Какие свойства указанные ниже относятся к газам

Какие свойства указанные ниже относятся к газам thumbnail
  1. Главная
  2. Вопросы & Ответы
  3. Вопрос 3778042

Какие свойства указанные ниже относятся к газамГость:

14 Декабря в 07:18

  11    
1    

Лучший ответ:

Какие свойства указанные ниже относятся к газам

Газы не имеют собственной формы и постоянного объема. Они принимают форму сосуда, в котором находятся и полностью заполняют предоставленный им объем.

14 Декабря в 07:23

Ваш ответ (не менее 20 символов):
Ваше имя (не менее 2 символов):

Какие свойства указанные ниже относятся к газам

Лучшее из галереи:

Какие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газамКакие свойства указанные ниже относятся к газам

    Какие свойства указанные ниже относятся к газам

    Другие вопросы:

    Какие свойства указанные ниже относятся к газамГость:

    1/4 часть кабачка на 250 гр. легче 1/2 части этого кабачка. Найти массу кабачка.

    14 Декабря в 07:17

    Смотреть ответ  

      7    
    1    

    Какие свойства указанные ниже относятся к газамГость:

    Номер 303 и 305 Помогите , пожалуйста.

    14 Декабря в 07:16

    Смотреть ответ  

      6    
    1    

    Какие свойства указанные ниже относятся к газамГость:

    Жорық сөзіне сөйлем құрау

    14 Декабря в 07:16

    Смотреть ответ  

      21    
    1    

    Какие свойства указанные ниже относятся к газамГость:

    Решыте уравнение 48:(65-а)=12

    14 Декабря в 07:15

    Смотреть ответ  

      8    
    1    

    Какие свойства указанные ниже относятся к газамГость:

    Какие имена существительные относятся ко второму склонению? 1.Кимоно, 2.пальтишко, 3.путь, 4.подлежащее, 5.времечко

    14 Декабря в 07:15

    Смотреть ответ  

      14    
    1    

    Источник

    Тема: Три состояния вещества

    I вариант

    I.  Как расположены молекулы в твёрдых телах и как они движутся?

    Молекулы расположены на расстояниях меньших размеров самих молекул и перемещаются свободно относительно друг друга. Молекулы расположены на больших расстояниях друг от друга (по сравнению с размерами молекул) и движутся беспорядочно. Молекулы расположены в строгом порядке и колеблются около определённых положений равновесия.

    II.  Какие из приведённых ниже свойств принадлежат газам?

    Имеют определённый объём Занимают объём всего сосуда Принимают форму сосуда Мало сжимаются Легко поддаются сжатию

    III.  Изменится ли объём газа, если его перекачать из сосуда вместимостью 1 литр в сосуд вместимостью 2 литра?

    Увеличится в 2 раза Уменьшится в 2 раза Не изменится

    IV.  Молекулы расположены на больших расстояниях друг от друга (по отношению с размерами молекул), слабо взаимодействуют между собой, движутся хаотически. Какое это тело?

    Газ Твёрдое тело Жидкость Такого тела нет

    V.  В каком состоянии может находиться сталь?

    Только в твёрдом состоянии Только в жидком состоянии Только в газообразном Во всех трёх состояниях

    Тема: Три состояния вещества

    II вариант

    I.  Как расположены молекулы жидкостей и как они движутся?

    Молекулы расположены на расстояниях, соизмеримых с размерами самих молекул, и перемещаются свободно относительно друг друга. Молекулы расположены на больших расстояниях (по сравнению с размерами молекул) друг от друга и движутся беспорядочно. Молекулы расположены в строгом порядке и колеблются около определённых положений равновесия.

    II.  Какие из приведённых свойств принадлежат газам?

    Занимают весь предоставленный им объём Трудно сжимаются Имеют кристаллическое строение Легко сжимаются Не имеют собственной формы

    III.  В мензурке находится вода объёмом 100 см3. Её переливают в стакан вместимостью 200 см3. Изменится ли объём воды?

    Увеличится Уменьшится Не изменится

    IV.  Молекулы плотно упакованы, сильно притягиваются друг к другу, каждая молекула колеблется около определённого положения. Какое это тело?

    Газ Жидкость Твёрдое тело Таких тел нет

    V.  В каком состоянии может находиться вода?

    Только в жидком состоянии Только в газообразном состоянии Только в твёрдом состоянии Во всех трёх состояниях

    Тема: Три состояния вещества

    III вариант

    I.  Как расположены молекулы газов и как они движутся?

    Молекулы расположены на расстояниях, меньших размеров самих молекул, и перемещаются свободно относительно друг друга. Молекулы расположены на расстояниях, во много раз больше размеров самих молекул, и движутся беспорядочно. Молекулы расположены в строгом порядке и колеблются около определённых положений.

    II.  Какие из приведённых свойств принадлежат твёрдым телам?

    Трудно изменить форму Занимают весь предоставленный им объём Сохраняют постоянную форму Легко меняют форму Трудно сжимаются

    III.  Изменится ли объём газа, если его перекачать из баллона вместимостью 20 литров в баллон вместимость.40 литров?

    Увеличится в 2 раза Уменьшится в 2 раза Не изменится

    IV.  Есть ли такое вещество, у которого молекулы расположены на больших расстояниях, сильно притягиваются друг к другу и колеблются около определённых положений?

    Газ Жидкость Твёрдое тело Такого вещества не существует

    V.  В каком состоянии может находиться ртуть?

    Только в жидком Только в твёрдом Только в газообразном Во всех трёх состояниях

    Тема: Три состояния вещества

    IV вариант

    I.  Ниже указано поведение молекул в твёрдых, жидких и газообразных телах. Что является общим для жидкостей и газов?

    То, что молекулы расположены на расстояниях меньших размеров самих молекул и движутся свободно относительно друг друга То, что молекулы расположены на больших расстояниях друг от друга и движутся беспорядочно То, что молекулы движутся беспорядочно друг относительно друга То, что молекулы расположены в строгом порядке и колеблются около определённых положений

    II.  Какие из указанных свойств принадлежат твёрдым телам?

    Имеют определённый объём Занимают объём всего сосуда Принимают форму сосуда Мало сжимаются Легко сжимаются

    III.  В бутылке находится вода объёмом 0,5 литра. Её переливают в колбу вместимостью 1 литр. Изменится ли объём воды?

    Читайте также:  Какими свойством обладают образующие

    Увеличится Уменьшится Не изменится

    IV.  Молекулы расположены так, что расстояние между ними меньше размеров самих молекул. Они сильно притягиваются друг к другу и перемещаются с места на место. Какое это тело?

    Газ Жидкость Твёрдое тело

    V.  В каком состоянии может находиться спирт?

    Только в твёрдом состоянии Только в жидком состоянии Только в газообразном состоянии Во всех трёх состояниях

    Ответы к тестам

    I вариант

    I — 3

    II — 2, 5

    III — 1

    IV — 1

    V — 4

    II вариант

    I — 1

    II — 1, 4, 5

    III — 3

    IV — 3

    V — 4

    III вариант

    I — 2

    II — 1, 3, 5

    III — 1

    IV — 4

    V — 4

    IV вариант

    I — 3

    II — 1, 4

    III — 3

    IV — 2

    V — 4

    Источник

    Агрега́тное состоя́ние вещества (от лат. aggrego «присоединяю») — физическое состояние вещества, зависящее от соответствующего сочетания температуры и давления.
    Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других физических величин.[1]

    Традиционно выделяют три агрегатных состояния: твёрдое, жидкое и газообразное. К агрегатным состояниям принято причислять также плазму[2], в которую переходят газы при повышении температуры и фиксированном давлении. Отличительной особенностью является отсутствие резкой границы перехода к плазменному состоянию. Существуют и другие агрегатные состояния.

    Определения агрегатных состояний не всегда являются строгими. Так, существуют аморфные тела, сохраняющие структуру жидкости и обладающие небольшой текучестью и способностью сохранять форму; жидкие кристаллы текучи, но при этом обладают некоторыми свойствами твёрдых тел, в частности, могут поляризовать проходящее через них электромагнитное излучение.

    Для описания различных состояний в физике используется более широкое понятие термодинамической фазы. Явления, описывающие переходы от одной фазы к другой, называют критическими явлениями.

    Основным термодинамическим (феноменологическим) признаком различия видов агрегатного состояния вещества является наличие энергетической границы между фазами: теплота испарения как граница между жидкостью и её паром и теплота плавления как граница между твёрдым веществом и жидкостью[3].

    Четыре основных состояния[править | править код]

    Твёрдое тело[править | править код]

    Кристаллические вещества: атомное разрешение изображения титаната стронция. Яркие атомы — Sr, темнее их Ti.

    В твёрдом состоянии вещество сохраняет как форму, так и объём. При низких температурах все вещества замерзают — превращаются в твёрдые тела. Температура затвердевания может быть несколько повышена при увеличении давления. Твёрдые тела делятся на кристаллические и аморфные. С микроскопической точки зрения твёрдые тела характерны тем, что молекулы или атомы в них в течение длительного времени сохраняют своё среднее положение неизменным, только совершая колебания с небольшой амплитудой вокруг них. В кристаллах средние положения атомов или молекул строго упорядочены. Кристаллы характеризуются пространственной периодичностью в расположении равновесных положений атомов, которая достигается наличием дальнего порядка и носит название кристаллической решётки. Естественная форма кристаллов — правильные многогранники.

    В аморфных телах атомы колеблются вокруг хаотически расположенных точек, у них отсутствует дальний порядок, но сохраняется ближний, при котором молекулы расположены согласованно на расстоянии, сравнимом с их размерами. Согласно классическим представлениям, устойчивым состоянием (с минимумом потенциальной энергии) твёрдого тела является кристаллическое. Частным случаем аморфного состояния является стеклообразное состояние. Аморфное тело находится в метастабильном состоянии и с течением времени должно перейти в кристаллическое состояние, однако время кристаллизации часто столь велико, что метастабильность вовсе не проявляется. Аморфное тело можно рассматривать как жидкость с очень большой (часто бесконечно большой) вязкостью. Кристаллические твёрдые тела имеют анизотропные свойства, то есть их отклик на приложенные внешние силы зависит от ориентации сил относительно кристаллографических осей. В твердотельном состоянии вещества могут иметь много фаз, которые отличаются составлением атомов или другими характеристиками, такими как упорядочение спинов в ферромагнетиках.

    Жидкость[править | править код]

    Структура классической одноатомной жидкости.

    В жидком состоянии вещество сохраняет объём, но не сохраняет форму. Это означает, что жидкость может занимать только часть объёма сосуда, но также может свободно перетекать по всей поверхности сосуда. Жидкое состояние обычно считают промежуточным между твёрдым телом и газом.
    Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает изменение формы (внутренних частей жидкого тела).
    Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.
    Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твёрдое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.
    Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).
    Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.
    Как и газ, жидкости тоже в основном изотропные. Однако, существуют жидкости с анизотропными свойствами — жидкие кристаллы. Кроме изотропной, так называемой нормальной фазы, эти вещества, мезогены, имеют одну или несколько упорядоченных термодинамических фаз, которые называют мезофазы. Составление в мезофазы происходит благодаря особой форме молекул жидких кристаллов. Обычно это длинные узкие молекулы, которым выгодно укладываться так, чтобы их оси совпадали.

    Читайте также:  Опишите состав и свойства нефти укажите каким процессом

    Газ[править | править код]

    Основная статья: Газ

    Промежутки между молекулами газа очень большие. Молекулы газа обладают очень слабыми связями. Молекулы в газе могут перемещаться свободно и быстро.

    Газообразное состояние характерно тем, что оно не сохраняет ни форму, ни объём. Причем заполняет весь доступный ему объём. Это состояние, свойственное веществам с малой плотностью. Переход из жидкого в газообразное состояние называют испарением, а противоположный ему переход из газообразного состояния в жидкое — конденсацией. Переход из твёрдого состояния в газообразное, минуя жидкое, называют сублимацией или возгонкой. С микроскопической точки зрения газ — это состояние вещества, в котором его отдельные молекулы взаимодействуют слабо и движутся хаотически. Взаимодействие между ними сводится к спорадическим столкновениям. Кинетическая энергия молекул превышает потенциальную. Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма и не образуют свободной поверхности, а стремятся заполнить весь доступный объём (например, сосуда). По химическим свойствам газы и их смеси весьма разнообразны — от малоактивных инертных газов до взрывчатых газовых смесей. Понятие «газ» иногда распространяют не только на совокупности атомов и молекул, но и на совокупности других частиц — фотонов, электронов, броуновских частиц, а также плазму. Некоторые вещества не имеют газообразного состояния. Это вещества со сложным химическим строением, которые при повышении температуры распадаются вследствие химических реакций раньше, чем становятся газом. Не существует различных газообразных термодинамических фаз одного вещества. Газам свойственна изотропия, то есть независимость характеристик от направления. В привычных для человека земных условиях, газ имеет одинаковую плотность в любой точке, однако это не является универсальным законом, во внешних полях, например в поле тяготения Земли, или в условиях различных температур плотность газа может меняться от точки к точке. Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется паром.

    Плазма[править | править код]

    Плазменная декоративная лампа.

    Четвёртым агрегатным состоянием вещества часто называют плазму. Плазма является частично или полностью ионизированным газом и в равновесном состоянии обычно возникает при высокой температуре, от нескольких тысяч К[1] и выше. В земных условиях плазма образуется в газовых разрядах. Её свойства напоминают свойства газообразного состояния вещества, за исключением того факта, что для плазмы принципиальную роль играет электродинамика, то есть равноправной с ионами и электронами составляющей плазмы является электромагнитное поле.

    Плазма — самое распространённое во Вселенной агрегатное состояние вещества. В этом состоянии находится вещество звёзд и вещество, наполняющее межпланетное, межзвёздное и межгалактическое пространство. Бо́льшая часть барионного вещества (по массе около 99,9 %) во Вселенной находится в состоянии плазмы.[4].

    Фазовый переход[править | править код]

    Фазовый переход по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и тому подобное) происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

    При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться).

    Низкотемпературные состояния[править | править код]

    Сверхтекучесть[править | править код]

    Способность вещества в особом состоянии (квантовой жидкости), возникающем при понижении температуры к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы сверхтекучесть была обнаружена и в других системах: в разреженных атомных бозе-конденсатах, твёрдом гелии.

    Сверхтекучесть объясняется следующим образом. Поскольку атомы гелия являются бозонами, квантовая механика допускает нахождение в одном состоянии произвольного числа частиц. Вблизи абсолютного нуля температур все атомы гелия оказываются в основном энергетическом состоянии. Поскольку энергия состояний дискретна, атом может получить не любую энергию, а только такую, которая равна энергетическому зазору между соседними уровнями энергии. Но при низкой температуре энергия столкновений может оказаться меньше этой величины, в результате чего рассеяния энергии попросту не будет происходить. Жидкость будет течь без трения.

    Конденсат Бозе — Эйнштейна[править | править код]

    Получается в результате охлаждения бозе-газа до температур, близких к абсолютному нулю. В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях и квантовые эффекты начинают проявляться на макроскопическом уровне. Конденсат Бозе — Эйнштейна проявляет ряд квантовых свойств, таких как сверхтекучесть и резонанс Фешбаха[en].

    Читайте также:  Какие свойства известняка и пальмовых листьев

    Фермионный конденсат[править | править код]

    Представляет собой Бозе-конденсацию в режиме БКШ «атомных куперовских пар» в газах состоящих из атомов-фермионов.
    (В отличие от традиционного режима бозе-эйнштейновской конденсации составных бозонов).

    Такие фермионные атомные конденсаты являются «родственниками» сверхпроводников, но с критической температурой порядка комнатной и выше.
    [5]

    Вырожденный газ[править | править код]

    Газ, на свойства которого существенно влияют квантовомеханические эффекты, возникающие вследствие тождественности его частиц. Вырождение наступает в условиях, когда расстояния между частицами газа становятся соизмеримыми с длиной волны де Бройля; в зависимости от спина частиц выделяются два типа вырожденных газов — ферми-газ, образованный фермионами (частицами с полуцелым спином) и бозе-газ, образованный бозонами (частицами с целым спином).

    Сверхтекучее твёрдое тело[править | править код]

    Термодинамическая фаза квантовой жидкости, представляющей собой твёрдое тело со свойствами сверхтекучей жидкости.

    Высокоэнергетические состояния[править | править код]

    Глазма[править | править код]

    Состояние адронного поля[6], предшествующее при столкновениях кварк-глюонной плазме. Состоит из цветных токовых трубок.[7] Глазма является особенностью теоретической модели «конденсата цветового стекла» (англ. color glass condensate) — подхода к описанию сильного взаимодействия в условиях высоких плотностей[8].

    Глазма образуется при столкновении адронов друг с другом (например, протонов с протонами, ионов с ионами, ионов с протонами). Считается также, что в эволюции Вселенной состояние глазмы предшествовало кварк-глюонной плазме, которая существовала в первые миллионные доли секунды сразу после Большого взрыва. Время существования глазмы — несколько иоктосекунд[9].

    Кварк-глюонная плазма[править | править код]

    Состояние вещества в физике высоких энергий и физике элементарных частиц, при котором адронное вещество переходит в состояние, аналогичное состоянию, в котором находятся электроны и ионы в обычной плазме. Ему предшествует состояние глазмы[10] (глазма термализуется, то есть разрушается, порождая множество хаотично движущихся кварков, антикварков и глюонов: кварк-глюонную плазму[11]).

    Состояния при большом давлении[править | править код]

    Нейтронное состояние[править | править код]

    Принципиально отличное от других состояние вещества, состоящее только из нейтронов. В нейтронное состояние вещество переходит при сверхвысоком давлении, недоступном пока в лаборатории, но которое существует внутри нейтронных звезд. При переходе в нейтронное состояние, электроны вещества объединяются с протонами и превращаются в нейтроны. Для этого необходимо, чтобы силы гравитации сжали вещество настолько, чтобы преодолеть отталкивание электронов, обусловленное принципом Паули. В результате в нейтронном состоянии вещество полностью состоит из нейтронов и имеет плотность порядка ядерной. Температура вещества при этом не должна быть очень высокой (в энергетическом эквиваленте, в пределах от сотни МэВ).

    Другие состояния[править | править код]

    Тёмная материя[править | править код]

    Форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Это свойство данной формы вещества делает невозможным её прямое наблюдение. Однако возможно обнаружить присутствие тёмной материи по создаваемым ею гравитационным эффектам.

    Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

    Сверхкритический флюид[править | править код]

    Состояние вещества, при котором исчезает различие между жидкой и газовой фазой. Любое вещество, находящееся при температуре и давлении выше критической точки, является сверхкритической жидкостью. Свойства вещества в сверхкритическом состоянии промежуточные между его свойствами в газовой и жидкой фазе. Так, СКФ обладает высокой плотностью, близкой к жидкости, низкой вязкостью и при отсутствии межфазных границ поверхностное натяжение также исчезает. Коэффициент диффузии при этом имеет промежуточное между жидкостью и газом значение. Вещества в сверхкритическом состоянии могут применяться в качестве заменителей органических растворителей в лабораторных и промышленных процессах. Наибольший интерес и распространение в связи с определёнными свойствами получили сверхкритическая вода и сверхкритический диоксид углерода.

    Вырожденная материя[править | править код]

    • Ферми-газ — 1-я стадия: электронно-вырожденный газ, наблюдается в белых карликах, играет важную роль в эволюции звёзд.
    • 2-я стадия — нейтронное состояние: в него вещество переходит при сверхвысоком давлении, недостижимом пока в лаборатории, но существующем внутри нейтронных звёзд. При переходе в нейтронное состояние электроны вещества взаимодействуют с протонами и превращаются в нейтроны. В результате вещество в нейтронном состоянии полностью состоит из нейтронов и обладает плотностью порядка ядерной. Температура вещества при этом должна быть ниже триллиона градусов (в энергетическом эквиваленте не более сотни МэВ).
    • При повышении температуры выше сотни МэВ в нейтронном состоянии начинают рождаться и аннигилировать разнообразные мезоны. При дальнейшем повышении температуры происходит деконфайнмент, и вещество переходит в состояние кварк-глюонной плазмы. Оно состоит уже не из адронов, а из постоянно рождающихся и исчезающих кварков и глюонов. Возможно[12], деконфайнмент происходит в два этапа.
    • При дальнейшем неограниченном повышении давления без повышения температуры вещество коллапсирует в чёрную дыру.
    • При одновременном повышении и давления, и температуры к кваркам и глюонам добавляются иные частицы. Что происходит с веществом, пространством и временем при температурах, близких к планковской, пока неизвестно.

    См. также[править | править код]

    • Тройная точка
    • Нормальные и стандартные условия

    Примечания[править | править код]

    Литература[править | править код]

    • Шульц М. М., Мазурин О. В. Современное представление о строении стёкол и их свойствах. — Л.: Наука, 1988. — ISBN 5-02-024564-X.

    Источник