Какие углы называются перпендикулярными и их свойства

Какие углы называются перпендикулярными и их свойства thumbnail

Перпендикуля́рность — бинарное отношение между различными объектами (векторами, прямыми, подпространствами и т. д.).

Для обозначения перпендикулярности имеется общепринятый символ:
, предложенный в 1634 году французским математиком Пьером Эригоном.
Например, перпендикулярность прямых и записывают как .

На плоскости[править | править код]

Перпендикулярные прямые на плоскости[править | править код]

Две прямые на плоскости называются перпендикулярными, если при пересечении образуют 4 прямых угла.

Про прямую перпендикулярную к прямой проведённую через точку вне прямой , говорят, что есть перпендикуляр опущенный из на .
Если же точка лежит на прямой , то говорят, что есть перпендикуляр к восстановленный из к (устаревший термин восставленный[1]).

В координатах[править | править код]

В аналитическом выражении прямые, заданные линейными функциями

и

будут перпендикулярны, если выполнено следующее условие на их угловые коэффициенты

Построение перпендикуляра[править | править код]

Построение перпендикуляра

Шаг 1: С помощью циркуля проведём полуокружность с центром в точке P, получив точки А и В.

Шаг 2: Не меняя радиуса, построим две полуокружности с центром в точках A и В соответственно, проходящими через точку P. Кроме точки P есть ещё одна точка пересечения этих полуокружностей, назовём её Q.

Шаг 3: Соединяем точки P и Q. PQ и есть перпендикуляр к прямой AB.

Координаты точки основания перпендикуляра к прямой[править | править код]

Пусть прямая задаётся точками и . На прямую опускается перпендикуляр из точки .
Тогда основание перпендикуляра  можно найти следующим образом.

Если (вертикаль), то и .
Если (горизонталь), то и .

Во всех остальных случаях:

;.

В трёхмерном пространстве[править | править код]

Перпендикулярные прямые[править | править код]

Две прямые в пространстве перпендикулярны друг другу, если они соответственно параллельны некоторым двум другим взаимно перпендикулярным прямым, лежащим в одной плоскости. Две прямые, лежащие в одной плоскости, называются перпендикулярными (или взаимно перпендикулярными), если они образуют четыре прямых угла.

Перпендикулярность прямой к плоскости[править | править код]

Определение: Прямая называется перпендикулярной к плоскости, если она перпендикулярна всем прямым, лежащим в этой плоскости.

Признак: Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.

Плоскость, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

Перпендикулярные плоскости[править | править код]

Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90°.

  • Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
  • Если из точки, принадлежащей одной из двух перпендикулярных плоскостей, провести перпендикуляр к другой плоскости, то этот перпендикуляр полностью лежит в первой плоскости.
  • Если в одной из двух перпендикулярных плоскостей провести перпендикуляр к их линии пересечения, то этот перпендикуляр будет перпендикулярен второй плоскости.
  • Плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна их линии пересечения[2].

В многомерных пространствах[править | править код]

Перпендикулярность плоскостей в 4-мерном пространстве[править | править код]

Перпендикулярность плоскостей в четырёхмерном пространстве имеет два смысла: плоскости могут быть перпендикулярны в 3-мерном смысле, если они пересекаются по прямой (а следовательно, лежат в одной гиперплоскости), и двугранный угол между ними равен 90°.

Плоскости могут быть также перпендикулярны в 4-мерном смысле, если они пересекаются в точке (а следовательно, не лежат в одной гиперплоскости), и любые 2 прямые, проведённые в этих плоскостях через точку их пересечения (каждая прямая в своей плоскости), перпендикулярны.

В 4-мерном пространстве через данную точку можно провести ровно 2 взаимно перпендикулярные плоскости в 4-мерном смысле (поэтому 4-мерное евклидово пространство можно представить как декартово произведение двух плоскостей). Если же объединить оба вида перпендикулярности, то через данную точку можно провести 6 взаимно перпендикулярных плоскостей (перпендикулярных в любом из двух вышеупомянутых значений).

Существование шести взаимно перпендикулярных плоскостей можно пояснить таким примером. Пусть дана система декартовых координат x y z t. Для каждой пары координатных прямых существует плоскость, включающая эти две прямые. Количество таких пар равно : xy, xz, xt, yz, yt, zt, и им соответствуют 6 плоскостей. Те из этих плоскостей, которые включают одноимённую ось, перпендикулярны в 3-мерном смысле и пересекаются по прямой (например, xy и xz, yz и zt), а те, которые не включают одноимённых осей, перпендикулярны в 4-мерном смысле и пересекаются в точке (например, xy и zt, yz и xt).

Перпендикулярность прямой и гиперплоскости[править | править код]

Пусть задано n-мерное евклидово пространство (n>2) и ассоциированное с ним векторное пространство , а прямая l с направляющим векторным пространством и гиперплоскость с направляющим векторным пространством (где , ) принадлежат пространству .

Прямая l называется перпендикулярной гиперплоскости , если подпространство ортогонально подпространству , то есть

Вариации и обобщения[править | править код]

См. также[править | править код]

  • Нормаль
  • Параллельность
  • Ортогональность
  • Высота
  • Теорема о трёх перпендикулярах

Примечания[править | править код]

Источник

Перпендикулярные прямые.

Вспомним взаимное расположение двух прямых. Две прямые могут пересекаться, т.е. иметь одну общую точку; могут не пересекаться, т.е. не иметь общих точек; и могут совпадать, т.е. иметь бесконечно много общих точек. Из этих трёх вариантов только пересечение двух прямых имеет разновидности. При пересечении двух прямых получается четыре угла, среди которых есть две пары вертикальных углов и четыре пары смежных углов. Но есть один случай, когда все четыре угла одинаковые. Это тот случай, когда каждый из четырёх углов – прямой, т.е. градусная мера каждого угла равна . Это особый случай пересекающихся прямых.

Определение. Перпендикулярными называются прямые, которые пересекаются под прямым углом (под углом ).

hello_html_7eb96224.png

ТЕОРЕМА I: Через каждую точку прямой можно провести перпендикулярную ей прямую, и, притом, только одну.

hello_html_m3b70a9ef.png

Дано: – прямая, .

Доказать: .

Доказательство.

1. Так как , то она разделила прямую на две полупрямые: и . По аксиоме VII (от любой полупрямой, от её начальной точки, в заданную полуплоскость можно отложить угол заданной градусной меры, меньшей и, притом, только один) от полупрямой , от её начальной точки можно отложить угол , равный . Значит, прямая , проходящая через точку образует с прямой прямой угол, т.е. (по определению).

2. Докажем, что прямая единственная. Предположим, что существует ещё одна прямая , проходящая через точку , и составляющая с прямой прямой угол. Тогда . А это противоречит той же аксиоме VII, которая утверждает, что угол заданной градусной меры можно отложить только один. К противоречию пришли потому, что сделали неправильное предположение, значит, второй прямой , перпендикулярной прямой и проходящей через точку не существует.

Читайте также:  Какие свойства ослабевают в периоде с увеличением заряда ядра атома

3. Итак, , ч.т.д.

ТЕОРЕМА II: Через любую точку, не лежащую на данной прямой можно провести перпендикулярную ей прямую, и, притом, только одну.

hello_html_m52df757c.png

Дано: – прямая, .

Доказать: .

Доказательство.

1. Выберем на прямой произвольную точку . Это возможно по аксиоме I (существуют точки принадлежащие и не принадлежащие прямой). Через две точки и можно провести прямую и только одну (аксиома I). Эта прямая будет пересекать прямую под некоторым углом. Так как прямая состоит из бесконечного количества точек, то существует бесконечное множество прямых, проходящих через точку и пересекающих прямую . И среди этого бесконечного множества прямых есть прямая, которая будет составлять с прямой прямой угол, т.е. .

2. Докажем, что прямая единственная. Предположим, что существует ещё одна прямая , проходящая через точку , и составляющая с прямой прямой угол. Тогда получается треугольник , в котором два угла прямые. Но как бы вы ни старались, вы не сможете построить треугольник с двумя прямыми углами. Его попросту не существует. Значит, мы сделали неправильное предположение, т.е. ещё одной прямой, проходящей через точку и перпендикулярной прямой не существует.

3. Итак, , ч.т.д.

Свойство. Углы с соответственно перпендикулярными сторонами либо равны, либо в сумме составляют .

hello_html_m528c2c2f.png

hello_html_m1f6907c9.png

Определение. Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной данной, который имеет одним из своих концов точку их пересечения. Эта точка называется основанием перпендикуляра.

hello_html_m513f1e2c.png

и – перпендикуляры к прямой .

Определение. Расстоянием от точки до прямой называется длина перпендикуляра, опущенного из этой точки на данную прямую.hello_html_m42164504.png

Перпендикулярные прямые обладают ещё другими свойствами, но мы их рассмотрим позднее, после изучения параллельных прямых.

Построение прямых углов на местности.

Изучая построение углов на местности, мы познакомились с основными инструментами, которые используются для этой цели. Но все они использовались, в основном, для измерения углов. А для построения прямых углов существует простейший прибор – экер, а также более современный прибор – теодолит (или электронный тахеометр).

Экер – это простейший прибор, предназначенный для построения прямого угла. Он состоит из двух брусков, расположенных под углом , и закреплённых на треножнике. На краях брусков вбиты гвозди так, что прямые, которые проходят через них перпендикулярны друг другу. Отвес служит для точной установки экера в нужное место на местности.

hello_html_m3b35a0a9.png

Чтобы построить прямой угол с заданной стороной , треножник с экером устанавливают в том месте, где должна располагаться вершина прямого угла (точка ), при этом, экер должен быть в горизонтальной плоскости, а отвес, подвешенный в точке пересечения перпендикулярных прямых, проходящих через гвозди, должен находиться точно над вершиной угла . Затем необходимо установить один из брусков так, чтобы его направление совпадало с направлением заданной стороны (), совмещение этих направлений можно осуществить с помощью вехи, установленной в точке . Далее по направлению второго бруска провешивают прямую линию (). Получаем прямой угол на местности.

Теодолит – это измерительный прибор, предназначенный для построения и измерения горизонтальных и вертикальных углов при топографических съёмках, геодезических работах, в строительстве и т.п. Основной рабочей мерой в теодолите являются лимбы с градусными и минутными делениями.

Построение прямого, как, впрочем, и любого другого угла с помощью теодолита – достаточно сложный процесс. Нам достаточно знать о его существовании, и как он выглядит.hello_html_72f6c82e.jpg

  1. Используя данные, отмеченные на рисунках, укажите перпендикулярные прямые.hello_html_568597f9.pnghello_html_m748b927c.png

  1. Начертите угол и отметьте три точки: одна из которых лежит во внутренней области угла; другая – во внешней области угла; третья – на стороне угла. Проведите через эти точки прямые, перпендикулярные обеим сторонам данного угла. Запишите необходимые обозначения.

  2. Докажите, что если биссектрисы углов и перпендикулярны, то точки и лежат на одной прямой.

  3. При пересечении прямых и образовались четыре угла. Луч перпендикулярен прямой и проходит между сторонами угла . Найдите угол , если . Сделайте рисунок.

  4. Через вершину угла , равного , проведена прямая так, что . Найдите угол между прямой и прямой, содержащей биссектрису данного угла.hello_html_19e51793.png

  5. На рисунке изображён куб. Запишите прямые, перпендикулярные прямой и прямые, перпендикулярные прямой , на которых лежат рёбра куба.hello_html_4365b369.png

  6. Равны ли острые углы и , если ? Ответ обоснуйте.

  7. Чему равна сумма острого угла и тупого угла , если ? Ответ обоснуйте.

  8. На рисунке прямые и перпендикулярны, . Найдите .hello_html_88bf154.png

  9. На рисунке прямые и перпендикулярны, . Найдите .

hello_html_14a8c7b7.png

  1. На рисунке из точки проведены лучи и , причём, . Угол, образованный биссектрисами углов и , равен . Найдите углы и .hello_html_m34869da2.png

  2. На рисунке из точки проведены лучи и , причём, . Угол, образованный биссектрисами углов и , равен . Найдите углы и .hello_html_5ef62772.png

  3. На рисунке даны два угла и с общей вершиной. Стороны одного угла перпендикулярны к сторонам другого угла. Найдите эти углы, если разность между ними равна прямому углу.

  4. Углы и смежные, – биссектриса угла , луч принадлежит области угла и перпендикулярен . Является ли биссектрисой угла ? Ответ обоснуйте.hello_html_501e36b6.png

  5. Два равных тупых угла имеют общую сторону, а две другие стороны взаимно перпендикулярны. Найдите величину тупого угла.

  6. Из вершины развёрнутого угла проведены два луча, которые делят его на три равные части. Докажите, что биссектриса среднего угла перпендикулярна сторонам развёрнутого угла.

  7. Докажите, что сумма каждых трёх углов, не прилежащих один к другому и образуемых тремя прямыми, проходящими через одну точку, равна двум прямым углам.

  8. Докажите, что сумма каждых пяти углов, не прилежащих один к другому и образуемых пятью прямыми, проходящими через одну точку, равна двум прямым углам.

  9. Докажите, что биссектрисы смежных углов перпендикулярны.

  10. Докажите, что две прямые, перпендикулярные одной прямой, не имеют общих точек.

  11. Докажите, что биссектрисы вертикальных углов лежат на одной прямой.

  12. Даны три прямые . Докажите, что если и , то прямые и не имеют общих точек.

  13. Докажите, что если три из четырёх углов, которые получаются при пересечении двух прямых, равны, то прямые перпендикулярны.

  14. С помощью угольника проведите прямые, перпендикулярные прямым, изображённым на рисунке.hello_html_m5a0e7e9b.jpg

  15. На рисунке пересекаются три прямые. Запишите, какие из этих прямых перпендикулярны. Найдите остальные углы.hello_html_m5a0e7e9b.jpg

  16. На рисунке прямые и перпендикулярны, . Найдите .hello_html_m500ec4b9.png

  17. На рисунке прямые и перпендикулярны, . Найдите .hello_html_m77484b44.png

  18. Даны два непересекающихся угла с общей вершиной, причём, их стороны соответственно перпендикулярны, и один угол в два раза меньше другого. Найдите эти углы.

  19. Даны два пересекающихся по лучу угла и , причём, известно, что их сумма составляет прямого угла, и что продолжение стороны за вершину делит угол пополам. Найдите эти углы.

  20. Через вершину угла, равного , проведена прямая, перпендикулярная его биссектрисе. Чему равны углы, образованные этой прямой и сторонами данного угла?

Читайте также:  С какими свойствами химических элементов связаны названия их семейств

7

Источник

[{Large{text{Скрещивающиеся прямые}}}]

Заметим, что если две прямые лежат в одной плоскости, то, как и в планиметрии, они могут либо пересекаться, либо быть параллельны, либо совпадать. Значит, и угол между такими прямыми ищется так же, как и в планиметрии (напомним, что угол между параллельными прямыми считается равным (0^circ)). А если через две прямые нельзя провести одну плоскость?

Поэтому к трем видам взаимного расположения прямых в плоскости (пересекаются, параллелельны или совпадают) в пространстве добавляется еще один вид: скрещивающиеся прямые.

Определение

Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости.

Угол (alpha) между прямыми — это угол (0^circleqslant
alphaleqslant
90^circ).

Теорема 1: признак скрещивающихся прямых

Пусть прямая (l) лежит в плоскости (lambda). Если прямая (s) пересекает плоскость (lambda) в точке (S), не лежащей на прямой (l), то прямые (l) и (s) скрещиваются (рис. 1).

Какие углы называются перпендикулярными и их свойства

Доказательство

Необходимо доказать, что через прямые (l) и (s) нельзя провести плоскость. Предположим, что это не так, то есть проведем через эти прямые плоскость (pi). Т.к. плоскость (pi) содержит прямую (l) и точку (S), то она совпадает с плоскостью (lambda) по следствию 1 из аксиом. Значит, т.к. прямая (s) лежит в плоскости (pi), то она лежит и в плоскости (lambda), что противоречит условию. Чтд.

Теорема 2

Через каждую из двух скрещивающихся прямых проходит единственная плоскость, параллельная другой прямой (рис. 2).

Доказательство

Какие углы называются перпендикулярными и их свойства

Пусть прямые (a) и (b) скрещиваются. Проведем плоскость (beta) через прямую (b) так, чтобы она пересекала прямую (a) в точке (P) (как в предыдущей теореме). Через точку (P) проведем прямую (pparallel b). Т.к. прямые (a) и (p) пересекаются (в точке (P)), то через них проходит единственная плоскость (назовем ее (pi)). Прямая (b) параллельна плоскости (pi) по признаку параллельности прямой и плоскости.

Построенная таким образом плоскость (pi) единственна. Любая другая плоскость, проходящая через прямую (a), будет уже пересекать прямую (p), а следовательно, будет пересекать прямую (b). Чтд.
 

[{Large{text{Угол между скрещивающимися прямыми}}}]

Определение

Угол между скрещивающимися прямыми – это угол между пересекающимися прямыми, соответственно параллельными двум скрещивающимся прямым.

Таким образом, можно определить следующий алгоритм нахождения угла между скрещивающимися прямыми (рис. 2):

Шаг 1. Через одну из двух скрещивающихся прямых (a) провести плоскость (pi) параллельно другой прямой (b) (по алгоритму, приведенному в теореме 2);

Шаг 2. В этой плоскости найти угол между прямыми (a) и (p) ((pparallel b)). Угол между ними будет равен углу между скрещивающимися прямыми (a) и (b).
 

[{Large{text{Перпендикулярность прямой и плоскости в пространстве}}}]

Определение

Две прямые в пространстве называются перпендикулярными, если угол между ними равен (90^circ).

Таким образом, перпендикулярными могут быть как и пересекающиеся прямые (лежащие в одной плоскости), так и скрещивающиеся прямые (не лежащие в одной плоскости).

Утверждение 1

Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и вторая прямая перпендикулярна этой прямой:

[aparallel b, aperp c Longrightarrow bperp c]

Утверждение 2

Две прямые, перпендикулярные третьей прямой, не пересекаются (то есть либо параллельны, либо скрещиваются):

[aperp c, bperp c Longrightarrow acap b=varnothing]

Определение

Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

Следствие 1

Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости (рис. 3).

(Данное утверждение напрямую следует из утверждения 1.)

Какие углы называются перпендикулярными и их свойства

Верно и обратное утверждение:

Следствие 2

Если две прямые перпендикулярны плоскости, то они параллельны (рис. 3).

Теорема 3: признак перпендикулярности прямой и плоскости

Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

Доказательство

Пусть прямая (aperp x,aperp y), причем прямые (x, yin pi).

Какие углы называются перпендикулярными и их свойства

Предположим, что прямая (a) уже проходит через точку (O) пересечения прямых (x) и (y) (если это не так, то проведем через точку (A) прямую (a’), параллельную (a); если (a’) будет перпендикулярна плоскости, то и (a) будет ей перпендикулярна по следствию 1).

Проведем через точку (O) в плоскости (pi) некоторую прямую (z). Проведем также прямую, пересекающую прямые (x, y, z) в точках (X, Y,
Z) соответственно. На прямой (a) по разные стороны от плоскости (pi) отметим точки (A, B) так, чтобы (AO=OB).

Рассмотрим (triangle AXB). Т.к. (XO) – высота (по условию) и медиана (по построению), то (AX=XB). Аналогично для (triangle AYB): (AY=YB). Таким образом, (triangle AXY=triangle BXY) по трем сторонам. Отсюда (angle AXY=angle BXY).

Значит, по двум сторонам и углу между ними (triangle AXZ=triangle
BXZ). Значит, (AZ=BZ). Теперь (triangle AZB) – равнобедренный, причем (ZO) – медиана (по построению). Значит, (ZO) – высота, то есть прямая (a) перпендикулярна прямой (z).

Т.к. прямую (z) мы выбрали произвольно, то это значит, что прямая (a) перпендикулярна любой прямой из плоскости (pi), проходящей через точку (O). Но это значит, что прямая (a) перпендикулярна вообще любой прямой из плоскости, т.к. для любой прямой (z’), не проходящей через точку (O), существует параллельная ей прямая (z), проходящая через точку (O). А раз (aperp z, zparallel z’
Rightarrow aperp z’) (по утверждению 1).

Читайте также:  Каким свойством обладает рнк

Следствие 3

Через любую точку пространства можно провести плоскость, перпендикулярную данной прямой, и притом только одну.

Следствие 4

Через любую точку пространства проходит прямая, перпендикулярная данной плоскости, и притом только одна.
 

[{Large{text{Расстояния}}}]

Определение

Пусть (aperp beta), причем (acap beta=H). Пусть (Ain a, Bin
beta):

Какие углы называются перпендикулярными и их свойства

Отрезок (AH) называется перпендикуляром к плоскости (beta).

Отрезок (AB) называется наклонной к плоскости (beta).

Отрезок (BH) называется проекцией наклонной (AB) на плоскость (beta).

Расстояние от точки до плоскости

Длина перпендикуляра (AH) к плоскости (beta) равна расстоянию от точки (A) до плоскости (beta) (рис. 4).

Расстояние между параллельными плоскостями

Для того, чтобы найти расстояние между параллельными плоскостями, нужно из любой точки одной плоскости опустить перпендикуляр к другой плоскости. Длина этого перпендикуляра и есть расстояние между параллельными плоскостями.

Заметим, что расстояние между пересекающимися плоскостями равно нулю.

Расстояние между скрещивающимися прямыми

Длина общего перпендикуляра (h) к обеим скрещивающимся прямым (a) и (b) и есть расстояние между этими скрещивающимися прямыми.
То есть (hperp a, hperp b).

Для того, чтобы найти расстояние между скрещивающимися прямыми, удобно найти расстояние между одной из них и плоскостью, проходящей через вторую прямую параллельно первой.
 

[{Large{text{Теорема о трех перпендикулярах (ТТП)}}}]

ТТП

Пусть (AH) – перпендикуляр к плоскости (beta). Пусть (AB, BH) – наклонная и ее проекция на плоскость (beta). Тогда прямая (x) в плоскости (beta) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.

Какие углы называются перпендикулярными и их свойства

Доказательство

1. Докажем, что из (xperp AB) следует, что (xperp BH).

Заметим, что т.к. (AHperp beta), то (AH) перпендикулярна любой прямой из плоскости (beta).

Проведем прямую (x’parallel x) через точку (B). Рассмотрим плоскость ((AHB)). Прямая (x’) перпендикулярна этой плоскости, т.к. перпендикулярна двум пересекающимся прямым (AB) и (AH) из этой плоскости. Но т.к. (xparallel x’), то и (xperp(AHB) Rightarrow
xperp BH).

2. Случай, когда из перпендикулярности проекции следует перпендикулярность наклонной, доказывается аналогично.

Замечание

Данная теорема является очень важным и незаменимым инструментов во многих задачах стереометрии.
 

[{Large{text{Угол между прямой и плоскостью. Угол между плоскостями}}}]

Определение

Угол между наклонной прямой и плоскостью — это угол между этой прямой и ее проекцией на данную плоскость. Таким образом, данный угол принимает значения из промежутка ((0^circ;90^circ)).

Если прямая лежит в плоскости, то угол между ними считается равным (0^circ). Если прямая перпендикулярна плоскости, то, исходя из определения, угол между ними равен (90^circ).

Замечание

Таким образом, чтобы найти угол между наклонной прямой и плоскостью, необходимо отметить некоторую точку (A) на этой прямой и провести перпендикуляр (AH) к плоскости. Если (B) – точка пересечения прямой с плоскостью, то (angle ABH) и есть искомый угол (рис. 4).

Определение

Двугранный угол – это геометрическая фигура, образованная прямой (a) (называемой ребром) и двумя полуплоскостями (называемыми гранями), общей границей которых является прямая (a).
Будем считать, что данные полуплоскости не принадлежат одной плоскости (т.к. в этом случае двугранный угол представляет собой просто плоскость с прямой из этой плоскости).

Если отметить по одной точке на каждой полуплоскости, а также две точки на прямой (a) (как показано на рисунке), то двугранный угол можно обозначить как (ABCD).

Какие углы называются перпендикулярными и их свойства

Замечание

Прямая (a) в данном случае является аналогом вершины плоского угла, а полуплоскости – аналогом сторон плоского угла.

Таким образом, при пересечении двух плоскостей образуется четыре двугранных угла.

Определение

Если к ребру (a) двугранного угла провести перпендикулярную плоскость (через любую точку), то она пересечет грани двугранного угла по лучам. Угол, образованный данными лучами, называется линейным углом данного двугранного угла.

Замечание

Таким образом, при пересечении двух плоскостей образуется четыре двугранных угла, которым соответствуют четыре линейных угла.

Градусная мера угла между данными плоскостями — это градусная мера меньшего из четырех линейных углов. Таким образом, данный угол принимает значения из промежутка ([0^circ;90^circ]).

Какие углы называются перпендикулярными и их свойства

Для того, чтобы найти угол между плоскостями (alpha) и (beta), можно действовать по следующему алгоритму:

Отметить произвольную точку (A) в плоскости (alpha).
Провести (AHperp h), где (h) — линия пересечения плоскостей.
Провести (AB) перпендикулярно плоскости (beta).
Тогда (AB) – перпендикуляр к плоскости (beta), (AH) – наклонная, следовательно, (HB) – проекция. Тогда по ТТП (HBperp h).
Следовательно, плоскость, проходящая через прямые (AH) и (BH), и есть плоскость, перпендикулярная ребру (h) двугранного угла. Значит, (angle AHB) — линейный угол двугранного угла между плоскостями. Градусная мера этого угла равна градусной мере угла между плоскостями.

Заметим, что мы получили прямоугольный треугольник (triangle AHB). Как правило, находить (angle AHB) удобно из него.
 

[{Large{text{Перпендикулярность плоскостей}}}]

Определение

Две плоскости называются перпендикулярными, если угол между ними равен (90^circ).

Теорема 4: признак перпендикулярности плоскостей

Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

Доказательство

Пусть прямая (a) лежит в плоскости (alpha) и перпендикулярна плоскости (beta). Докажем, что тогда плоскости (alphaperp beta).

Какие углы называются перпендикулярными и их свойства

Пусть плоскости пересекаются по прямой (h). Тогда (aperp h) (т.к. (a) перпендикулярна любой прямой из плоскости (beta), а (h), очевидно, лежит в (beta)). Проведем через точку пересечения прямых (a) и (h) прямую (b) в плоскости (beta). Углы, образованные при пересечении прямых (a) и (b) – линейные углы двугранных углов, образованных плоскостями (alpha) и (beta). Но (aperp b), значит, углы, образованные ими, равны (90^circ). Чтд.

Источник