Какие свойства у высоты

Какие свойства у высоты thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 апреля 2020;
проверки требуют 9 правок.

Высота в треугольниках различного типа

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону).
В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника у тупоугольного треугольника.

Свойства[править | править код]

Свойства ортоцентра[править | править код]

  • Все 3 высоты треугольника пересекаются в 1 точке, называемой ортоцентром. Доказательства ниже.
  • Ортоцентр изогонально сопряжен центру описанной окружности.
  • Ортоцентр лежит на одной прямой с центроидом, центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.
  • Центр описанной около треугольника окружности служит ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника.
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если О — центр описанной окружности ΔABC, то ,
  • Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
  • Теорема Гамильтона. Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
  • Следствия теоремы Гамильтона:

    • Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона, имеющих равные радиусы описанных окружностей.
    • Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
  • В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном — вне треугольника; в прямоугольном — в вершине прямого угла.

Свойства высот равнобедренного треугольника[править | править код]

  • Если в треугольнике две высоты равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
  • У равностороннего треугольника все три высоты равны.

Свойства оснований высот треугольника[править | править код]

  • Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
  • Описанная около ортотреугольника окружность — окружность Эйлера. На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
  • Другая формулировка последнего свойства:
    • Теорема Эйлера для окружности девяти точек. Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (на окружности девяти точек).
  • Теорема. В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
  • Теорема. В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.
  • В 1860 году Шлёмильх доказал теорему: три прямые, соединяющие середины сторон треугольника с серединами его соответствующих высот, пересекаются в одной точке. В 1937 году советский математик С. И. Зетель показал, что эта теорема верна не только для высот, но и для любых других чевиан.

Другие свойства[править | править код]

  • Если треугольник разносторонний (неравносторонний), то его внутренняя биссектриса, проведённая из любой вершины, лежит между внутренними медианой и высотой, проведёнными из той же вершины.
  • Высота треугольника изогонально сопряжена диаметру (радиусу) описанной окружности, проведенному из той же самой вершины.
  • В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
  • В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Свойства минимальной из высот[править | править код]

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Соотношения[править | править код]

где  — основание, — боковая сторона.

Теорема о высоте прямоугольного треугольника[править | править код]

Если высота в прямоугольном треугольнике длиной , проведённая из вершины прямого угла, делит гипотенузу длиной на отрезки и , соответствующие катетам и , то верны следующие равенства:

Теорема о проекциях[править | править код]

См. с. 51, ф. (1.11-4)[1].
Теорема о проекциях: . Из теоремы о проекциях следует то, что высота, опущенная, например, из вершины , делит противоположную ей сторону на две части и , считая от вершины к .

Мнемоническое стихотворение[править | править код]

Высота похожа на кота,
Который выгнул спину
И под прямым углом
Соединил вершину
И сторону хвостом.[2]

История[править | править код]

Утверждение: «Все 3 высоты треугольника пересекаются в одной точке», называемой теперь ортоцентром, в «Началах» Евклида отсутствует. Часть историков приписывает это утверждение Архимеду и называют его теоремой Архимеда[3]. Ортоцентр впервые в греческой математике использован в «Книге лемм» Архимеда, хотя явного доказательства существования ортоцентра Архимед не привёл. Тем не менее до середины девятнадцатого века, ортоцентр нередко называли архимедовой точкой[4]. Другие историки математики считают автором первого доказательства Уильяма Чеппла[en] (Miscellanea Curiosa Mathematica, 1749 год)[5].

Читайте также:  В какой мере зрительное восприятие отражает реальные свойства объектов

Вариации по теме. Высоты в четырёхугольнике[править | править код]

Теорема[6]. Пусть  — вписанный четырёхугольник,  — основание перпендикуляра (высоты), опущенного из вершины на диагональ ; аналогично определяются точки . Тогда точки лежат на одной окружности.

Это утверждение — следствие леммы о шестой окружности.

Две составные части высоты: предвысота и поствысота [7][править | править код]

Три чевианы, проходящие через общую точку

  • На рис. справа в треугольнике ABC через точку O проведены 3 высоты: AD, BE и CF. Тогда точка O пересечения 3 высот разбивает каждую высоту на 2 отрезка прямых, один из них (который начинается в вершине, а заканчивается в точке пересечения O) мы назовем довысотой или предвысотой, а второй из них (который начинается в точке пересечения O, а заканчивается в точке его пересечения со стороной, противоположной вершине) мы назовем поствысотой.
  • Эти 2 термина введены по аналогии с операторами цикла с учетом их изображения на блок-схемах в информатике. Там есть понятия цикла соответственно с пред- и пост-условием в зависимости от того, стоит ли это условие перед или после тела цикла. У нас в роли тела цикла выступает точка O пересечения высот, а в роли условия – первый или второй конец отрезка, вводимого, как понятие для одной из двух частей высоты.
  • С помощью этих 2 понятий совсем просто формулируются некоторые теоремы геометрии.

Например, в любом треугольнике (в остро-, прямо-, и в тупоугольном) 3 произведения пред- и поствысоты совпадают. Для остро-и прямоугольного треугольников это утверждение легко доказываемое. Оно верно и для любого тупоугольного треугольника, что удивительно, поскольку в таком треугольнике 2 из 3 высот даже не лежат внутри самого треугольника.

  • Замечание. На этом рис. справа в треугольнике ABC чевианы не являются высотами. На следующем рис. справа в треугольнике ABC три высоты:

Высоты в треугольнике ABC

Примечания[править | править код]

  1. Корн Г.А., Корн Т.М. Справочник по математике для научных работников и инженеров. — М.: «Наука», 1974. — 832 с.
  2. Сафронова Вера Николаевна,. Урок геометрии в 7-м классе по теме: «Медиана, биссектриса, высота». Открытый урок. Издательский дом «Первое сентября». Дата обращения 19 июля 2017.
  3. ↑ Ефремов Д. Новая геометрия треугольника. Одесса, 1902. С. 9, п. 16. Высоты треугольника. Теорема Архимеда.
  4. Maureen T. Carroll, Elyn Rykken. Geometry: The Line and the Circle. Дата обращения 10 апреля 2020.
  5. ↑ Bogomolny, Alexander, A Possibly First Proof of the Concurrence of Altitudes, <https://www.cut-the-knot.org/triangle/Chapple.shtml>. Проверено 17 ноября 2019.
  6. ↑ Вокруг задачи Архимеда. Упр. 7, рис. 11, следствие, c. 5.
  7. ↑ Стариков В.Н. 10-е исследование по геометрии (§ До- (пред-)- и пост-чевианы)// Научный рецензируемый электронный журнал МГАУ «Наука и образование». 2020. № 1. 7 с.// https://opusmgau.ru/index.php/see/article/view/ (недоступная ссылка) 1604

Ссылки[править | править код]

  • Справочник: Треугольники

См. также[править | править код]

  • Ортоцентр

Источник

Высота треугольника. Свойство высоты прямоугольного треугольника

      Определение 1. Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).

Высота треугольника свойство высоты прямоугольного треугольника

Рис.1

      На рисунке 1 изображена высота BD, проведённая из вершины B треугольника ABC. Точка D – основание высоты.

      Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.

      Утверждение. Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).

Высота треугольника свойство высоты прямоугольного треугольника

Рис.2

      Доказательство. Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям

      В силу признака подобия прямоугольных треугольников треугольники BCD и ACD подобны. Следовательно,

      Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD, что и требовалось доказать.

      Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.

Расположение высот у треугольников различных типов

Остроугольный треугольник

Высота треугольника расположение высот остроугольного треугольника

Высота треугольника расположение высот остроугольного треугольника

Высота треугольника расположение высот остроугольного треугольника

Все высоты остроугольного треугольника лежат внутри треугольника.

Прямоугольный треугольник

Высота треугольника расположение высот прямоугольного треугольника

Высота треугольника расположение высот прямоугольного треугольника

Высота треугольника расположение высот прямоугольного треугольника

Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника

Тупоугольный треугольник

Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Ортоцентр треугольника

      Теорема 1. Высоты треугольника (или их продолжения) пересекаются в одной точке.

      Доказательство. Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).

Высота треугольника ортоцентр треугольника

Высота треугольника ортоцентр треугольника

Рис.3

      Обозначим точки пересечения этих прямых символами A1, B1 и C1, как показано на рисунке 3.

      В силу параллельности прямых AC и C1A1, а также BC и C1B1 четырёхугольники   AC1BC   и   ABA1C – параллелограммыпараллелограммы, откуда вытекают равенствавытекают равенствавытекают равенства

C1B = AC = BA1.

      Следовательно, точка B является серединой стороны C1A1.

      В силу параллельности прямых BC и C1B1, а также AB и B1A1 четырёхугольники   AC1BC   и   ABCB1 – параллелограммы,параллелограммы, откуда вытекают равенствавытекают равенствавытекают равенства

C1A = BC = A1B1.

      Следовательно, точка A является серединой стороны C1B1.

      В силу параллельности прямых AB и B1A1, а также AC и C1A1 четырёхугольники   ABA1C   и   ABCB1 – параллелограммыпараллелограммы, откуда вытекают равенствавытекают равенствавытекают равенства

A1C = AB = B1C.

      Следовательно, точка C является серединой стороны B1A1.

      Таким образом, высоты треугольника ABC являются серединными перпендикулярами треугольника A1B1C1 (рис. 4),

Высота треугольника ортоцентр треугольника

Высота треугольника ортоцентр треугольника

Рис.4

и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.

Читайте также:  Какими сходными свойствами обладают уксус и вода

      Теорема 1 доказана.

      Определение 2. Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.

      У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.

Расположение ортоцентров у треугольников различных типов

ФигураРисунокОписание
Остроугольный треугольникВысота треугольника расположение ортоцентра остроугольного треугольника

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Прямоугольный треугольникВысота треугольника расположение ортоцентра прямоугольного треугольника

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Тупоугольный треугольник

Высота треугольника расположение ортоцентра тупоугольного треугольника

Высота треугольника расположение ортоцентра тупоугольного треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Ортоцентрический треугольник

      Решим следующую задачу.

      Задача. В остроугольном треугольнике ABC проведены высоты AD и BE (рис.5). Доказать, что треугольник DCE подобен треугольнику ABC.

Высота треугольника ортоцентрический треугольник

Рис.5

      Решение. Рассмотрим треугольники ADC и BEC. Эти треугольники подобны в силу признака подобия прямоугольных треугольников с равными острыми углами (угол C общий). Следовательно, справедливо равенство

      Это равенство, а также наличие общего угла C позволяют на основании признака подобия треугольников заключить, что и треугольники   DCE   и   ABC   подобны. Решение задачи завершено.

      Из подобия треугольников   ABC   и   EDC (рис.5) вытекает важное следствие.

      Следствие 1.

      Определение 3. Ортоцентрическим треугольником (ортотреугольником) называют треугольник, вершинами которого служат основания высот исходного треугольника (рис 6).

Высота треугольника ортоцентрический треугольник

Рис.6

      Из определения 3 и следствия 1 вытекает следствие 2.

      Следствие 2. Пусть FDE – ортоцентрический треугольник с вершинами в основаниях высот остроугольного треугольника ABC (рис 7).

Высота треугольника ортоцентрический треугольник

Рис.7

      Тогда справедливы равенства

      Из следствия 2 вытекает теорема 2.

      Теорема  2. Высоты остроугольного треугольника являются биссектрисами углов его ортоцентрического треугольника (рис.7).

      Доказательство. Воспользовавшись следствием 2, получаем:

что и требовалось доказать.

Задача Фаньяно

      Задача Фаньяно. Рассматриваются всевозможные треугольники   DEF,   вершины    D,   E   и   F   которых лежат на сторонах   BC,   AC и   AB   остроугольного треугольника   ABC   соответственно. Доказать, что из всех треугольников DEF наименьшим периметром обладает ортоцентрический треугольник треугольника   ABC.

      Решение. Пусть   DEF – один из рассматриваемых треугольников. Обозначим символом   D1   точку, симметричную точке   D   относительно прямой   AC, и обозначим символом   D2   точку, симметричную точке D относительно прямой   AB (рис.8).

Высота треугольника задача Фаньяно

Рис.8

      Поскольку отрезок прямой – кратчайшее расстояние между двумя точками, то периметр треугольника DEF оказывается не меньшим, чем длина отрезка D1D2. Отсюда вытекает, что при фиксированной точке D наименьшим периметром обладает такой треугольник DEF, вершины F и E которого являются точками пересечения прямой D1D2 с прямыми AB и AC соответственно. Периметр этого треугольника равен длине отрезка D1D2 (рис.9).

Высота треугольника задача Фаньяно

Рис.9

      Заметим также, что выполнено равенство

AD = AD1 = AD2.

      Кроме того, выполнено равенство

      Поэтому

      Отсюда вытекает, что длина отрезка D1D2 будет наименьшей тогда, когда длина отрезка AD  будет наименьшей, т.е. в том случае, когда отрезок AD является высотой треугольника ABC. Другими словами, наименьшим периметром обладает такой треугольник DEF, у которого вершина D является основанием высоты треугольника ABC, проведённой из вершины A, а вершины E и F построены по описанной выше схеме. Таким образом, среди всевозможных треугольников DEF  треугольник с наименьшим периметром является единственным.

      Если обозначить длину высоты, проведённой из вершины A, длину стороны AB и радиус описанной около треугольника ABC окружности буквами h, c и R соответственно, то, воспользовавшись теоремой синусов, получим:

      Следовательно, наименьший периметр рассматриваемых треугольников DEF равен

      Теперь докажем, что ортоцентрический треугольник и является треугольником с наименьшим периметром. Для этого воспользуемся следующей леммой.

      Лемма. Пусть DEF – ортоцентрический треугольник треугольника ABC (рис.10).

Высота треугольника задача Фаньяно

Рис.10

      В этом случае отрезок D1D2  проходит через точки F и E.

      Доказательство. Заметим, что в силу следствия 2 выполняются равенства:

      Кроме того, в силу равенства
треугольников DFK и KFD2, а также в силу равенства треугольников DEL и LED1 выполняются равенства:

      Следовательно,

откуда вытекает, что углы AEF и D1EL , а также AFE и D2FK являются вертикальными углами. Это означает, что точки D1, F, E, D2 лежат на одной прямой. Лемма доказана.

      Доказательство леммы и завершает решение задачи Фаньяно.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Что такое высота треугольника?

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Давай нарисуем:

Высота треугольника. Иллюстрация.

На этом рисунке   – высота.

Но иногда высота ведёт себя, как непослушный ребенок – «выбегает» из треугольника. Это бывает в тупоугольном треугольнике.

И тогда получается так:

Частные случаи построения высоты треугольника.

В общем, не нужно пугаться, если основание высоты оказалось не на стороне треугольника, а «за» треугольником, на продолжении стороны. Как же решать задачи, в которых участвует высота? Нужно стремиться применить какие-нибудь знания о прямоугольном треугольнике – ведь где высота – там и прямой угол.

Давай попробуем.

Вот есть, скажем, задача:

В треугольнике   с тупым углом   проведена высота  . Найти  , если  ,  ,  .

Решаем:

Условие задачи. Иллюстрация.Смотри: из-за того, что угол   – тупой, высота   опустилась на продолжение стороны  , а не на саму сторону.

Теперь давай увидим во всём этом два прямоугольных треугольника.

Смотри их целых два:

Решение задачи.

Применяем теорему Пифагора к треугольнику  :

 , то есть  ;  .

А теперь теорема Пифагора для  :

 ; то есть  ;  .

Читайте также:  Какие свойства материи являются ее атрибутами

Теперь осталось только заметить, что  .

Нашли!

А теперь давай зададимся вопросом: а сколько вообще высот у треугольника? Конечно, три! И вот, есть такое утверждение, доказывать которое мы здесь не будем, но знать его нужно, тем более, что запоминается оно просто:

В любом треугольнике все три высоты (или их продолжения) пересекаются в одной точке.

Смотрим, как это бывает:

a) Сами высоты пересекаются:

Пересечение высот в равнобедренном треугольнике.

b) Пересекаются продолжения:

Пересечение высот в равнобедренном треугольнике 2.

Ну вот, про высоту и запоминать-то нужно всего ничего:

  • Задача про высоту часто решается с помощью знаний о прямоугольном треугольнике.
  • Три высоты (или три продолжения) пересекаются в одной точке.
    (Но! Это НЕ центр НИКАКОЙ окружности )

ВЫСОТА ТРЕУГОЛЬНИКА. СРЕДНИЙ УРОВЕНЬ

Высота треугольника – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Высота треугольника. Иллюстрация определения.

Обрати внимание, что, в отличие от биссектрисы и медианы, высота может находиться вне треугольника. Вот так, например:

Частный случай высоты вне треугольника.

Немного о терминологии:основанием высоты называют ту точку, в которой высота пересекает противоположную сторону (или её продолжение).

Задачи, связанные с высотой, часто решаются при помощи знаний о прямоугольном треугольнике. Но попадаются задачи и похитрее, при решении которых лучше обладать дополнительными знаниями заранее, а не выводить их «с нуля». Сейчас мы обсудим некоторые из них.

В треугольнике проведено две высоты

Две высоты в треугольнике. Иллюстрация.

Первый «неожиданный факт»:

Почему бы это? Да очень просто! У них общий угол   и оба – прямоугольные. Значит, подобны по двум углам.

Второй «неожиданный» факт:

Две высоты в треугольнике. Иллюстрация 2.Здесь тоже подобие по двум углам:   (как вертикальные) и по прямому углу.

Третий, по–настоящему неожиданный факт:

Две высоты в треугольнике. Иллюстрация 3.

Вот это уже интереснее, правда? Давай разбираться, почему так.

  • Во-первых, конечно, у этих треугольников есть одинаковый (и даже общий) угол  .
  • А во–вторых …ты помнишь ещё первый «неожиданный» факт? Ну, что  ? Вспоминаем и применяем!

Запишем отношения соответствующих сторон.

Две высоты в треугольнике. Отношение сторон. Иллюстрация 1.Итак,  .Следовательно,  

Перепишем по–другому:  

Отношение сторон. Иллюстрация 1.Ух, да это же – отношение сторон для треугольников   и  !

В итоге мы получили, что у треугольников   и  

  1. Угол   – общий;
  2. Отношение сторон, заключающих этот угол – одинаковы:  .

Значит, мы получили, что:

Но самое интересное ещё впереди!

Каков же коэффициент подобия этих треугольников? То есть чему же равно это самое отношение  ?

Рисуем:

Подобные треугольники. Иллюстрация.Где наши знания о прямоугольном треугольнике? Что такое  ? Катет, прилежащий к углу  . А что такое  ? Гипотенуза!

Значит,  .

Потрясающе, не правда ли?

Давай сформулируем ещё раз, чтобы лучше запомнить:

Две высоты в треугольнике. Отношение сторон. Иллюстрация 2.  

Ну вот, две высоты в треугольнике рассмотрены. А теперь…

В треугольнике проведены три высоты.

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

  1. Треугольник остроугольный – тогда пересекаются сами высоты Остроугольный треугольник. Три высоты - пересекаются.
  2. Треугольник тупоугольный – тогда пересекаются продолжения высот
    Какие свойства у высоты

Что же полезного мы ещё не обсудили?

Угол между высотами.

Давай узнаем, вдруг угол между высотами можно как–то выразить через углы треугольника? Давай рассмотрим остроугольный треугольник.

Остроугольный треугольник. Угол между высотами.Итак, нам хотелось бы найти  . Смотрим на  . Замечаем, что наш   – внешний угол в этом треугольнике. Значит,  .

Чему же равны   и  ?

Какие свойства у высотыСмотри: из   выходит, что  . Конечно, таким же образом из   получается, что  .

Теперь  .

Но что же это такое? Ведь сумма угла углов треугольника —  ! Значит,  .

Итак, что получилось?

Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

А как же дело обстоит в тупоугольном треугольнике? Давай смотреть…очень внимательно!

Представим, что у нас «главный» не  , а  .

Тупоугольный треугольник. Высота.Тогда оказывается, что прямые  ,   и   – высоты в  . Но   уже остроугольный (так как все высоты оказались внутри), а про остроугольный треугольник мы уже всё знаем:  . НО!  

Значит, для тупоугольного треугольника:

И ещё кое–что:

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Тупоугольный треугольник. Отношение.Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника. Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести. И тогда, если ты будешь точно знать, например? что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

ВЫСОТА ТРЕУГОЛЬНИКА. КОРОТКО О ГЛАВНОМ

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.

Какие свойства у высотыТри высоты любого треугольника пересекаются в одной точке.

Высоты треугольника обратно пропорциональны сторонам, на которые они опущены:  .

Способы вычисления длины высоты, проведенной к стороне BC:

1) Через сторону и угол треугольника:  .

2) Через все 3 стороны треугольника:

 ,

где   — полупериметр треугольника:  .

3) Через сторону и площадь треугольника:  .

4) Через стороны треугольника и радиус описанной окружности:
 ,

где   — радиус описанной окружности.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц», 

А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

можно кликнув по этой ссылке.

Источник