Какие свойства в математике используют
Дорогие друзья! Сегодня на странице своего канала я размещаю публикацию своего друга, математика, специалиста в области проективной геометрии Франца Германа. Его работы очень помогли мне в постижении многих премудростей геометрической науки. Всем, кто серьёзно думает заняться вопросами Пространства, я рекомендую ознакомиться с его публикациями на его личном сайте. Франц живёт и работает в Германии, серьёзно увлекается футболом и квантовой физикой элементарных частиц. И хотя наши взгляды на разные темы не всегда совпадают, я с уважением отношусь к любой его точке зрения. Итак.
Основное свойство математики
Спросите у своих знакомых, знают ли они основное свойство математики. Скорее всего, если вы не профессиональный математик, то ответ будет отрицательным. А какие вообще свойства присущи этой науке? Кто-то скажет, что математика непонятна. А для кого-то математика является интересной. Кто-то скажет, что она таинственна, кто-то увидет в ней поэзию… Лейбниц назвал еѐ «музыкой души». Гильберт сравнил огромным садом. Сколько людей вы спросите, столько ответов и получите. Так всѐ-таки существует ли основное свойство математики и как оно звучит? На этот вопрос ответят лучше всего наверное сами математики. Математика – это научное чудо. Одно из главных свойств математики в том, что она призвана помогать другим наукам. Карл Маркс говорил, что «наука только тогда достигает совершенства, когда ей удаѐтся пользоваться математикой». Возможно математика является хранительницей истины в последней инстанции. А ведь математика создана, как и вся наука, человеческим разумом. А. Н. Колмогоров, например, так определяет математику: «математика – это то, посредством чего люди управляют природой и собой». Не будем томить неискушѐнного читателя. Учѐные пришли к выводу, что основное свойство математики проявляется в том, что математика почему-то описывает законы природы и «…точность этих законов, если над ней задуматься, обладает всеми элементами чуда». Эти слова принадлежат выдающемуся физику-теоретику, лауреату Нобелевской премии Е. Вигнеру. Наверно, один из первых, кто обратил на это математическое свойство внимание, был выдающийся итальянский учѐный Галилей, когда в конце шестнадцатого века сбрасывал шары различной массы с Пизанской башни и открыл закон свободного падения: скорость падающего тела пропорциональна времени падения и не зависит от его массы (Аристотель был не прав). Спустя чуть больше полувека Ньютон открыл свой знаменитый закон всемирного тяготения. Примерно в это же время, используя огромный архив астрономических наблюдений, Кеплер открыл законы движения небесных тел, а Ньютон показал, что эти законы выводятся чисто математически. Наверное с этого времени и началось победное шествие главного математического свойства. Учѐные физики стали описывать законы природы на языке математики. Планета Уран была открыта «на кончике пера». Были рассчитаны параметры орбиты Урана, а чуть позже астрономы увидели еѐ визуально в телескоп. Великий английский учѐный Фарадей был самоучкой. Он описывал все свои опыты с электричеством словесно, без единой математической формулы. Он просто не знал математики. Однако, чуть позже не менее великий его соотечественник Дж. Максвелл, когда познакомился с трудами Фарадея, понял, что опыты эти очень хорошо описываются математикой. Так родилась электродинамика и открыла собой эру теоретической физики. Теоретическая физика – это наука, инструментом которой и является математика. А на основе еѐ построений физики-экспериментаторы проверяют на своих опытах построения теоретиков. Сегодня физические эксперименты с невероятной точностью подтверждают математические расчѐты теоретиков. Например, в квантовой электродинамике такая точность доходит аж до одиннадцатого знака после запятой. В настоящее время всѐ естествознание буквально пронизано математикой. Более того экономические науки, биология, медицина невозможны сегодня без математики. Компьютеризация и нанотехнологии с их невообразимыми по сложности коллайдерами и космическими аппаратами основаны на фундаментальных принципах математической науки. В общем вся современная деятельность человечества невозможна без математики. Но давайте заглянем и в саму математику. Любая математическая теория является более фундаментальной, чем меньше аксиом требуется для еѐ определения. В математике такой теорией является теория групп. Для еѐ определения требуется всего четыре аксиомы. Сегодня ни одно направление в математике не может обойтись без теории групп. При помощи теории групп строятся новые геометрии, о чѐм математики прошлого не могли даже и мечтать. Любой математический аппарат, где используется современная топология, не может обойтись без теории групп. Теорию групп порой называют теорией симметрии. Методы теории групп используются не только в самой математике, но и в других науках. Например, в квантовой механике и физике элементарных частиц, современной кристаллографии и такой абстрактной науке, как общая теория систем. Теория групп – это любимое детище математиков ХХ века и современности. Однако, вернѐмся к основному свойству математики – почему законы природы описываются с невероятной точностью математикой? Мне представляется такая схема (Рис. 1).
Природа — (П) — по каким-то законам, отвечающим самым глубоким и фундаментальным законам математики — (М) — создала человеческий разум — (Р):
Разум, постигая природу, создаёт мощнейший инструмент познания – математику:
Математика, движимая разумом помогает понять тайны природы:
Цикл замкнулся. Мне кажется, что в этом и есть суть вечного развития и познания природы, познания истины.
Можно подвести итог: МИР САМОВОЗНИК И САМОРАЗВИВАЕТСЯ ПО ЗАКОНАМ МАТЕМАТИКИ.
Но будущих Лобачевских, Ньютонов и Эйнштейнов ещё ждёт множество научных открытий. Ещё не создана теория вселенского разума (ТВР), ещё не открыты фундаментальные теоремы и уравнения ТВР.
Ф. Герман.
Всего Вам доброго.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 января 2020;
проверки требуют 2 правки.
Эта статья — об атрибуте предмета или объекта в философии, математике и логике. О необходимом условии принадлежности классу см. Свойство (логика).
Сво́йство (в философии, математике и логике) — атрибут предмета (объекта).[B: 1][B: 2][B: 3][1]
Понятие «свойство» является категорией, имеющей «одинаковое значение для любой науки», наряду с двумя другими основными категориями; вещи и отношения.[2]
В соответствии с принципом отождествления вещей, который известен как закон Лейбница, две вещи тождественны, если все их свойства общие.[3]
По другому определению, свойство — сторона проявления качества. При этом не всякое свойство предмета (объекта) должно рассматриваться при определении качества: свойство у предмета может иметься, но при сравнении предмета с другими оно может не быть отличительным или существенным.[источник не указан 92 дня]
Общие положения[править | править код]
Свойства объекта зависят от вида взаимодействия объекта и субъекта, например: если на яблоко смотреть — оно имеет цвет и форму; если его откусить — имеет твёрдость и вкус; если его взвешивать — имеет вес; если оценивать его габариты — имеет размеры, если трогать — имеет шероховатость. Объект является своими свойствами не только субъекту, но и другим объектам, то есть свойства могут проявляться и в ходе взаимодействия объектов друг с другом.[источник не указан 92 дня]
Например, о красном предмете говорится, что он обладает свойством «красноты». Свойство можно рассматривать как форму предмета самого по себе, притом, что он может обладать и другими свойствами. Свойства, при такой расширенной интерпретации, подпадают под действие парадокса Тесея[4], парадокса Рассела и парадокса Греллинга-Нельсона.[источник не указан 92 дня]
Совокупность некоторых частных свойств предмета может проявляться в некотором обобщённом свойстве предмета (поглощаться обобщённым свойством). Например, «краснота» яблока — обобщённое свойство яблока, а процентные доли содержания отдельных химических веществ в кожице яблока (характеризующие эту «красноту» яблока) — частные свойства яблока; «динамика» автомобиля — обобщённое свойство автомобиля, а мощность двигателя, снаряжённая масса, отношение главной передачи и др. (характеризующие эту «динамику» автомобиля) — частные свойства автомобиля.[источник не указан 92 дня]
Ошибочный вывод от случайного часто встречается в индуктивных обобщениях. Заметив, что известное свойство обнаружено во всех наблюдавшихся до сих пор предметах класса, неосторожные исследователи часто думают, будто свойство это — существенное для предметов данного класса и потому должно быть обнаружено не только в уже рассмотренных экземплярах, но и во всяком представителе того же класса. Свойство, обнаруженное в нескольких (и даже многих) предметах класса, может оказаться существенным, но может оказаться и случайным.[5]
Свойство отличается от логического понятия класса тем, что не связано с понятием экстенсиональности, а от философского понятия класса — тем, что свойство рассматривается в качестве отличного (отделённого) от предмета, который обладает им.[источник не указан 92 дня]
Особенности использования термина[править | править код]
В логике[править | править код]
В логике, основанной на булевой алгебре, понятие «свойство» совпадает с понятием «предикат».[6]
В математике[править | править код]
В математике если дан любой элемент множества X, то определённое свойство p либо истинно, либо ложно, то есть понятие «свойство» совпадает с понятием «подмножество». На формальном языке: свойство p: X → {истинно, ложно}(то есть отображение, функция из Х в множество из двух элементов). Всякое свойство естественным образом задаёт подмножество {x: x обладает свойством p} и соответствующую индикаторную функцию (англ. indicator function). В некоторых разделах математики (например, теории искусственного интеллекта) применяется более сложное определение свойства как отношения эквивалентности на множестве Х. В этом случае p: X → {множество имен значений свойства}. Прообразы всех имен при этом отображении задают разбиение множества Х на непересекающиеся подмножества (значения свойства). Такое определение свойства позволяет единообразно рассматривать не только качественные, но и количественные характеристики объектов.[источник не указан 92 дня]
Использование[править | править код]
Свойства используются в науке для образования понятий.[источник не указан 92 дня]
Свойства объектов и ситуаций широко применяются в теории решения задач, в процессах автоматизации производства, управления и поиска информации, при построении экспертных систем.[B: 3]
См. также[править | править код]
Примечания[править | править код]
- ↑ При создании этой статьи использован материал «PlanetMath», которая лицензирована GFDL
- ↑ Уемов, 1963, с. 3.
- ↑ Уемов, 1963, с. 8.
- ↑ Уемов, 1963, с. 11—33.
- ↑ Асмус, 1954, с. 81—82.
- ↑ Предикат / М. М. Новосёлов // Плата — Проб. — М. : Советская энциклопедия, 1975. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 20).
Литература[править | править код]
- ↑ Асмус В. Ф. Учение логики о доказательстве и опровержении. — М.: Госполитиздат, 1954. — 88 с. — 50 000 экз.
- ↑ Уемов А. И. Вещи, свойства и отношения. — М.: Издательство Академии Наук СССР, 1963. — 184 с. — 8000 экз.
- ↑ 1 2 Бенерджи Р. Теория решения задач. Подход к созданию искусственного интеллекта. — М.: Мир, 1972.
Сочетай, перемещай, свойства действий
узнавай
Напомним известные уже из арифметики главнейшие свойства действий сложения, вычитания, умножения и деления, так
как этими свойствами придется часто пользоваться и в алгебре.
Свойства сложения
Переместительный закон сложения
Сумма не изменяется от перестановки слагаемых .
Пример:
3 + 8 = 8 + 3; 5 + 2 + 4 = 2 + 5 + 4 = 4 + 2 + 5.
В общем случае:
a+b=b+a
a+b+c=c+a+b
Стоит иметь ввиду, что число слагаемых может быть и более трёх.
Сочетательный закон сложения
Сумма нескольких слагаемых не изменится, если какие-нибудь из них заменить их суммой .
Пример:
3 + 5 + 7 = 3 + (5 + 7) = 3 + 12 = 15;
4 + 7+11+6 + 5 = 7 +(4+ 5)+ (11+6) = 7 + 9+17 = 33.
В общем случае:
а + b + с = а+(b + с) = b+(а + с) и т. п.
Иногда этот закон выражают так: слагаемые можно соединять в какие угодно группы.
Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим.
Пример:
5 + (7 + 3) = (5 + 7) + 3 = 12 + 3 = 15.
В общем случае:
a+(b+c+d+…+x)=a+b+c+d+…+x
Свойства вычитания
Свойство вычитания суммы из числа
Чтобы вычесть из какого-нибудь числа сумму нескольких чисел, можно вычесть отдельно каждое слагаемое одно за другим.
Например:
20 — (5+ 8) = (20 — 5) — 8 = 15 — 8 = 7.
В общем случае:
а — (b + с + d+ …) = а — Ь — с — d — …
Свойство сложения разности чисел
Чтобы прибавить разность двух чисел, можно прибавить уменьшаемое и затем вычесть вычитаемое.
Пример:
8 + (11-5) = 8+ 11 -5= 14.
В общем случае:
а + (b — с) = а + Ь — с.
Свойство вычитания разности из числа
Чтобы вычесть разность, можно сначала прибавить вычитаемое и затем вычесть уменьшаемое.
Например:
18-(9-5) = 18 + 5-9= 14.
Вообще:
а — (Ь — с) = а + с — b.
Свойства умножения
Переместительный закон умножения
Произведение не изменится от перестановки сомножителей .
Так:
4·5 = 5·4; 3·2·5 = 2·3·5 = 5·3·2.
Вообще:
a*b = b*a; abc… =b*а*с*… = c*b*a* …
Сочетательный закон умножения
Произведение нескольких сомножителей не изменится, если какие-нибудь из них заменить их произведением .
Так:
7*3*5 = 5*(3*7) = 5*21 = 105.
Вообще:
abc = а(bс) = b(ас) и т. п.
Умножение числа на произведение чисел
Чтобы умножить какое-либо число на произведение нескольких сомножителей, можно умножить это число на
первый сомножитель, полученный результат умножить на второй сомножитель и т. д.
Так:
3*(5*4) = (3*5)*4= 15*4 = 60.
Вообще:
a•(bcd…) = {[(a·b)•c]•d}…
Чтобы умножить произведение нескольких сомножителей на какое-либо число, можно умножить на это число один
из сомножителей, оставив другие без изменения.
Так:
3 • 2 • 5 • 3 = (3 • 3) • 2 • 5 = 3 • (2 • 3) • 5 = 3 • 2 • (5 • 3).
Вообще:
(abc.. )m = (аm)bс… = а(bm)с… и т. п.
Умножение числа на сумму чисел
Чтобы умножить сумму на какое-либо число, можно каждое слагаемое умножить на это число и полученные ре-
результаты сложить.
Так:
(5 + 3)·7 = 5·7 + 3·7.
Вообще:
(а + b + с + .. .)n = an + bn + cn + …
В силу переместительного закона умножения это же свойство можно выразить так: чтобы умножить какое-либо число на
сумму нескольких чисел, можно умножить это число на каждое слагаемое отдельно и полученные результаты сложить.
Так:
5·(4 + 6) = 5·4 + 5·6.
Вообще:
r·(а + Ь + с +…) = rа + rb + rс + …
Это свойство называется распределительным законом умножения, так как умножение, производимое над суммой, распределяется на каждое слагаемое в отдельности.
Распределительный закон умножения для разности чисел
Распределительный закон можно применять и к разности.
Так:
(8 — 5) • 4 = 8 • 4 — 5 • 4;
7 • (9 — 6) = 7 • 9 — 7 • 6.
Вообще:
(а — b)с = ас — bc,
а(b — с) = ab — ас,
т. е. чтобы умножить разность на какое-либо число, можно умножить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй; чтобы умножить какое-либо число на разность, можно это число умножить
отдельно на уменьшаемое и вычитаемое и из первого результата вычесть второй.
Свойства деления
Деление суммы на число
Чтобы разделить сумму на какое-либо число, можно разделить на это число каждое слагаемое отдельно и полученные результаты сложить:
Например:
(30+12+5)/3=30/3+12/3+5/3
Вообще:
(a+b+c+…+v)/m= (a/m)+(b/m)+(c/m)+…(v/m)
Деление разности на число
Чтобы разделить разность на какое-либо число, можно разделить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй:
(20-8)/5= 20/5 — 8/5
Вообще:
(a-b)/c = (a/c) -(b/c)
Деление произведения на число
Чтобы разделить произведение нескольких сомножителей на какое-либо число, можно разделить на это число один
из сомножителей, оставив другие без изменения:
(40 • 12 • 8) : 4 = (40:4) • 12 • 8 = 10 • 12 • 8 = 40 • 12 • 2.
Вообще:
(a·b·c…) : t = (а : t)bс… = а(b : t)с… и т. д.
Деление числа на произведение
Чтобы разделить какое-либо число на произведение нескольких сомножителей, можно разделить это число на
первый сомножитель, полученный результат разделить на второй сомножитель и т.д.:
120 : (12 • 5 • 3) = [(120 : 2) : 5] : 3 = (60 : 5) : 3 = 12 : 3 = 4.
Вообще:
а : (bcd …) = [(а : b) : с] : d… и т. п.
Укажем еще следующее свойство деления:
Если делимое и делитель умножим (или разделим) на одно и то же число, то частное не изменится.
Поясним это свойство на следующих двух примерах:
1)8:3 = 8/3|,
умножим делимое и делитель, положим, на 5; тогда получим
новое частное: (8*5)/(3*5)
которое по сокращении дроби на 5 даст прежнее частное — 8/3
Вообще, какие бы числа a, b и m ни были, всегда
(am) : (bm) = а : b, что можно написать и так:
am/bm= a/b
Если частное не изменяется от умножения делимого и делителя на одно и то же число, то оно не изменяется и от деления делимого и делителя на одно и то же число, так как деление на какое-нибудь число равносильно умножению на обратное число.
Комментирование и размещение ссылок запрещено.
В данной статье мы рассмотрим натуральные числа и все, что с ними связано. Сначала узнаем, какие из них можно называть таковыми, каковы их признаки. Далее поговорим о различных классах данного вида, общих и специфических свойствах. Обязательно затронем сравнение натуральных чисел и неравенства с их участием, а также алгоритм выполнения арифметических преобразований.
Понятие
Данное понятие появилось в математике одним из первых. В древности люди перечисляли предметы на пальцах, и им вполне этого хватало. Но с бурным развитием торговли и ростом количества продукции на рынках одних пальцев для счета стало не хватать. Поэтому древние люди придумали символы, обозначающие количество чего-либо, которые они использовали для перечисления скота, различных вещей и т.д. Чуть позже числа вошли в науку математику, где стали активно применяться в качестве материала для многочисленных алгебраических преобразований.
Натуральные числа – все символы, используемые при счете каких-либо предметов, тем самым вычисляя их последовательность и количество. Все отрицательные и дробные числа не являются натуральными.
Важно! Нуль не входит в натуральное множество, то есть не является одним из них, потому мы и не применяем его при счете.
Соответственно – наименьшей является единица. Наибольшего натурального числа не существует, так как счет можно продолжать до бесконечности.
Рис. 1. Определение натуральных чисел
Вернемся в древние времена. Тогда числа записывали чаще с помощью палочек или любых других примитивных знаков:
- 1 = I;
- 2 = II;
- 3 = III.
Но когда палочек приходилось писать слишком много (100, 1000), люди задумались над более емкой системой записи количества предметов. Так, арабы придумали и завезли в Европу свои цифры, которые на континенте назвали арабскими. Мы прекрасно знаем все эти цифры:
0 1 2 3 4 5 6 7 8 9 (10 штук).
Из данных цифр можно составить абсолютно все натуральные числа.
Их множество обозначается знаком N.
Натуральный ряд
Разберем еще одно понятие, связанное с главной темой.
Натуральный ряд – последовательная запись всех натуральных символов. Как мы уже выяснили, высшего натурального числа не существует, поэтому данный ряд представляет собой последовательность, которая не заканчивается.
Каждый последующий символ натурального ряда больше предыдущего ровно на единицу.
Пример: Указать наименьший натуральный знак на отрезке от -7 до 27.
Ответ: единица.
Разряды и классы
Для начала скажем, что при счете мы обычно применяем десятичную систему исчисления. Она подразумевает то, что 10 единиц низшего разряда образуют 1 единицу более старшего, и данная закономерность сохраняется до конца счета.
Разрядные единицы – это такие символы, которые обозначают начало определенного разряда.
Пример: 1, 10, 100 и т.д.
Благодаря разрядным единицам, можно сделать запись менее длинной и более упрощенной.
Пример: Записать 298 481 в виде суммы разрядных слагаемых.
Решение: 200 000 + 90 000 + 8 000 + 400 + 80 + 1.
Важно! 12-ти разрядные числа называются большими и редко употребляются в алгебраических вычислениях.
Если число состоит из одного знака, то оно называется однозначным. Соответственно – различают двузначные, трехзначные, четырехзначные и т.д.
Теперь стоит немного рассказать и о натуральных классах.
При чтении определенного числа его разделяют на классы, включающие по три разряда. Первые три единицы представляют собой класс единиц, следующие три – класс тысяч. Далее идут довольно крупные группы – классы миллионов, миллиардов и другие. Помните, что каждая цифра любого класса является разрядом, то есть классы состоят из разрядов.
Сравнивать их можно через классы или разряды. Соответственно – то число, где количество старших разрядов преобладает, является более крупным по значению.
Главные свойства
Рассмотрим основные свойства, которые характерны для всех натуральных чисел. Они применимы всегда и везде, так как способствуют упрощению некоторых выражений различных типов. Их используют при различных вычислениях и преобразованиях.
Свойство 1
От перемены места слагаемых сумма не меняется.
Пример: 2 + 1 = 1 + 2 = 3. Как бы мы не переставляли слагаемые, сумма все равно останется такой же.
Свойство 2
От перемены места множителей произведение не меняется.
Пример: 2 х 1 = 1 х 2 = 2. Аналогичное правило есть и в умножении. Значение произведения в итоге остается тем же.
Свойство 3
Чтобы прибавить к числу сумму двух других чисел, можно сначала произвести сложение одного числа, а затем – второго.
Пример : 2 + (3 + 10) = 3 + (2 + 10) = 15. Данное правило еще называется сочетательным свойством.
Свойство 4
Чтобы умножить на число произведение двух других чисел, можно сначала произвести умножение одного числа, а затем – второго.
Пример: 5 х (6 х 4) = (5 х 6) х 4 = 120. Правило, аналогичное предыдущему, только здесь используется другой вид арифметических действий. Принцип остается тем же.
Свойство 5
Для того, чтобы умножить сумму натуральных чисел на другое число, нужно умножить это число на каждую из представленных слагаемых, а затем сложить полученные произведения чисел.
Пример: 5 х (4 + 3) = 5 х 4 + 5 х 3 = 35. Это правило умножения числа относительно сложения двух других. Часто применяется в решении заданий по преобразованию каких-либо выражений.
Мы выяснили и разобрали на примерах самые главные свойства натуральных чисел. Если вы их не знали раньше, то советуем вам обратить на них особое внимание. А теперь перейдем к изучению наиболее распространенных и часто используемых операций.
Характерные операции и взаимодействия
Конечно, с данным видом чисел можно выполнять очень много различных действий. Однако мы разберем те основные операции, которые не выводят конечный результат из натурального множества.
Сложение
Один из наиболее простейших видов взаимодействий. Здесь мы берем две части (два слагаемых) и соединяем (складываем) их, образуя конечный результат – сумму.
Пример: 6 + 2 = 8. Восемь в данном случае будет являться суммой двух слагаемых – шести и двух.
Вычитание
Вид операций, противоположный предыдущему. В данном случае имеем уже три составляющих. То выражение, из которого мы вычитаем определенное количество, называется уменьшаемым. Количество. которое уже отделено от первоначального, называется вычитаемым. А конечный результат, соответственно, именуется разностью, то есть подразумевается разность между двумя количествами.
Пример: 8 – 2 = 6. Восемь – уменьшаемое, два – вычитаемое, шесть – разность.
Умножение
Вид операций, при которой одно число берется такое количество раз, которое равно второму. Оба исходных числа называются множителями. Результат взаимодействия именуется произведением.
Пример: 6 х 5 = 30. Шесть и пять – множители, тридцать – произведение чисел.
Деление
Вид операций, противоположный умножению. Число, подвергаемое делению, носит название делимого, а то, на которое делят именуется делителем. Результат деления называется частным.
Существует деление с остатком. После такого деления остается небольшой остаток, который уже не делится на исходный делитель. Так как мы разбираем натуральный вид, то и ответ должен получиться натуральным, поэтому в данном случае мы лишь приписываем остаток к ответу.
Пример: 6 : 2 = 3. Шесть – делимое, 2 – делитель, 3 – частное.
Пример деления с остатком: 7 : 3 = 2 (1) – ответ записываем в виде натурального числа. Один – остаток. Остальное по аналогии с предыдущим примером.
Возведение в степень
Такой вид арифметических операций, при котором число умножается на себя количество раз, равное указанной степени. Здесь мы имеем три элемента: исходное число, степень и ответ.
Пример: 63 = 6 х 6 х 6 = 216.
Порядок решения – пример
Итак, после подробного разбора основных арифметических операций рассмотрим алгоритм выполнения всех указанных действий в одном равенстве. Возьмем какой-нибудь пример, включающий в себя большинство всех представленных выше взаимодействий.
(36 + 76) х (85 – 80) + 96 ÷ 3 =
Сначала необходимо выполнить те действия, которые расположены в скобках, то есть требуется раскрыть скобки слева направо. Раскроем скобки в нашем примере и получим следующее выражение:
112 х 5 + 96 ÷ 3 =
Далее также слева направо выполняем все действия умножения и деления, соответственно – мы получим следующую сумму:
560 + 32 =
Наконец, производим финальное действие – сложение:
592 – конечный результат.
Таким образом, мы узнали, что натуральные числа – это все целые и положительные числа, нуль не является таковым. Вникли в небольшую предысторию данных символов и поняли их важное значение в математике. Произвели разбор основных свойств и арифметических действий, производимых с ними. Также рассмотрели алгоритм действий, необходимых для вычисления ответа.
Чтобы проверить свои знания по изученной теме, рекомендуем вам пройти тест, представленный ниже, а также посмотреть видео, где вы найдете еще больше примеров решения различных уравнений с натуральными числами.
Предыдущая
МатематикаПлощадь цилиндра — формулы вычисления
Следующая
МатематикаКвадратный корень — свойства, действия, формулы