Какие величины характеризуют пластические свойства материала

Какие величины характеризуют пластические свойства материала thumbnail

Прочность — это способность материала сопротивляться пластической деформации.

Показатели прочности:

1. Предел пропорциональности — это напряжение, ниже которого соблюдается прямая пропорциональная зависимость между напряжением и относительной деформацией:

,

где Рпц — нагрузка при пределе пропорциональности.

2. Предел упругости s0,05 — это условное напряжение, при котором остаточная деформация составляет 0,05% расчетной длины. Ввиду малости величины остаточной деформации на пределе упругости его иногда принимают равным пределу пропорциональности.

3. Предел текучести физический — это наименьшее напряжение при котором образец деформируется без увеличения растягивающей нагрузки:

,

Если на кривой деформации отсутствует четко выраженная площадка текучести (рис. 7, а), то определяют предел текучести условный.

4. Условный предел текучести s0,2 — это напряжение, при котором остаточное удлинение достигает 0,2% длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики:

,

5. Сопротивление значительным пластическим деформациям (для пластичных материалов) характеризуется пределом прочности.

Предел прочности (временное сопротивление) — это условное напряжение, соответствующее наибольшей нагрузке РМАХ, предшествовавшей разрыву образца:

.

Пластичность — это способность материала проявлять, не разрушаясь, остаточную деформацию.

Показатели пластичности:

1. Относительное удлинение после разрыва d — это отношение приращения расчетной длины образца (lKl0) после разрушения (рис. 8) к начальной расчетной длине l0, выраженное в процентах:

Для определения длины расчетной части lK после разрыва части образца плотно прикладывают друг к другу (рис. 8) и измеряют расстояние между метками, которые ограничивали начальную расчета длину.

Относительное сужение y — это отношение абсолютного уменьшения площади поперечного сечения в шейке образца (F0FK) к начальной площади сечения F0 выраженное в процентах:

где F0 и FK — площади поперечного сечения образца до и после испытания соответственно.

Способы определения твердости материалов.

Твердость — способность материала сопротивляться упругой и пластической деформации при внедрении в него более твердого тела (индентора).

Определение твердости по методу Роквелла

При измерении твердости по Роквеллу индентор — алмазный конус с углом при вершине 120° (ГОСТ 9013-59) и радиусом закругления 0,2 мм или стальной шарик диаметром 1,5875 мм (1/16 дюйма) — вдавливается в образец под действием двух последовательно прилагаемых нагрузок: предварительной Р0 и общей Р = Р0 + Р1, где Р1 — основная нагрузка.

Схема измерения твердости по Роквеллу

Сначала индентор вдавливается в поверхность образца под предварительной нагрузкой Р0 = 100 Н, которая не снимается до конца испытания, что позволяет повысить точность испытаний, т.к. исключает влияние вибраций и тонкого поверхностного слоя. Под нагрузкой Р0 индентор погружается в образец на глубину h0. Затем на образец подается полная нагрузка Р = Р0 + Р1, глубина вдавливания увеличивается. Последняя после снятия основной нагрузки Р1 (на индентор вновь действует только предварительная нагрузка Р0) определяет число твердости по Роквеллу (HR). Чем больше глубина вдавливания h, тем меньше число твердости HR.

Твердомер Роквелла автоматически показывает значения числа твердости в условных единицах по одной из трех шкал — А, В и С и соответственно они обозначаются как HRA, HRB и HRC. Выбор шкалы производится по предварительно известной твердости материала по Бринеллю из табл.3. Если сведений о твердости материала образца нет, то после ориентировочных замеров необходимо обратиться к табл.5 и затем произвести окончательные замеры твердости.

Таблица 3

Примерная твердость по БринеллюШкала РоквеллаТип индентораОбщая нагрузкаДопускаемые величины твердости по шкале
Нкгс
Менее 228Шкала В (красная)стальной шарик  25-100
229-682Шкала С (черная)алмазный конус  22-68
363-720Шкала А (черная)алмазный конус  70-85

Существенное значение имеет толщина испытуемого образца. После замера твердости на обратной стороне образца не должно быть следов отпечатка.

Во всех случаях измерений значение предварительной нагрузки постоянно и равно Р0 = 100 Н.

Число твердости выражается формулами:

, (3)

, (4)

где (0,002 — цена деления шкалы индикатора твердомера Роквелла).

Таким образом, единица твердости по Роквеллу безразмерная величина, соответствующая осевому перемещению индентора на 0,002 мм.

Существует несколько типов приборов для измерения твердости по Роквеллу, но принципиальные схемы их работы аналогичны.

Определение твердости по методу Виккерса

При стандартном измерении твердости по Виккерсу (ГОСТ 2999-75) в поверхность образца вдавливается алмазный индентор в форме четырехгранной пирамиды с углом при вершине a»136°. После удаления нагрузки P (10¸1000 Н), действовавшей определенное время (10-15 с), измеряют диагональ отпечатка d, оставшегося на поверхности образца.

Число твердости HV определяют по формуле:

(5)

где Р — нагрузка в кгс, d — длина диагонали отпечатка в мм.

Число твердости записывается без единиц измерения, например 230 HV. Если число твердости выражают в МПа, то после него указывают единицу измерения, например HV = 3200 МПа.

Относительно небольшие нагрузки и малая глубина вдавливания индентора обуславливают необходимость более тщательной подготовки поверхности, чем при измерении твердости по Бринеллю. Образцы, как правило, полируют, с поверхности снимается наклеп.

Измерения осуществляют на приборах марки ТП. Прибор смонтирован на станине 1. Образец помещают на опорный столик 5. Нагрузка прилагается к индентору 6 через установленный на призмах рычаг. Рычаг с подвеской 14 без сменных грузов 15 обеспечивает минимальную нагрузку 50 Н.

Схема прибора ТП для определения твердости по Виккерсу:

1 — станина; 2 — педаль грузового привода; 3 — маховичок; 4 — винт подъемный; 5 — столик опорный; 6 — индентор; 7 — рукоятка; 8 — шпин-дель; 9 — шпиндель промежуточный; 10 — микроскоп измерительный; 11 — призма; 12 — рычаг; 13 — штырь; 14 — подвеска; 15 — грузы сменные; 16 — шпиндель пустотелый; 17 — ры-чаг ломанный; 18 — винт регулиро-вочный; 19 — амортизатор масляный; 20 — груз; 21 и 22 — рычаги; 23 — руко-ятка.

Читайте также:  Какие элементы проявляют наиболее выраженные металлические свойства

После установки образца на столик 5 совмещают перекрестие окуляра микроскопа 10 с тем местом на образце, твердость которого необходимо измерить. Наводят на резкость, устанавливают индентор над образцом, включают механизм грузового привода. Пока образец находится под нагрузкой, горит сигнальная лампочка, расположенная в верхней части передней панели твердомера.

После снятия нагрузки поворотную головку переводят в такое положение, чтобы полученный отпечаток вновь был виден в микроскоп. Затем с помощью барабанчика окуляр-микрометра замеряют длину диагонали отпечатка.

Физический смысл числа твердости по Виккерсу аналогичен НВ, величина HV тоже является усредненным условным напряжением в зоне контакта индентор — образец и характеризует обычно сопротивление материала значительной пластической деформации.

Числа HV и НВ близки по абсолютной величине только до 400-450 НV. Выше этих значений метод Бринелля дает искаженные результаты из-за остаточной деформации стального шарика. Алмазная же пирамида в методе Виккерса позволяет определять твердость практически любых металлических материалов. Еще более важное достоинство этого метода — геометрическое подобие отпечатков при любых нагрузках, поэтому возможно строгое количественное сопоставление чисел твердости НV любых материалов, испытанных при различных нагрузках.

Хрупкое и вязкое разрушение материала.

При хрупком разрушении макропластическая деформация отсутствует. В металле возникает только упругая деформация. Разрушение происходит путем отрыва или скола, когда плоскость разрушения перпендикулярна действующим напряжениям. Разрушение начинается от дефекта (микротрещины), вблизи которого концентрируются напряжения, превосходящие теоретическую прочность металла.

При вязком разрушении металл претерпевает значительную пластическую деформацию. У пластичных материалов, благодаря релаксации напряжений, их концентрация вблизи несплошностей оказывается недостаточной и развитие трещин скола (т.е. хрупких) не происходит. Вязкое разрушение происходит путем сдвига.

Источник

При проектировании элементов конструкции и деталей машин необходимо знать механические и пластические свойства материалов. Для этого изготавливаются стандартные образцы, которые подвергаются разрушению в испытательной машине.          Для испытания на растяжение рекомендуется применять цилиндрические и плоские образцы. Расчетная длина цилиндрических образцов должна быть равной ℓ0=5d0 или ℓ0=10d0. Образцы с расчетной длиной ℓ0=5d0 называются короткими, а образцы с ℓ0=10d0 – длинными. Применение коротких образцов предпочтительнее. В качестве основных применяют образцы диаметром d0=10 мм. Образцы с меньшими (иногда большими) диаметрами или некруглого поперечного сечения называются пропорциональными. Расчетная длина ℓ0 на образце отличается рисками.

2014-09-03 18-13-17 Скриншот экрана

Расчетную длину образца можно выразить через площадь поперечного сечения:

2014-09-03 18-14-34 Скриншот экрана

Таким образом, для коротких образцов:

2014-09-03 18-15-39 Скриншот экрана

для длинных образцов:

2014-09-03 18-16-28 Скриншот экрана

Эти соотношения используются для определения расчетной длины образцов прямоугольного поперечного сечения.

Соотношения между рабочей ℓ и расчетной ℓ0 длинами принимают:

для цилиндрических образцов: от ℓ = ℓ0 + 0,5d0 до ℓ = ℓ0 + 3d0;

для плоских образцов толщиной 4 мм и больше:

2014-09-03 18-17-40 Скриншот экрана

Основной задачей испытания на растяжение является построение диаграммы растяжения, т. е. зависимости между силой, действующей на образец и его удлинением.

Испытательная машина сообщает образцу принудительное удлинение и регистрирует силу сопротивления образца, т. е. нагрузку, соответствующую этому удлинению. Результаты опыта записываются с помощью диаграммного аппарата на бумагу в виде диаграммы растяжения в координатах F – Δℓ. Типичная для малоуглеродистой стали диаграмма растяжения образца показана на рисунке.

2014-09-03 18-19-28 Скриншот экрана

Данную кривую условно можно разделить на четыре участка. Прямолинейный участок ОА называется участком упругости. Здесь материал образца испытывает только упругие деформации. Зависимость между нагрузкой на образец и его деформацией подчиняется закону Гука:

Δℓ=Fℓ/ЕА

Удлинение Δℓ на участке ОА очень мало.

Участок ВК называется участком общей текучести, а отрезок ВК – площадкой текучести. Здесь происходит существенное изменение длины образца без заметного увеличения нагрузки. Наличие площадки текучести является характерным для малоуглеродистой стали.

Участок КС называется участком упрочнения. Здесь материал вновь обнаруживает способность повышать сопротивление при увеличении деформации. Область упрочнения материала на диаграмме растяжения простирается до точки С, ордината которой равна наибольшей нагрузке на образец Fmax.

Начиная с точки С резко меняется характер деформации образца. При возрастании нагрузки на образец от 0 до F все участки образца удлинялись одинаково – образец испытывал равномерную деформацию. По достижении максимальной нагрузки деформация образца начинает сосредотачиваться в каком-то наиболее слабом месте по его длине. В дальнейшем удлинение образца происходит с уменьшением силы (участок СД). Удлинение образца при этом носит местный характер. В этом месте образца интенсивно уменьшаются размеры поперечного сечения (образуется так называемая шейка) и увеличивается длина этого участка. Поэтому участок СД называется участком местной текучести. Точка Д на диаграмме соответствует разрушению образца.

Если испытуемый образец не доводить до разрушения, разгрузить (например, в точке Н), то в процессе разгрузки зависимость между силой Р и удлинением Δℓ изобразится прямой НМ, которая будет параллельна ОА. Длина разгруженного образца будет больше первоначальной на величину ОН. Отрезок ОМ представляет собой остаточное или пластическое удлинение. При  повторном  нагружении образца диаграмма растяжения принимает вид прямой НМ и далее – кривой НСД, как будто промежуточной разгрузки и не было.

Ряд пластичных материалов (легированные стали, бронзы, латуни, алюминиевые сплавы, титановые сплавы и др.) не имеют физического предела текучести. На диаграмме растяжения таких материалов , после точки В происходит быстрое возрастание пластической деформации. Уловный предел текучести Fт соответствует точке В на диаграмме растяжения, определяется как нагрузка, при которой пластическая деформация равна 0,2 %.

Чтобы дать количественную оценку механическим свойствам материала диаграмму растяжения F= f (Δℓ) (перестраивают в координатах . Для этого значения силы F делят на первоначальную площадь образца А0, т. е.   = F/ А0 , а удлинение Δℓ делятся на первоначальную длину расчетной части образца ℓ0,

В результате получаем диаграмму зависимости нормального напряжений от относительной продольной деформации, которая будет характеризовать свойства материала, а не свойства конкретного образца . Эта диаграмма называется условной, так как при вычислении   и  не учитываются изменения длины и площади поперечного сечения образца в процессе растяжения.

Читайте также:  Какие свойства у магнита

2014-09-03 18-21-18 Скриншот экрана

Основными механическими характеристиками являются:

Предел пропорциональности:       σпц =  Fпц   /  А0                                                        

Предел текучести:     σт =  Fт  / А0  

Предел прочности:    σв =  Fв  / А0                                                           

Характеристики пластичности:

относительное удлинение   

2014-09-03 18-25-19 Скриншот экрана

относительное сужение                      

2014-09-03 18-26-52 Скриншот экрана

где Аш – площадь сечения образца (шейки) в самом узком месте после разрушения.

Удельная работа деформации:  а =        Fв Δℓ / V,

где V – объем испытуемого образца,

V = А0·ℓ0.

Напомним, что максимальные напряжения σв не могут превышать 1200 МПа у конструкционных материалов.

Диаграмма сжатия пластичных материалов

Образцы из стали закладывают в испытательную машину и подвергают сжатию.

В первой стадии нагружения стального образца материал испытывает упругие деформации. Зависимость между прикладываемой силой и деформацией на диаграмме линейная. Через некоторое время после начала испытания материал достигает состояния текучести. Стрелка силометра при этом останавливается, и на диаграмме ординаты перестают расти. Образец деформируется при постоянной нагрузке. Нагрузку, соответствующую состоянию текучести FТ материала записываем в журнал испытаний. При дальнейшем сжатии образца  показания силометра вновь начинают возрастать. Образец непрерывно сжимается,  поперечное сечение его увеличивается, и при отсутствии смазки по торцам образца он приобретает бочкообразную форму. Это объясняется тем, что между опорными плитами и торцами образца действует сила трения, которая не дает возможности частям образца, примыкающим к опорным плитам, двигаться в поперечном направлении. Смазкой торцов образца это явление можно ослабить.

Стальной образец довести до разрушения не удается.  Испытание прекращается при нагрузке примерно в два раза больше предела текучести FТ. Вид образцов до и после испытания показан на рисунке. Типичная диаграмма сжатия малоуглеродистой стали в координатах  F – Δℓ показана на рис. справа.

2014-09-03 18-32-55 Скриншот экрана

Диаграмма растяжения и сжатия хрупких материалов

Методика испытания хрупких материалов такова, как и для испытания пластичных. Поэтому остановимся на основных отличиях в поведении хрупких материалов. На рисунке показана диаграмма сжатия (кривая 1) и растяжения (кривая 2).

2014-09-03 18-34-39 Скриншот экрана

У хрупких материалов всегда отсутствует площадка текучести, хотя многие материалы обладают определенными пластическими свойствами. Для этих материалов за опасное состояние принимается предел прочности. Следует всегда помнить, что предел прочности у хрупких материалов во много раз больше при сжатии. У чугуна эта величина достигает 3-4 раза. Что касается строительных материалов, то эта разница может достигать десятикратного  размера.

Источник

Лекция №6

Тема: «Механические свойства материалов»

Вопросы:

Диаграмма растяжения малоуглеродистой стали. Условный предел текучести

Характеристики пластичности

Диаграмма растяжения хрупких материалов

Диаграмма растяжения малоуглеродистой стали

Для определения механических свойств материалов проводят механические испытания образцов, форма и размеры которых устанавливаются стандартами (ГОСТами). Наиболее распространенными являются испытания на растяжение, так как они легко осуществимы и дают важнейшие характеристики материала.

Разрывные испытательные машины рисуют графики (диаграммы) зависимости между усилием F и абсолютным удлинением . Такая диаграмма имеет один существенный недостаток — она не позволяет сравнивать результаты испытания образцов различной площади сечения А. Поэтому полученную на машине диаграмму перерисовывают в условных осях: по оси абсцисс откладывают относительное удлинение:

,

а по оси ординат — нормальное напряжение:

,

где l и A0 — начальная длина и площадь поперечного сечения образца.

Для низкоуглеродистой стали марки Ст.3 (содержание углерода не более 0.22%) диаграмма имеет вид, представленный на рис.1.

В начальной стадии нагружения, на участке ОА, зависимость между и носит линейный характер, деформация прямо пропорциональна напряжению, т.е. следует закону Гука. Наибольшее напряжение, до которого соблюдается этот закон (точка А на диаграмме), называется пределом пропорциональности . Обозначения механических характеристик материала стандартизованы с тем, чтобы можно было пользоваться технической литературой без пояснений. Однако в СССР и в странах Запада обозначения отличались. Поэтому мы будем приводить обозначения, которые были приняты в СССР, (так как почти вся выпушенная техническая литература имеет такие обозначения), а в скобках давать обозначения, принятые в странах Запада.

Рис. 1

Из рисунка нетрудно видеть, что:

,

т.е. модуль продольной упругости Е графически представляет собой тангенс угла наклона прямолинейного участка диаграммы к оси абсцисс.

При нагружении образца до точки В в нем не появляется остаточных деформаций. Если его разгрузить, то он примет исходные размеры. Наибольшее напряжение, до которого в образце не возникает остаточных деформаций называется пределом упругости и обозначается .

Точки А и В лежат столь близко друг к другу, что на практике их обычно считают совпадающими, полагая . К тому же следует иметь в виду, что выявление обоих пределов представляет немалые трудности. Даже при достаточно точных измерениях далеко не все точки ложатся на прямую ОА вследствии неизбежной неоднородности материала и конструктивных несовершенств испытательной машины. Отчасти по этим же причинам и деформация при разгрузке полностью не исчезает. Поэтому опытным путем устанавливают лишь условные, технические значения указанных пределов.

После точки В продолжается дальнейшее искривление диаграммы и в точке С она переходит в горизонтальный участок — площадку текучести. Стрелка силоизмерительного аппарата машины останавливается, т.е. образец удлиняется при постоянной нагрузке. Соответствующее напряжение называют пределом текучести . Он является одной из основных характеристик материала. Для стали Ст. 3 =215—255 МПа в зависимости от способа раскисления (кипящая, полуспокойная, спокойная), вида поката (листовой, фасонный) и его толщины.

Ряд материалов при растяжении дает диаграмму без выраженной площадки текучести (см. рис. 2.). Для них устанавливается так называемый условный предел текучести . За него принято напряжение, при котором остаточная деформация составляет 0,2%. Для его нахождения на оси абсцисс откладывают 0,2% и проводят прямую ВС, параллельную участку ОА до пересечения с диаграммой.

Читайте также:  На каких свойствах пенопластов основано их применение

Рис. 2

Точку пересечения сносят на ось ординат. Это и будет условный предел текучести . Площадка текучести отсутствует для сталей с содержанием углерода менее 0,1% и более 0,3%, а также в алюминиевых сплавах, бронзе и некоторых других материалах.

Как показывают исследования образцов из сталей, текучесть сопровождается значительными взаимными сдвигами кристаллов, в результате чего на поверхности образца появляются линии (так называемые линии Людерса-Чернова), наклоненные к оси образца под углом 45° (см. рис. 3,а.).

Рис. 3

После прекращения текучести сталь снова способна противостоять деформированию — она как бы самоупрочняется. В стадии самоупрочнения материал работает упруго-пластически. Зависимость между напряжением и деформациями подчиняется, как на участке ДЕ (см. рис. 1.), криволинейному закону; но с большим нарастанием деформаций, т.е. диаграмма имеет более пологий характер.

Точка Е диаграммы соответствует наибольшему условному напряжению, называемому пределом прочности или временным сопротивлением . Предел прочности это некоторая условная характеристика, она не является напряжением, при котором материал разрушается, так как при разрушении площадь сечения образца значительно меньше первоначальной.

До достижения предела прочности продольные и поперечные деформации образца равномерно распределяются по его длине. После достижения точки Е диаграммы эти деформации концентрируются в наиболее слабом месте, где начинает образовываться шейка — местное значительное сужение (см. рис. 3, б), которое быстро прогрессирует.

С этого момента продольная деформация зависит уже не столько от длины образца, сколько от его диаметра. Этим объясняется необходимость иметь для нормальных образцов определенное отношение между длиной и диаметром для сравнимости результатов испытаний.

С образованием шейки (после точки Е) нагрузка падает и в точке М происходит разрушение образца (см. рис. 1).

При разрыве образца образуется поперечная трещина в центре поперечного сечения в самом узком месте шейки, а остальное сечение скалывается под углом в 45° к оси стержня, так что на одной части разорванного образца образуется выступ, на другой — кратер (рис. 3.в). Такая форма разрушения образцов из малоуглеродистой стали показывает, что разрушение связано со сдвигом по площадкам, наклонным под углом 45° к оси стержня, где касательные напряжения будут наибольшими.

С удлинением образца его поперечное сечение уменьшается. Поэтому истинное напряжение, определяемое как отношение силы F к действительной площади поперечного сечения А, будет выше, условного (на диаграмме показано пунктирной линией), что особенно различается для точки разрыва М (см. рис. 1).

Характеристики пластичности

Свойство материалов давать остаточные деформации называется пластичностью.

Пластичность — это положительное свойство материала. Она играет большую роль в обеспечении безопасности и надежности материалов конструкций. Чем длительнее развитие пластических деформаций, тем больше предел несущей способности (начало пластического деформирования) отдален от предела прочности (фактического разрушения материала).

Вследствии больших значений пластических деформаций, в десятки и сотни раз превышающих упругие, их развитие в перенапряженных элементах сложных конструктивных комплексов приводит к перераспределению и выравниванию усилий за счет догрузки менее напряженных элементов. Тем самым повышается работоспособность конструктивного комплекса в целом по сравнению с расчетными пределами.

Таким образом, работа материала в пластической стадии представляет огромный резерв прочности, благодаря которому конструкция, как правило, не разрушается в прямом смысле (нарушение целостности), а теряет несущую способность из-за больших остаточных деформаций.

Хрупкостью называется свойство материала, противоположное пластичности, т.е. склонность к разрушению при весьма малых остаточных деформациях.

Для оценки пластичности материала служат две характеристики: относительное остаточное удлинение и относительное остаточное сужение .

Относительное остаточное удлинение определяют по формуле:

, (1)

где l1 — длина разорванного образца.

Как мы уже отмечали, в месте образования шейки получается значительное удлинение образца, поэтому величина зависит от соотношения длины l и диаметра образца. Для длинных образцов l=10d, для коротких — l=5d, соответственно .

Относительное остаточное удлинение можно определить по диаграмме растяжения (см. рис. 1.). С точки разрыва образца М проводят линию параллельную ОА до пересечения с осью абсцисс. Отрезок OM1 представляет собой остаточную деформацию образца, т.e. , а отрезок M1M2 — упругую деформацию в момент разрыва. Упругая деформация, как известно, исчезает со снятием нагрузки. Если образец разорван, то нагрузка исчезла. Упругая деформация изменяется по закону Гука, что на диаграмме изображается наклонной прямой ОА. Следовательно, для определения упругой деформации нужно провести линию параллельно ОА.

Относительное остаточное сужение определяют по формуле:

, (2)

где — площадь поперечного сечения образца в месте разрыва.

Относительное остаточное сужение не зависит от длины образца.

Чем больше значения и , тем пластичнее материал. К числу весьма пластичных материалов относятся медь, алюминий, латунь, малоуглеродистая сталь. Например, для стали Ст. =23-27%, =60-70%.

Менее пластичными являются дюраль и бронза, а слабопластичными материалами — большинство легированных сталей.

К хрупким материалам относятся чугун, камень, кирпич, бетон, стеклопластики и др. У них <5%, а у некоторых материалов составляет доли процента, например, у чугуна 0,5%.

Деление материалов на пластичные и хрупкие носит условный характер, так как при некоторых условиях хрупкие материалы получают пластичные свойства (например, стекло при большом всестороннем сжатии приобретает свойства пластичного материала и разрушается как пластичный материал) и, наоборот, пластичные материалы приобретают хрупкие свойства (например, образец из пластичной слали при низкой температуре разрушается без образования шейки как хрупкий материал).

Поэтому правильнее говорить не о пластичных и хрупких материалах, а об их пластическом и хрупком разрушении.

Читайте также:

Рекомендуемые страницы:

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03
Нарушение авторских прав и Нарушение персональных данных

Источник