественно в клетке

диас абдуллин

Ученик

(181)

4 года назад

1 ЭТАП: На подготовительном этапе крупные молекулы органических веществ под воздействием ферментов расщепляются на более простые: углеводы — на моносахариды, жиры — на глицерин и жирные кислоты, белки — на аминокислоты. Освобождаемая энергия рассеивается в виде тепла.

2 ЭТАП: На бескислородном этапе вещества, полученные на первом этапе, подвергаются дальнейшему расщеплению на мембранах клетки, в цитоплазме. Расщепление глюкозы до молекулы пировиноградной кислоты — это 13 ферментативных реакций, в которых также образуются две молекулы АТФ:

C6H12O6 + 2H3PO4 + 2АДФ = 2C3H4O3(ПВК) + 2АТФ +2H2O

Глюкоза в этом процессе не только расщепляется, но и окисляется (теряет атомы водорода) . В мышцах человека и животных две молекулы ПВК, приобретая атомы водорода, восстанавливаются в молочную кислоту С3Н6О3. Этим же продуктом заканчивается гликолиз у молочнокислых бактерий и грибков, применяемый для приготовления кислого молока, простокваши, кефира, а также при силосовании кормов в животноводстве.

Главным результатом анаэробного гликолиза во всех организмах является образование двух молекул АТФ. Высвобождающаяся при расщеплении глюкозы энергия относительно невелика — 200 кДж/моль. 40% энергии, освободившейся в результате этого распада, запасаются в виде макроэргических связей в молекулах АТФ, остальные 60% рассеиваются во внешнюю среду.

Основной выход энергии и молекул АТФ происходит на третьем, кислородном этапе гликолиза, называемом еще аэробным дыханием.

3 ЭТАП — Кислородный гликолиз. При наличии достаточного количества кислорода дальнейший процесс расщепления ПВК происходит уже не в цитоплазме, а в митохондриях, и включает несколько десятков последовательных реакций, каждая из которых обслуживается своим комплексом ферментов.

Молекулы ПВК под действием ферментов (и кофермента НАД — никотинамидадениндинуклеотида) поэтапно окисляются сначала до уксусной кислоты, а затем, в так называемом цикле Кребса (или трикарбоновых кислот) , до углекислого газа и воды (медленное горение) . В процессе окисления образуются сложные молекулярные соединения с присоединенными к ним атомами водорода. Молекулы-переносчики подхватывают и перемещают электроны этих атомов по длинной цепи ферментов от одного к другому. На каждом шаге электроны вступают в окислительно-восстановительные реакции и отдают свою энергию, которая идет на перемещение протонов на внешнюю сторону внутренней мембраны митохондрии.

В результате оставшиеся протоны и перемещенные электроны оказываются на разных сторонах внутренней мембраны. На мембране создается разность потенциалов.

Фермент, синтезирующий АТФ (АТФ-синтетаза) , встроен во внутреннюю мембрану по всей ее толщине. Этот фермент имеет характерную особенность: небольшой каналец в молекулярной структуре. При накоплении на мембране разности потенциалов примерно в 200 мВ ионы Н+ начинают протискиваться через каналец в молекуле АТФ-синтетазы. В процессе энергичного продвижения ионов через фермент происходит синтез АТФ из АДФ с участием фосфорной кислоты.

В химических реакциях кислородного гликолиза освобождается большое количество энергии — 2600 кДж/моль. Существенная ее часть (55%) запасается в высокоэнергетичных связях образующихся молекул АТФ и по каналам эндоплазматической сети отправляется в другие участки клетки, где требуется энергия. . Остальные 45% рассеиваются в виде.

Итоговое уравнение кислородной стадии выглядит следующим образом:

2С3Н6О3(молочн. кислота) + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

Elena

Ученик

(200)

4 года назад

В подготовительном этапе энергия выделяется? чтобы сложную молекулу разбить на простые мономеры нужно энергию затратить, по моему. или я неправа? Каким образом связан подготовительный этап с лизосомами если он протекает в пищеварительном тракте (у человека по крайней мере)?

Источник