Какие тепловые процессы происходят в продуктах при тепловой обработке

Процессы, происходящие при тепловой обработке продуктов

Тепловая обработка — один из основных процессов производ­ства кондитерских изделий. Она имеет большое значение, так как повышает усвояемость пищевых продуктов, в значительной степе­ни уменьшает микробиологическую обсемененность, придает им новые вкусовые качества.

В процессе тепловой обработки изделия прогреваются, из них удаляется избыток влаги, в результате чего происходят сложные физико-химические изменения, придающие выпускаемым изделиям свойственные им вкус, аромат, цвет и структуру. В зависимости от видов тепловой обработки изделия приобретают те или иные вку­совые качества.

Существуют следующие основные виды тепловой обработки: варка, жарка, запекание, СВЧ-нагрсв, а также комбинированные виды, сочетающие два или три способа одновременно.

Мясо, рыбу, рис для фаршей можно варить в большом коли­честве жидкости, в собственном соку или в малом количестве жид­кости (пропускание) и на пару (без жидкости). При варке с ма­лым количеством жидкости питательных веществ теряется намного меньше, чем при обычной варке. Мясо для фарша припускают после предварительного обжаривания, т.е. тушат. Блинчики, ола­дьи, блины жарят с небольшим количеством жира при темпера­туре 130—150°С. Хворост, некоторые виды пирожков, пончики и другие изделия жарят в большом количестве жира (во фритюре); температура жарки при этом достигает 160-180’С.

Выпечка изделий из различных видов теста производится в кон­дитерских печах с газовым или электрообогревом непрерывного или периодического действия.

В каждом отдельном случае соблюдается определенный тепло­вой режим, иногда печи увлажняются. Это обеспечивает получение изделий высокого качества. Как правило, кондитерские шкафы и печи снабжены термометрами. Во время выпечки происходит пере­распределение влаги в изделии, обезвоживание поверхностных слоев и образование корочки. Необходимо правильно подобрать темпера­турный режим выпечки, чтобы появление корочки произошло толь­ко после того, как изделие полностью увеличит свой объем. Время выпечки зависит от размера изделий и их плотности: хорошо раз­рыхленное тесто выпекается быстрее, чем плотное.

Изменение объема изделий зависит от газообразных веществ, образующихся в результате разложения химических разрыхлителей или продуктов брожения в дрожжевом тесте. Сода и аммоний начи­нают разлагаться с выделением углекислого газа при 60-804С. С увеличением температуры объем газообразных продуктов и их дав­ление на тесто увеличиваются. При 1()0°С начинает интенсивно ис­паряться вода. Если брожение происходило нормально, а в пре­сном тесте химические разрыхлители были распределены равно­мерно, то тесто не будет иметь больших пор и равномерно поднимется во время выпечки.

Химическим изменениям подвергаются белки, крахмал муки и другого сырья, что играет основную роль в образовании структуры кондитерских изделий. Крахмал в процессе выпечки клейстеризуется и набухает, поглощая большое количество воды, в том числе и воду, выделенную свернувшимися белками. Изменение цвета повер­хности изделий обусловлено распадом многих веществ, содержащихся в тесте, особенно крахмала, и карамелизацией Сахаров.

Белки теста, клейковина при нагревании свыше 70°С теряют способность набухать, в них происходят химические изменения, приводящие к денатурации и «свертыванию», т.е. к потере способ­ности удерживать волу. Влага, поглощенная белками при замесе теста, выделяется, и ее поглощает клейстеризующийся крахмал, т.е. происходит перераспределение жидкости. Белки теста, сверты­ваясь, уплотняются, и изделия приобретают прочную структуру.

Вследствие разности температур мякиша и корочки внутри из­делия происходит перемещение влаги от поверхности во внутрен­ние слои мякиша. В связи с этим влажность мякиша повышается на 1,5-2,0%.

Помимо этих процессов в тесте при выпечке происходит и ряд других: образование новых ароматических и вкусовых веществ, из­менение жиров, витаминов и £р.

Выпеченные изделия после тепловой обработки в результате потери ими воды при выпекании имеют меньшую массу по срав­нению с массой изделий до выпекания. Отношение разности мас­сы изделия до и после выпекания к массе изделия до выпекания называют упеком] Выражают его в процентах:

— Масса изделия до выпекания — Масса изделия после выпекания — Масса изделия до выпекания

Процент упека того или иного теста тем выше, чем больше вла­ги теряет оно при выпечке, т.е. чем меньше и тоньше выпекаемое изделие и чем дольше тепловая обработка; чем жиже тесто, тем выше процент упека.

Пример расчета упека в изделиях. Определив потери в массе в кг и упек в % к массе теста при выпечке 100 шт. булочек массой по 50 г.

На 100 шт. булочек расходуется 5,8 кг теста. Масса выпеченных булочек 5 кг. Следовательно, потери в массе 0,8 кг. Определим упек: = 14%. 5

Масса готового изделия всегда больше массы использованной для изготовления изделия муки. Отношение разности массы выпе­ченного изделия и взятой при его замесе муки к массе муки назы­вают припеком/ Выражают его в процентах:

Масса выпеченного теста ~ Масса взятой для теста муки Масса муки

Припек того или иного теста тем выше, чем больше в тесто вводится дополнений и воды и чем ниже упек. Мука, имеющая высококачественную клейковину, при замесе теста поглощает боль­ше влаги, чем мука со слабой клейковиной, это также увеличивает припек изделий.

Пример расчета припека в изделиях. Рассчитать, какой припек получится при изготовлении 100 шт. булочек массой по 50 г.

На 100 шт. булочек расходуется 4 кг муки. Масса выпеченных 100 urr. булочек 5 кг. Определим припек: = 25%.    4

Масса готового изделия с учетом массы муки и всех продуктов, предусмотренных рецептурой для его изготовления, называется выходом]изделия. Выход зависит от многих причин: водопоглотительной способности муки, ее влажности, потерь при брожении, величины упека, потерь при разделке теста и т.д.

Чем больше влажность муки, тем меньше выход. Мука с сильной клейковиной имеет большую водопоглотительную способность и даст больший выход. При выпечке крупных изделий выход больше, чем при выпечке мелких (у мелких изделий больше испаряется влаги).

В процессе дрожжевого брожения расходуется 2-3% сухих ве­ществ, поэтому при излишнем брожении выход будет меньше. Из­делия, смазанные яйцом, дают больший выход, чем изделия не­смазанные, так как смазка уменьшает испарение влаги.

Выход готовых изделий можно выразить в процентах:

Масса изделия до выпекания — Потерн в массе при выпекании Масса изделия до выпекания

Пример расчета выхода изделий. Рассчитать выход при выпечке 100 шт. булочек массой по 50 г. Масса изделий до выпекания 5,8 кг. Масса выпеченных булочек 5 кг. Потери в массе при выпекании 0,8 кг. Выход составит: = 86%.

Пример пересчета сырья при использовании муки влажностью выше или ниже базисной (14,5%).

При изготовлении 1000 шт. булочек расход муки должен составить 40 кг. По­ступившая на предприятие мука имеет влажность 13,0%, т.е. на 1,5% меньше,
 чем это предусмотрено рецептурой, и в связи с этим муки должно быть израсхо­довано на 1,5% меньше, т.е.  39,4 кг.

Количество води должно быть увеличено на 0,6 кг.

Если мука поступит с повышенной влажностью, например 16%, необходимо взять следующее количество: = 40,6 кг.

Соответственно количество воды уменьшается на 0,6 кг.

Фарши и начинки

Многие мучные кондитерские изделия выпекают с начинками (фаршами), для изготовления которых используют разнообразные про­дукты: мясо, субпродукты, рыбу, овощи, грибы, крупы, яйца и др

Во многих фаршах, в которые не входит крупа, для связи и создания консистенции, улучшающей вкус фарша, используют соус. В состав соуса входят пассированная мука, масло или маргарин и бульон. На 1 кг фарша добавляют 100-150 г соуса.

Читайте также:  Какие продукты питания вы знаете

Пассерование муки. Муку пассеруют для изменения свойств: при прогревании клейковина теряет способность к набуханию и не мо­жет образовать клейкую массу (вследствие свертывания белков). Пассеруют муку с жиром и без жира. Мучную пассировку без жира производят следующим образом: просеянную муку насыпают на сковороду или противень толстым слоем не более 3 см и, помеши­вая деревянной веселкой, нагревают на плите до тех пор, пока мука не приобретет слегка кремовый (палевый) оттенок и прият­ный аромат каленого ореха. Пассированная мука должна быть рас­сыпчатой, без комков и привкуса сырой муки.

Муку можно пассеровать также в жарочном шкафу при темпе­ратуре 110—120°С, через каждые 2-3 мин перемешивая и разминая веселкой комки. Пассированную муку просеивают через сито с ячей­ками 1—2 мм.

Мучную пассировку жиром производят так: в сотейнике или ка­стрюле с толстым дном растапливают масло или маргарин и нагре­вают до полного испарения влаги. Затем добавляют просеянную муку и, непрерывно помешивая веселкой, продолжают нагревание до исчезновения пузырьков, т. е. до полного удаления влаги из муки. При этом состав не должен темнеть. На 1 кг муки берут 1 кг жира. Пассированная мука должна быть без комков, слегка желтоватого цвета, без привкуса сырой муки.

Приготовление бульона. Для соусов используют чаще всего буль­оны, оставшиеся от варки или пропускания мяса, рыбы, грибов.

Можно специально сварить мясной бульон из костей. На 1 кг кос­тей берут 4 л воды. Варят бульон 4-6 ч. Для рыбного бульона ис­пользуют пищевые рыбные отходы. На 1 кг рыбных пищевых отхо­дов берут 4 л волы. Варят бульон 1,5-2 ч. Грибной отвар готовят из предварительно промытых сушеных грибов. Перед варкой грибы вы­мачивают в течение 3-4 ч (для набухания), а затем варят в течение 1,5-2 ч в той же воде. Готовые бульоны процеживают.

Приготовление соуса. Мучную пассировку охлаждают до 60-70’С, разводят горячим бульоном н, непрерывно размешивая, варят при слабом кипении до консистенции густой сметаны. Перед оконча­нием варки соус заправляют солью. Готовый соус процеживают.

Лук с жиром пассеруют для сохранения в нем ароматических эфирных масел. Для этого в электросковороде или в сотейнике ра­зогревают масло до 110—120°С и добавляют нарезанный лук.

Пассеруют лук при непрерывном помешивании до образования светло-золотистого цвета.

Источник

При температуре 35–40 °C происходит денатурация белков, а при температуре выше 70 °C – коагуляция, или свертывание. Врезультате этих процессов белки теряют способность растворяться и удерживать воду.

При варке мясных бульонов в воду переходит определенное количество белка, который свертывается в виде хлопьев и скапливается на поверхности. Если воду посолить после закипания, в раствор перейдут только растворимые в воде белки, а белки, растворимые в солях, в основном останутся в мясе. При варке рыбы соль в меньшей степени влияет на потери белка.

Для получения бульонов мясо опускают в холодную воду и варят при слабом кипении, в таком режиме в воду переходит больше экстрактивных веществ. Для вторых блюд мясо опускают в горячую воду, доводят до кипения и варят без кипения, в таком режиме белки удерживают больше влаги, меньше экстрактивных веществ и белков переходит в раствор.

Длительное нагревание белков приводит к вторичным изменениям белковой молекулы, в результате которых снижается их усвояемость.

Часть жиров при варке продуктов животного происхождения вытапливается. В процессе варки этот жир распадается на мельчайшие шарики, причем чем интенсивнее кипение, тем больше жира эмульгируется(распадается). Кислоты и соли бульона разлагают этот жир на глицерин и жирные кислоты, которые делают бульон мутным с неприятным вкусом и запахом. По этой причине варить мясо надо при умеренном кипении, а жир, скапливающийся на поверхности бульона, собирать.

Жаренье изменяет жир более глубоко. При температуре выше 180 °C жир распадается на смолистые и газообразные вещества, которые резко ухудшают качество продуктов. Признаком этого процесса является появление дыма. Жарить надо при температуре чуть ниже температуры дымообразования. Испарение воды при нагревании жира вызывает разбрызгивание последнего. Эти потери жира называют угаром.

При жаренье часть жира разлагается с выделением акролеина, некоторая часть которого растворяется в жире и придает ему неприятный вкус и запах, другая часть испаряется с дымом.

Жаренье продуктов во фритюре изменяет жир за счет длительного воздействия высокой температуры и загрязнения частицами продукта. Часть жира окисляется кислородом воздуха, образуя вредные для организма вещества. Для предотвращения этого явления используются специальные фритюрницы, в нижней части которых температура значительно ниже и частицы продукта, опускаясь на дно, не сгорают. Кроме того, изделия, предназначенные для жаренья во фритюре, не панируют в муке, а фритюр периодически процеживают.

Заметным изменениям подвергается сливочное масло, поэтому его лучше не использовать для жарки, а вводить в соусы и готовые блюда при подаче.

При нагревании крахмала с водой до кипения происходит клейстеризация углеводов – образование студенистой массы.

Крахмал картофеля клейстеризуется при варке за счет влаги, которая содержится в самом картофеле, а крахмал изделий из теста – за счет влаги, которая выделяется свернувшимися белками клейковины. Этот же процесс наблюдается и при варке предварительно замоченных бобовых.

Увеличение массы сухих продуктов (круп, макаронных изделий) при варке объясняется поглощением воды клейстеризующимся крахмалом, содержащимся в этих продуктах.

Сахар плодов и ягод, а также сахар, добавляемый при варке киселей и компотов, под действием кислот расщепляется на глюкозу и фруктозу, которые слаще исходной сахарозы.

При нагревании сахара до 140–160 °C он распадается с образованием темноокрашенных веществ. Этот процесс называют карамелизацией. Полученный продукт называют жженкой и используют для подкраски соусов и других изделий.

Растительные продукты при тепловой обработке размягчаются, что повышает их усвояемость. Главная причина размягчения – это то, что протопектин и другие нерастворимые пектиновые вещества клеток переходят в растворимый пектин, а клетчатка – основной материал растительных клеток набухает, становится пористой и проницаемой для пищеварительных соков.

Витамины A, D, Е, К, растворяющиеся в жире, сохраняются хорошо. Например, пассерование моркови почти не снижает ее витаминной ценности, а каротин легче переходит в витамин А.

Витамины группы В устойчивы при нагревании в кислой среде, но разрушаются на 20–30 % в щелочной и нейтральной среде. Следует помнить, что витамины этой группы водорастворимы и легко переходят в отвар.

Витамин С разрушается наиболее сильно. Это происходит за счет окисления его кислородом воздуха. Катализируют окисление соли тяжелых металлов (меди, железа) и ферменты, содержащиеся в продуктах. Следует избегать соприкосновения овощей с железом и медью. А для разрушения ферментов овощи надо сразу погружать в горячую воду. Сохраняет витамин С в овощах и фруктах кислая среда.

Тепловая обработка практически не изменяет минеральные вещества, часть их переходит в отвар, который используется для приготовления супов и соусов.

Красящие вещества также преобразовываются при тепловой обработке. Хлорофилл листовых овощей разрушается, образуя буроокрашенные вещества. Пигменты свеклы приобретают бурый оттенок, поэтому целесообразно для сохранения цвета свеклы создать кислую среду и повысить концентрацию отвара. Каротин моркови и томатов устойчив к тепловой обработке, что широко используется в кулинарии для подкрашивания блюд. Антоцианы слив, вишен, черной смородины также устойчивы к тепловой обработке.

Читайте также:  Какие продукты можно есть в пост перед венчанием

Источник

При тепловой обработке овощей происходят глубокие физико-химические изменения. Некоторые из них играют положительную роль (размягчение овощей, клейстеризация крахмала и др.), улучшают внешний вид блюд (образование румяной корочки при жарке картофеля); другие процессы снижают пищевую ценность (потери витаминов, минеральных веществ и др.), вызывают изменение цвета и т.д. Кулинар должен уметь управлять происходящими процессами.

Размягчение овощей при тепловой обработке. Паренхимная ткань состоит из клеток, покрытых клеточными оболочками. Отдельные клетки соединены друг с другом срединными пластинками. Оболочки клеток и срединные пластинки придают овощам механическую прочность. В состав клеточных стенок входят: клетчатка (целлюлоза), полуклетчатка (гемицеллюлозы), протопектин, пектин и соединительнотканный белок экстенсин. При этом в средних пластинках преобладает протопектин.

При тепловой обработке клетчатка практически не изменяется. Волокна гемицеллюлоз набухают, но сохраняются. Размягчение ткани обусловлено распадом протопектина и экстенсина.

Протопектин — полимер пектина — имеет сложную разветвленную структуру. Главные цепи его молекул состоят из остатков галактуроновых и полигалактуроновых кислот и сахара — рамнозы. Цепи галактуроновых кислот соединены друг с другом с помощью различных связей (водородных, эфирных, ангидридных, солевых мостиков), среди которых преобладают солевые мостики из двухвалентных ионов кальция и магния. При нагревании в срединных пластинках происходит ионообменная реакция: ионы кальция и магния заменяются одновалентными ионами натрия и калия.

… ГК – ГК – ГК … … ГК – ГК – ГК …

СОО СООNa

Ca+2Na+(K) +Ca++

COO COONa

… ГК – ГК – ГК … … ГК – ГК – ГК …

При этом связь между отдельными цепями галактуроновых кислот разрушается. Протопектин распадается, образуется растворимый в воде пектин, и овощная ткань размягчается. Реакция эта обратима. Чтобы она проходила, в правую сторону, необходимо удалять ионы кальция из сферы реакции. В растительных продуктах содержатся фитин и ряд других веществ, связывающих кальций. Однако связывание ионов кальция (магния) не происходит в кислой среде, поэтому размягчение овощей замедляется. В жесткой воде, содержащей ионы кальция и магния, этот процесс также будет проходить медленно. При повышении температуры размягчение овощей ускоряется.

В разных овощах скорость распада протопектина неодинакова. Поэтому варить можно все овощи, а жарить только те, в которых протопектин успевает превратиться в пектин, пока еще не вся влага испарилась (картофель, кабачки, помидоры, тыкву). У моркови, репы, брюквы и некоторых других овощей протопектин настолько устойчив, что они начинают подгорать раньше, чем достигнут кулинарной готовности.

Размягчение овощей связано не только с распадом протопектина, но и с гидролизом экстенсина. Содержание его при тепловой обработке овощей значительно снижается. Так, по достижении кулинарной готовности в свекле распадается около 70% экстенсина, в петрушке — примерно 40%.

Изменение крахмала. При тепловой обработке картофеля крахмальные зерна (рис. III.9), находящиеся внутри клеток, клейстеризуются за счет клеточного сока. При этом клетки не разрушаются и клейстер остается внутри них. В горячем картофеле связь между отдельными клетками ослаблена вследствие распада протопектина и экстенсина, поэтому при протирании они легко отделяются друг от друга, клетки остаются целыми, клейстер не вытекает, и пюре получается пышным.

При охлаждении связь между клетками частично восстанавливается, они с большим трудом отделяются друг от друга, оболочки их при протирании рвутся, клейстер вытекает, и пюре получается клейким.

При жарке картофеля и других крахмалосодержащих овощей поверхность нарезанных кусочков быстро обезвоживается, температура в ней поднимается выше 120°С, при этом крахмал

Рис. III.9. Крахмальные зерна в картофеле:

1 — сыром; 2 — вареном; 3 — протертом после охлаждения расщепляется с образованием пиродекстринов, имеющих коричневый цвет, и продукт покрывается румяной корочкой.

Изменение сахаров. При варке овощей (морковь, свекла и др.) часть Сахаров (ди- и моносахаридов) переходит в отвар. При жарке овощей, подпекании лука, моркови для бульонов происходит карамелизация содержащихся в них Сахаров. В результате карамелизации количество сахара в овощах уменьшается, а на поверхности появляется румяная корочка. В образовании поджаристой корочки на овощах важную роль играет также реакция меланоидинообразования, сопровождающаяся появлением темноокрашенных соединений — меланоидинов.

Изменение окраски овощей при тепловой обработке. Различную окраску овощей обусловливают пигменты (красящие вещества). При тепловой обработке окраска многих овощей изменяется.

Окраску свеклы обусловливают пигменты — бетанины (красные пигменты) и бетаксантины (желтые пигменты). От содержания и соотношения этих пигментов зависят оттенки окраски корнеплодов. Желтые пигменты почти полностью разрушаются при варке свеклы, а красные частично (12-13%) переходят в отвар, частично гидролизуются. Всего при варке разрушается около 50% бетанинов, вследствие чего окраска корнеплодов становится менее интенсивной.

Степень изменения окраски свеклы зависит от ряда факторов: температуры нагревания, концентрации бетанина, рН среды, контакта с кислородом воздуха, присутствия в варочной среде ионов металлов и др. Чем выше температура нагревания, тем быстрее разрушается красный пигмент. Чем выше концентрация бетанина, тем лучше он сохраняется. Поэтому свеклу рекомендуется варить в кожуре или тушить с небольшим количеством жидкости. В кислой среде бетанин более устойчив, поэтому при варке или тушении свеклы добавляют уксус.

Овощи с белой окраской (картофель, капуста белокочанная, лук репчатый и др.) при тепловой обработке приобретают желтоватый оттенок. Это объясняется тем, что в них содержатся фенольные соединения — флавоноиды, которые образуют с сахарами гликозиды. При тепловой обработке гликозиды гидролизуются с выделением агликона, имеющего желтую окраску.

Оранжевая и красная окраска овощей обусловлена присутствием пигментов каротиноидов: каротинов — в моркови, редисе; ликопинов — в томатах; виолаксантина — в тыкве. Каротиноиды устойчивы при тепловой обработке. Они не растворимы в воде, но хорошо растворимы в жирах, на этом основан процесс извлечения их жиром при пассеровании моркови, томатов.

Зеленую окраску овощам придает пигмент хлорофилл. Он находится в хлоропластах, заключенных в цитоплазму. При тепловой обработке белки цитоплазмы свертываются, хлоропласты освобождаются и кислоты клеточного сока взаимодействуют с хлорофиллом. В результате образуется феофитин — вещество бурого цвета.

Для сохранения зеленого цвета овощей следует соблюдать ряд правил:

— варить их в большом количестве воды для уменьшения концентрации кислот;

— не закрывать посуду крышкой, чтобы облегчить удаление с паром летучих кислот;

— уменьшать время варки овощей, погружая их в кипящую жидкость и не переваривая.

При наличии в варочной среде ионов меди хлорофилл приобретает ярко-зеленую окраску; ионов железа — бурую; ионов олова и алюминия — серую.

При нагревании в щелочной среде хлорофилл, омыляясь, образует хлорофиллин — вещество ярко-зеленого цвета. На этом свойстве хлорофилла основано получение зеленого красителя: любую зелень (ботву, зелень петрушки и др.) измельчают, варят с добавлением питьевой соды и отжимают через ткань хлорофиллиновую пасту.

Изменение витаминной активности в овощах. В процессе тепловой обработки витамины претерпевают значительные изменения.

Читайте также:  В каких продуктах нет протеина

Витамин С. Овощи являются основным источником витамина С в питании человека. Он хорошо растворим в воде и очень неустойчив при тепловой обработке. Содержится в клетках овощей в трех формах: восстановленной (аскорбиновая кислота), окисленной (дегидроаскорбиновая кислота) и связанной (аскорбиген). Восстановленная и окисленная формы витамина С могут легко переходить одна в другую под действием ферментов (аскорбиназы — в окисленную форму, аскорбинредуктазы — в восстановленную форму). Дегидроаскорбиновая кислота по биологической ценности не уступает аскорбиновой, но гораздо легче разрушается при тепловой обработке. Поэтому при кулинарной обработке стараются инактивировать аскорбиназу, в частности, погружением овощей в кипящую воду.

Окисление витамина С происходит в присутствии кислорода. Интенсивность процесса зависит от температуры нагрева овощей и продолжительности тепловой обработки. Для уменьшения контакта с кислородом овощи варят при закрытой крышке (кроме овощей с зеленой окраской), объем емкости должен соответствовать массе отвариваемых овощей, в случае выкипания нельзя доливать холодную некипяченую воду. Чем быстрее прогреваются овощи при варке, тем меньше разрушается аскорбиновая кислота. Так, при погружении картофеля в холодную воду (при варке) разрушается 35% витамина С, в горячую лишь 7%. Чем длительнее нагрев, тем выше степень окисления витамина С. Поэтому не допускается переваривание продуктов, длительное хранение пищи, нежелателен повторный разогрев готовых блюд.

Ионы металлов, попадающие в варочную среду с водопроводной водой и со стенок посуды, являются катализаторами окисления витамина С. Наибольшим каталитическим действием обладают ионы меди. В кислой среде это действие проявляется в меньшей степени, поэтому нельзя добавлять соду для ускорения развариваемости овощей.

Некоторые вещества, содержащиеся в пищевых продуктах, переходят в отвар и оказывают стабилизирующее действие на витамин С. К таким веществам относятся белки, аминокислоты, крахмал, витамины — А, Е, В1, пигменты — флавоны, антоцианы, каротиноиды. Например, при варке картофеля в воде потери витамина С составляют около 30%, и при варке в мясном бульоне витамин С практически полностью сохраняется.

Чем больше общее количество аскорбиновой кислоты в продукте, тем лучше сохраняется С-витаминная активность. Этим объясняется тот факт, что в картофеле и капусте витамин С в процессе варки сохраняется лучше осенью, чем весной. Например, при варке неочищенного картофеля осенью степень разрушения витамина С не превышает 10%, весной достигает 25%.

Во время варки аскорбиновая кислота не только разрушается, но и частично переходит в отвар. Поэтому овощные отвары рекомендуется использовать при приготовлении супов и соусов. Для уменьшения потерь витамина С из продуктов желательно не промывать квашеную капусту, избегать длительного хранения очищенных овощей в воде и т.д.

При жарке овощей потери витамина С меньше, так как слой жира на поверхности продукта уменьшает контакт с кислородом воздуха.

Большие потери витамина С происходят, когда продукты подвергают неоднократным тепловым воздействиям, протирают, взбивают (при изготовлении овощных котлет, запеканок, суфле). Так, в готовых картофельных котлетах остается аскорбиновой кислоты всего 5-7% количества ее в сыром картофеле.

Витамины группы В. При варке они частично переходят в отвар, частично разрушаются. Менее всего устойчив к нагреванию витамин В6. При варке шпината разрушается около 40% его, картофеля — 27-28%.

Тиамина и рибофлавина разрушается при варке овощей около 20%, примерно 40% остатка их переходит в отвар.

Чем больше воды для варки, тем меньше витаминов остается в продукте. Жарка и тушение овощей вызывают разрушение около 40% витамина Вг

Изменение массы овощей. В процессе варки масса овощей изменяется в результате двух противоположных процессов:

— вследствие набухания гемицеллюлозы и крахмала масса увеличивается;

— после сливания отвара часть влаги испаряется, что приводит к уменьшению массы.

Потери массы зависят и от особенностей строения овощей.

Потери влаги определяют выход готовых изделий и поэтому предельно допустимые потери массы регламентируются нормативными документами.

По размеру потерь массы при варке все овощи можно разделить на две группы: первая — потери до 10% (кольраби, цветная капуста, капуста белокочанная, репа, петрушка, свекла, морковь, картофель), вторая — потери до 50% (шпинат, щавель, ботва свеклы, лук репчатый, кабачки, патиссоны).

Не трудно заметить, что наибольшие потери массы у листовых овощей и плодовых: первые имеют большую поверхность, вторые содержат в паренхимной ткани много воздушных включений в виде мелких пузырьков. Воздух, содержащийся в пузырьках, при нагревании расширяется и при температуре 72-75°С механически разрушает клеточные стенки, вследствие чего из тканей начинает интенсивно выделяться влага.

При варке неочищенных овощей растворимые вещества практически полностью сохраняются. При варке очищенных корнеплодов (моркови, свеклы и др.) в воду переходит 20-25% содержащихся в них веществ, главным образом сахаров и минеральных веществ. Значительно снижается содержание соединений калия, натрия, магния и фосфора. При добавлении поваренной соли потери ряда минеральных веществ уменьшаются, поэтому овощи (за исключением моркови и свеклы, содержащих значительное количество сахаров) закладывают в подсоленную воду.

При варке потери растворимых веществ картофеля примерно в два раза меньше, чем корнеплодов. Это объясняется тем, что часть растворимых веществ адсорбируется клейстеризованным крахмалом.

Потери растворимых веществ при варке капусты достигают 1/3 всех сухих веществ.

Нормы потерь массы при припускании большинства полуфабрикатов из овощей не отличаются от норм потерь массы их при варке в воде (морковь, свекла, репа, тыква нарезанные). Количество растворимых веществ, которое переходит в жидкость при припускании (тушении), не относят к потерям, так как припущенные и тушеные овощи отпускают вместе с жидкостью.

При жарке масса овощей уменьшается в основном вследствие испарения влаги. Потери влаги зависят от характера ее связи со структурными элементами овощной ткани, поверхности изделия, температуры и продолжительности жарки и т.д. Уменьшение массы овощей при жарке колеблется от 17 до 60% и зависит от вида овощей, размера и формы нарезки, способа жарки. Количество испарившейся влаги несколько больше, чем потери массы, так как они частично компенсируются поглощенным жиром.

Потери растворимых веществ при жарке овощей очень малы по сравнению с потерями их при варке и припускании и практически не влияют на уменьшение массы. Влияние различных факторов на потери массы овощей при жарке рассмотрим на примере картофеля. При жарке масса сырого картофеля уменьшается на 31%, а предварительно сваренного — на 17%. Это объясняется тем, что при варке картофеля влага связывается крахмалом в процессе его клейстеризации, вследствие чего, испарение ее замедляется, увеличивается поглощение жира.

При жарке картофеля (сырой, нарезанный брусочками) основным способом теряется 31% его массы, а при жарке во фритюре — 50%. Это объясняется тем, что при обжаривании во фритюре испарение влаги происходит одновременно по всей поверхности.

Влияние удельной поверхности продукта на потери его массы в зависимости от формы нарезки можно проследить на примере жарки картофеля во фритюре: брусочки теряют 50% массы, соломка — 60, тонкие ломтики (чипсы) — 66%.

Специфические вкус и аромат жареным овощам придают летучие и растворимые вещества, образующиеся в корочке процессе карамелизации, реакции меланоидинообразования и других изменений белков, жиров и углеводов.

Источник