Какие важные свойства элементов можно считать непериодическими
При рассмотрении свойств элементов отметим, что причиной их периодического изменения является периодичность структур электронных слоев и оболочек атомов. Важнейшими периодически изменяющимися свойствами свободных атомов являются радиусы атомов, энергия ионизации и сродство к электрону.
РАДИУСЫ АТОМОВ И ИОНОВ. Изолированный атом не имеет строго определенного размера из-за волновых свойств электрона. Следовательно, понятие размера атома, его радиуса весьма условно. Тем не менее, часто необходимо знать хотя бы приближенные значения радиусов атомов. Для их оценки используют так называемые ЭФФЕКТИВНЫЕ РАДИУСЫ. Это радиусы, которые имеют атомы, входя в состав реальных простых веществ. Их обозначают .
Эффективные атомные радиусы элементов в периодах уменьшаются от щелочного металла к галогену. Объяснить это можно тем, что с увеличением заряда ядра увеличивается сила кулоновского притяжения электронов к ядру, которая преобладает над силами взаимного отталкивания электронов. Происходит сжатие электронной оболочки. Наиболее заметное уменьшение эффективного радиуса наблюдается для s- и р – элементов. В рядах d и f – элементов радиусы изменяются более плавно вследствие заполнения электронами второй и третьей снаружи оболочки.
В главных подгруппах с увеличение главного квантового числа происходит заметное увеличение радиуса атома. Для элементов побочных подгрупп изменение радиусов незначительное, а при переходе от пятого к шестому периоду эффективные радиусы атомов практически не изменяются. Это является следствием сжатия электронной оболочки в семействе лантоноидов, которое и компенсирует увеличение объема атома.
При отрыве электрона с внешнего уровня атома происходит уменьшение эффективного радиуса, а в случае образования отрицательного иона – увеличение. Ионные радиусы, как и атомные, являются периодической функцией заряда ядра.
ЭНЕРГИЯ ИОНИЗАЦИИ. Мы уже знаем, что отдельный атом в основном состоянии представляет собой наиболее устойчивую систему из данных частиц. Поэтому для любого изменения структуры этой системы требуется затрата энергии. Величина энергии, которая затрачивается для отрыва одного электрона от нейтрального атома в основном состоянии, называется энергией ионизации данного атома (), или ионизационным потенциалом. Эту энергию обычно относят к одному молю атомов и выражают в килоджоулях на моль или электроновольтах (эВ).
Энергия ионизации – важная характеристика атома. Она позволяет судить о том, насколько прочно связаны электроны в атоме.
В группе при увеличении порядкового номера элемента наблюдается уменьшение энергии ионизации. Оно связано с увеличением радиуса атома.
В периодах энергия ионизации атомов слева направо возрастает. Это вызвано сжатием электронной оболочки вследствие увеличения эффективного заряда ядра. Наименьшей является прочность связи
— электрона с ядром (при . Поэтому атомы щелочных металлов имеют самые низкие значения энергии ионизации. Причем, с увеличениям n их энергия ионизации понижается вследствие экранирующего действия внутренних электронов. Эта закономерность имеется и у р- элементов (за исключением ). Атомы благородных газов имеют максимальную энергию ионизации при данном .
Отрыв второго, третьего и т.д. электронов требует гораздо большей затраты энергии. Это связано с ростом заряда образующегося положительного иона. Энергия ионизации, например, для и соответственно равна 5,14эВ и 47,3эВ.
Сравнение электронных структур атомов и значений энергии ионизации позволяет заключить, что ее максимальными значениями обладают атомы с завершенными внешним слоями и , т.е. атомы благородных элементов.
СРОДСТВО К ЭЛЕКТРОНУ. В ряде случаев важно оценить способность атома присоединять электроны. Эта способность характеризуется значением энергии, которая затрачивается или выделяется при присоединении электрона к нейтральному атому в основном состоянии и называется сродством атома к электрону (). Способность атома присоединять электроны тем больше, чем больше величина его сродства к электрону. По сравнению с энергией ионизации значение сродства к электрону невелико, поскольку избыточный электрон приводит к усилению межэлектронного отталкивания и повышению энергии атомной орбитали.
Минимальное сродство к электрону наблюдается у атомов, имеющих завершенные — и — оболочки, мало оно и у атомов с конфигурацией (азот, фосфор, мышьяк).
Наибольшим сродством к электрону обладают атомы элементов подгрупп VII А, имеющие конфигурацию . Как правило, у элементов третьего периода сродство к электрону больше, чем у элементов второго периода.
Таким образом, в большинстве случаев сродство к электрону в ряду атомов изменяется в той же последовательности, что и их энергия ионизации: растет с ростом числа электронов на внешнем уровне атомов данного периода и уменьшается с ростом радиусов атомов в пределах данной группы или подгруппы.
Практическое использование всех рассмотренных характеристик ограничено тем, что они относятся к изолированным атомам. В случае неизолированных атомов часто используют эмпирическую величину, называемую ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬЮ (ЭО). Ее ввел Л.Полинг как свойство связанного атома притягивать электроны, точнее – электронную плотность. Электронная плотность смещается к тому из атомов, который имеет большую электроотрицательность. Электроотрицательность измеряется в тех же единицах, что и энергия ионизации. Она зависит от многих факторов: электронной структуры, наличия вакантных орбиталей, числа и вида соседних атомов и т.д. Поэтому для данного атома электроотрицательность не может быть постоянной. На практике используют усредненную величину.
В каждом периоде электроотрицательность растет по мере накопления электронов в атомах, т.е. слева направо. В каждой группе она убывает по мере возрастания радиусов атомов. Наибольшей электроотрицательностью обладают самые маленькие атомы с семью внешними электронами (атомы галогенов малых периодов). Наименьшая электроотрицательность у самых больших атомов с одним внешним электроном (атомы щелочных металлов больших периодов).
Однако в этих закономерностях много исключений. Таким образом, применяя эту величину, не следует ее не переоценивать.
НЕПЕРИОДИЧЕСКИЕ СВОЙСТВА. Это свойства элементов, которые с порядковым номером изменяются монотонно. К их числу относятся, например, удельная теплоемкость простых веществ, частоты линий рентгеновского спектра и др.
В заключение подчеркнем, что в периодической зависимости от заряда ядра находятся не только свойства отдельных атомов. Периодически зависят от заряда ядра атома многие свойства аналогичных по составу и структуре веществ: температуры кипения и плавления, энергии диссоциации, магнитные свойства и др.
Периодические и непериодические свойства элементов. . [c.430]
НЕПЕРИОДИЧЕСКИЕ И ПЕРИОДИЧЕСКИЕ СВОЙСТВА ЭЛЕМЕНТОВ [c.59]
Свойств, для которых отсутствует периодическая зависимость от порядковых номеров элементов, очень мало. На первый взгляд, к «непериодическим свойствам можно отнести удельную теплоемкость простых веществ. Действительно, атомная теплоемкость С— [c.34]
По мере изучения различных свойств элементов и их соединений обнаруживалось, что многие свойства, которые в течение длительного времени рассматривались как непериодические, на самом деле оказались периодическими. Поэтому развитие периодического закона Д. И. Менделеева сопровождалось увеличением числа периодических свойств и уменьшением числа непериодических. [c.59]
Строение электронной оболочки и свойства элементов. Структура электронной оболочки атомов химических элементов изменяется периодически с ростом порядкового номера элемента. Поскольку свойства есть функция строения электронной оболочки, они должны находиться в периодической зависимости от заряда ядра атома. И действительно, для самых разнообразных характеристик элементов указанная зависимость выражается периодическими кривыми, имеющими ряд максимумов и минимумов. Даже такие на первый взгляд непериодические свойства, как удельная теплоемкость простых веществ, частота линий рентгеновского спектра элементов и т.д., при внимательном анализе оказываются периодическими. Объясняется это тем, что периодичность присуща всей электронной оболочке атолюв, а не только ее внешним слоям. Рассмотрим кратко наиболее важные периодические свойства элементов. [c.45]
По характеру изменения в зависимости от атомных номеров все свойства химических элементов могут быть разделены на две группы — непериодические и периодические. К непериодическим свойствам относятся такие, которые являются монотонными функциями зарядов ядер атомов (атомных номеров). Для периодических свойств наблюдается периодическая зависимость от атомных номеров. [c.59]
Некоторые физические свойства элементов, такие, как масса атомов, число электронов в атомах, длина волны характеристичёского рентреновского излучения, атомная теплоемкость металлов, изменяются монотонно, т.е. непериодически. Многие свойства атомов й все химические свойства соединений изменяются периодически увеличиваясь или усиливаясь, напрймер, на протяжении периода, они уменьшаются или ослабляются в начале следующего периода. [c.295]
Как утверждает периодический закон, химические и многие физические свойства элементов изменяются периодически как функции определенного свойства атомов, которое изменяется постепенно, непериодически, от одного элемента к другому. Вначале считали, что этим непериодическим свойством является атомный вес. Поэтому периодический закон в первоначальном виде формулировался так Свойства элементов являются периодической функцией их атомных весов. Позже было установлено, что в действительности непериодическим свойством, в зависимости от которого периодически изменяются остальные свойства, является атомный номер. Под атомным номером подразумевается число положительных электрических зарядов ядер атомов каждого элемента. Известные 104 элемента атомные номера, изменяю- [c.53]
Структура электронной оболочки атомов химических элементов изменяется периодически с ростом порядкового номера элемента. Поскольку свойства есть функция строения электронной оболочки, они должны находиться в периодической зависимости от заряда ядра атома. И действительно, для самых разнообразных характеристик элементов указанная зависимость выражается периодическими кривыми, имеющими ряд максимумов и минимумов. Даже такие на первый взгляд непериодические свойства, как удельная теплоемкость простых веществ, частоты линий рентгеновского спектра элементов и т. д., при внимательном анализе оказываются периодическими. [c.61]
Вопросы для самопроверки 1. Какова современная формулировка периодического закона Д. И. Менделеева 2. Какая закономерность позволила доказать, что заряд ядра атома элемента равен порядковому номеру элемента в периодической системе элементов 3. Что такое энергия ионизации и энергия сродства к электрону Какое свойство атома они характеризуют 4. Что такое электроотрицательность 5. Как изменяются металлические и неметаллические свойства элементов с увеличением порядкового номера в малых и больших периодах 6. Как изменяются металлические свойства элементов в главных подгруппах в связи с изменением радиуса атома элемента 7. Каков порядок заполнения электронных слоев атомов элементов в малых и больших периодах С атомов каких элементов начинают формироваться 3(1-, 4 -, 4/-, 5й-, 5/- и 6 -подуровни 8, На какие электронные семейства классифицируются элементы в зависимости от характера заполнения электронных оболочек 9. Какие элементы называются типическими Какие элементы называются электронными аналогами (полными и неполными) 10. Какие свойства элементов изменяются периодически и какие непериодически с увеличением заряда ядра атома элемента 11. Как изменяются основные и кислотные свой- [c.14]
ПЕРИОДИЧЕСКИЕ СВОЙСТВА ЭЛЕМЕНТОВАтомный радиус
Важной характеристикой атома является его размер, т.е. атомный радиус. Строго говоря, размер отдельного атома не определен, поскольку внешняя его граница размыта за счет вероятностного нахождения Общая тенденция изменения атомных радиусов такова. В группах атомные радиусы возрастают, так как с увеличением числа энергетических уровней увеличиваются размеры атомных орбиталей с ббльшим значением В малых периодах радиусы атомов в целом уменьшаются, так как увеличение заряда ядра при переходе к каждому следующему элементу вызывает притяжение внешних электронов с возрастающей силой; число Величина атомного радиуса достаточно тесно связана с такой важной характеристикой атома, как энергия ионизации. Атом может терять один или несколько электронов, превращаясь в положительно заряженный Энергия ионизацииЭнергия ионизации — энергия, необходимая для удаления одного моля электронов от одного моля атомов какого либо элемента, называется первой энергией ионизации В результате ионизации атомы превращаются в положительно заряженные ионы. Энергию ионизации выражают либо в килоджоулях на моль [кДж/моль], либо в электронвольтах [эВ].
Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наименьшее напряжение поля, при котором скорость электронов становится достаточной для Na0 — ē = Na+ — 5,14 эв Cs0 — ē = Cs+ — 3,9 эв Энергия ионизации характеризует восстановительную способность элемента, т.е. металличность. Активные металлы обладают очень малыми значениями энергии ионизации. Первая энергия ионизации определяется Кроме первой энергии ионизации, элементы с многоэлектронными атомами могут характеризоваться второй I2, третьей I3, и более высокой энергией ионизации, которые равны Значения первой — пятой энергий ионизации для элементов Ia — IVa групп второго и третьего периодов
Становится очевидным, почему ионы Li+ и Na+ образуются легко, а образование ионов Li2+ и Na2+ энергетически не выгодно. Аналогичная Особого внимания заслуживает ионизация атомов d-элементов четвертого периода. Атомы этих элементов в первую очередь теряют 4s-электроны, а затем уже 3d-электроны. Таким образом, С помощью величины энергии ионизации характеризуют, как правило, элементы, находящиеся в начале периода. Для элементов, находящихся в конце периода, отрыв электрона с образованием положительно Сродство к электронуЭнергия, поглощаемая или выделяющаяся при присоединении электрона к атому, иону, радикалу или молекуле в газовой фазе при Т = 0К без передачи частице кинетической энергии, называется Сродство к электрону Еср количественно выражается в [кДж/моль] или [эВ]. F0 + ē = F — + 3,58 эв I0 + ē = I — + 3,3 эв Сродство к электрону — параметр атома данного элемента, менее подчиняющийся периодическому изменению, чем энергия ионизации. Тем не менее существуют следующие закономерности:
Сродство к электрону атомов элементов IVa — VIIa групп второго-четвертого периодов (знак «-» означает выделение энергии, знак «+» — поглощение)
Сродство к электрону атомов и одноатомных анионов некоторых элементов
ЭлектроотрицательностьДля характеристики способности атомов в соединениях притягивать к себе электроны введено понятие электроотрицательности. Учитывая, что эта способность атомов зависит от типа соединений, валентного Имеется несколько шкал электроотрицательности. Согласно Р. Малликену (США), электроотрицательность равна полусумме энергии ионизации и энергии сродства к электрону. Сложность использования Электроотрицательность определяет собой арифметическую сумму энергии ионизации и сродства к электрону и является достаточно полной характеристикой химической активности ЭО = I + E [ккал], [кДж], [эВ] Электроотрицательность элементов возрастает по периоду и несколько убывает в группах с возрастанием номера периода у элементов I, II, V, VI и VII главных подгрупп, III, IV и V — побочных подгрупп, Окислительно-восстановительные свойстваЭнергия ионизации и сродство к электрону зависят от радиуса атома и поэтому характер их изменения по периодам и подгруппам таблицы Периодической системы близок к характеру изменения радиуса. У элементов одного и того же периода при переходе от щелочного металла к благородному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Поэтому энергия ионизации постепенно увеличивается, Общая тенденция к возрастанию энергии ионизации в пределах периода в некоторых случаях нарушается. Так, энергии ионизации атомов бериллия и азота выше, чем атомов следующих за ними элементов бора и Эти и подобные факты служат экспериментальным основанием положения, согласно которому электронные конфигурации, соответствующие полностью или ровно наполовину занятым подуровням, обладают повышенной Сродство к электрону атомов d- и f-элементов, как правило, близко к нулю или отрицательно; из этого следует, что для большинства из них присоединение электронов энергетически невыгодно. Вдоль каждого периода радиусы атомов в целом уменьшаются, а заряд ядра увеличивается. В то же время главное квантовое число электронов внешней электронной оболочки остается постоянным. В результате По главным подгруппам и III побочной подгруппе по тем же самым причинам следует, что при переходе от легких элементов к тяжелым (rат увеличивается, Z увеличивается, но и n В соответствии со сказанным, самыми сильными восстановителями являются элементы, находящиеся в начале каждого периода и в конце I главной подгруппы (элементы цезий 55Cs, франций ПЕРИОДИЧЕСКИЕ СВОЙСТВА ЭЛЕМЕНТОВ |