Какие углы называют смежными их свойство
Êëèêíèòå, ÷òîáû äîáàâèòü â èçáðàííûå ñåðâèñû.
Êëèêíèòå, ÷òîáû óäàëèòü èç èçáðàííûõ ñåðâèñîâ.
Ñìåæíûìè óãëàìè íàçûâàåòñÿ ïàðà óãëîâ ñ îáùåé âåðøèíîé è îäíîé îáùåé ñòîðîíîé. 2 îñòàâøèåñÿ ñòîðîíû äåëàþò ïðîäîëæåíèå äðóã äðóãó, îáðàçîâûâàÿ ïðÿìóþ ëèíèþ.
Êàêèå óãëû íàçûâàþòñÿ ñìåæíûìè?
Ñìåæíûìè óãëàìè íàçûâàåòñÿ ïàðà óãëîâ ñ îáùåé âåðøèíîé è îäíîé îáùåé ñòîðîíîé. 2 îñòàâøèåñÿ ñòîðîíû äåëàþò ïðîäîëæåíèå äðóã äðóãó, îáðàçîâûâàÿ ïðÿìóþ ëèíèþ. Äëÿ óãëà 135 ãðàäóñîâ ñìåæíûì áóäåò óãîë ðàâíûé 45 ãðàäóñàì. Äëÿ óãëà x ãðàäóñîâ ñìåæíûì ÿâëÿåòñÿ óãîë (180 – x) ãðàäóñîâ. |
Äâà ñìåæíûõ óãëà — ýòî óãëû, ñ îäíîé îáùåé ñòîðîíîé, à îñòàëüíûå ñòîðîíû íàõîäÿòñÿ íà îäíîé ïðÿìîé.
Ïðè ïåðåñå÷åíèè 2-õ ïðÿìûõ ïîëó÷àåòñÿ 4-ðå ïàðû ñìåæíûõ óãëîâ:
∠1 è ∠2, ∠3 è ∠4, ∠1 è ∠3, ∠2 è ∠4 Íî, òàê êàê ∠1 =∠4, ∠2 = ∠3 (êàê âåðòèêàëüíûå), òî äîñòàòî÷íî ðàññìàòðèâàòü òîëüêî îäíó èç ýòèõ ïàð. |
Ñâîéñòâî ñìåæíûõ óãëîâ.
×åìó ðàâíà ñóììà ñìåæíûõ óãëîâ?
Ñìåæíûå óãëû ðàâíû: ñóììà ñìåæíûõ óãëîâ 180º.
1. α+ β= 180°
2. α= 180°−β
Ñëåäñòâèÿ èç òåîðåìû î ñìåæíûõ óãëàõ.
- Åñëè 2 óãëà ðàâíû, òî ñìåæíûå èì óãëû òîæå ðàâíû.
- Åñëè óãîë íå ðàçâåðíóòûé, çíà÷èò îí ≠180°.
- Ñìåæíûé óãîë äëÿ ïðÿìîãî óãëà (ò.å. óãëà, ó íåãî ãðàäóñíàÿ ìåðà = 90°), òîæå ïðÿìîé.
- Ñìåæíûé óãîë äëÿ îñòðîãî óãëà (ãðàäóñíàÿ ìåðà ìåíüøå 90°), áóäåò òóïûì (ãðàäóñíàÿ ìåðà áîëüøå
90°), à ñìåæíûé òóïîìó — îñòðûì.
Òðèãîíîìåòðè÷åñêèå ñîîòíîøåíèÿ.
- Ñèíóñû ñìåæíûõ óãëîâ îäèíàêîâû. Èõ êîñèíóñû è òàíãåíñû ðàâíû ïî âåëè÷èíå, íî èìåþò
ïðîòèâîïîëîæíûå çíàêè (èñêëþ÷åíèå íåîïðåäåëåííûå çíà÷åíèÿ).
- ×òîáû ïîñòðîèòü óãîë, ñìåæíûé ñóùåñòâóþùåìó, íåîáõîäèìî îäíó èç ñòîðîí íàøåãî óãëà ïðîäëèòü
äàëüøå âåðøèíû.
Ðàññìîòðèì ïðèìåð:
Çàäàíèå. ×åìó áóäåò ðàâíà ãðàäóñíàÿ ìåðà óãëà α, êîãäà ãðàäóñíàÿ ìåðà ñìåæíîãî åìó óãëà = 70°?
Êàê íàéòè ñìåæíûé óãîë?
Ðåøåíèå. Èç òåîðåìû î ñìåæíûõ óãëàõ íàõîäèì:
Äàëåå
Îòâåò.
Äîïîëíèòåëüíûå ìàòåðèàëû ïî òåìå: Óãëû. Ñìåæíûå óãëû.
|
| ||||||||||||
|
| ||||||||||||
|
| ||||||||||||
Êàëüêóëÿòîðû ïî ãåîìåòðèè | |
Ïîìîùü â ðåøåíèè çàäà÷ ïî ãåîìåòðèè, ó÷åáíèê îíëàéí (âñå êàëüêóëÿòîðû ïî ãåîìåòðèè). | |
Êàëüêóëÿòîðû ïî ãåîìåòðèè |
Óãîë. Îñíîâíûå ïîíÿòèÿ. | |
Êîãäà äâà ëó÷à ( AO è OB ) èñõîäÿò èç îäíîé òî÷êè, òî ôèãóðà, ñôîðìèðîâàííàÿ ýòèìè ëó÷àìè (âìåñòå ñ ÷àñòüþ ïëîñêîñòè, îãðàíè÷åííîé èìè), íàçûâàåòñÿ óãëîì. | |
Óãîë. Îñíîâíûå ïîíÿòèÿ. |
Ðàäèàíû. Ðàäèàííàÿ ìåðà óãëà. | |
Ðàäèàííàÿ ìåðà. Êàê èçâåñòíî èç ïëàíèìåòðèè, äëèíà äóãè l, ðàäèóñ r è ñîîòâåòñòâóþùèé öåíòðàëüíûé óãîë α ñâÿçàíû ñîîòíîøåíèåì. | |
Ðàäèàíû. Ðàäèàííàÿ ìåðà óãëà. |
Óãëîâîé êîýôôèöèåíò. | |
Óãëîâîé êîýôôèöèåíò — êîýôôèöèåíò k â óðàâíåíèè ïðÿìîé íà ïëîñêîñòè y = kx + b . | |
Óãëîâîé êîýôôèöèåíò. |
Óãëû. Ãðàäóñíàÿ ìåðà óãëà. | |
Ãðàäóñíîé ìåðîé óãëà ÿâëÿåòñÿ ÷èñëî áîëüøå íóëÿ, êîòîðîå ïîêàçûâàåò, êàêîå ÷èñëî ðàç ãðàäóñ è åãî ÷àñòè — ìèíóòà è ñåêóíäà — ïîìåùàþòñÿ â ýòîì óãëå. | |
Óãëû. Ãðàäóñíàÿ ìåðà óãëà. |
Óãëû. Ñìåæíûå óãëû. | |
Ñìåæíûìè óãëàìè íàçûâàåòñÿ ïàðà óãëîâ ñ îáùåé âåðøèíîé è îäíîé îáùåé ñòîðîíîé. 2 îñòàâøèåñÿ ñòîðîíû äåëàþò ïðîäîëæåíèå äðóã äðóãó, îáðàçîâûâàÿ ïðÿìóþ ëèíèþ. | |
Óãëû. Ñìåæíûå óãëû. |
Óãîë. Âïèñàííûé óãîë. | |
Âïèñàííûé óãîë – ýòî óãîë, ñôîðìèðîâàííûé äâóìÿ õîðäàìè , áåðóùèìè íà÷àëî â îäíîé òî÷êè îêðóæíîñòè. | |
Óãîë. Âïèñàííûé óãîë. |
Óãîë. Èçìåðåíèå óãëîâ. | |
Èçìåðåíèå óãëîâ ñâîäèòñÿ ê èçìåðåíèþ ñîîòâåòñòâóþùèõ èì äóã ñëåäóþùèì îáðàçîì. | |
Óãîë. Èçìåðåíèå óãëîâ. |
Ãåîìåòðèÿ 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ãåîìåòðèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Ãåîìåòðèÿ 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |